To date, H3N2 or H3N8 Canine Influenza Viruses (CIVs) are only circulating in dogs and there is no evidence of transmission of these viruses from dogs to humans. However, influenza viruses are constantly evolving and it is possible they could cross this specie barrier and start infecting and circulating between humans. Therefore, considering the impact that H3N2 or H3N8 CIVs might have on public health, pandemic preparedness and identification of potential treatments for this scenario are needed.
In response to the NYICE Pandemic Response Program, our lab has started working with H3N2 and H3N8 CIVs since May 2017. In line with the overall goal of the pandemic response program, we are implementing new experimental tools and technical approaches to study H3N2 and H3N8 CIV infections. These new experimental approaches will allow us to rapidly respond to the emergence of H3N2 and H3N8 CIVs, including the identification of potential antivirals that can be used for the treatment of CIVs as well as neutralizing antibodies that could be implemented for the prophylactic or therapeutic treatment of CIV infections in humans. Moreover, during this time, we have also developed two different approaches for the development of attenuated forms of these CIVs that can be used as live-attenuated influenza vaccines (LAIVs) for the prevention and control of H3N2 and H3N8 CIVs in dogs and, if needed, in humans. Below we summarize our results for this pandemic response program:
1. Development of LAIVs for the treatment of CIVs: To date, only inactivated influenza vaccines (IIVs) are available for the prevention of H3N2 and H3N8 CIV infections. However, LAIVs have been shown to provide better protection because of their ability to induce more robust humoral and cell-mediated immune responses against subsequent exposure to influenza viruses. We employed two different experimental approaches for the development of LAIVs for the treatment of CIVs. In the first approach, we generated, using reverse genetics techniques, recombinant H3N8 CIVs with a deletion (DNS1) or with truncations (NS1-73, NS1-99 and NS1-126) in the non-structural 1 (NS1) protein. We have shown that H3N8 CIVs with either a deletion or with truncations in NS1 were able to replicate at similar levels than wild-type (WT) H3N8 CIV in vitro, important for vaccine production, but were attenuated and able to confer, upon a single intranasal administration, protection against challenge with WT H3N8 CIV, important for their implementation as LAIVs. Concomitantly, we also generated a H3N8 CIV LAIV based on the introduction of one mutation in the viral polymerase basic protein 2 (PB2; N265S) and three mutations in the viral polymerase basic protein 1 (PB1; K391E, E581G, A661T) responsible for the temperature sensitive (ts), cold-adapted (ca) and attenuated (att) phenotype of the human LAIV A/Ann Arbor/6/60 H2N2 (FluMist). In vitro studies demonstrated that introduction of these mutation in the H3N8 CIV allow the virus to grow at 33°C, important for vaccine production, but severely (37°C) or completely (39°C) attenuated the virus at non-permissive temperatures. Importantly, in vivo results indicate that our ts, ca and att H3N8 CIV was attenuated but able to confer, upon a single intranasal dose, protection against subsequent infection with WT H3N8 CIV, demonstrating the feasibility of implementing this approach as a LAIV for the treatment of H3N8 CIV infections. Notably, we used the safe backbone of our ts, ca and att H3N8 CIV as a Master Donor Virus (MDV) to develop a LAIV against the newly introduced (2015-2016) in the United States H3N2 CIV. To that end, we generated, using reverse genetics, a recombinant virus containing the six internal genes (PB2, PB1, PA, NP, M and NS) of our CIV H3N8 LAIV and the external genes (HA and NA) of the H3N2 CIV. We have been able to demonstrate that this H3N2 CIV LAIV is safe, immunogenic and able to protect against challenge with WT H3N2 CIV. Finally, based on the safety profile of our individual H3N8 and H3N2 CIV LAIVs, we mixed both monovalent H3N2 and H3N8 CIV LAIVs for the development of a bivalent LAIV for the treatment of both CIVs. This was the first description of a bivalent LAIV for the treatment of H3N2 and H3N8 CIVs. More recently, we have implemented the same ts, ca and att approach to generate a LAIV for the treatment of equine influenza virus (EIV) infections.
References:
1. Nogales A, Huang K, Chauche C, DeDiego ML, Murcia PR, Parrish CR, et al. Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology. 2017;500:1-10.
2. Nogales A, Rodriguez L, Chauche C, Huang K, Reilly EC, Topham DJ, et al. Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol. 2017;91(4).
3. Rodriguez L, Nogales A, Reilly EC, Topham DJ, Murcia PR, Parrish CR, et al. A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology. 2017;504:96-106.
4. Rodriguez L, Nogales A, Murcia PR, Parrish CR, Martinez-Sobrido L. A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses. Vaccine. 2017;35(34):4374-81.
5. Rodriguez L, Reedy S, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. Development of a novel equine influenza virus live-attenuated vaccine. Virology. 2018 Mar;516:76-85. doi: 10.1016/j.virol.2018.01.005.
2. Development of fluorescent-expressing CIVs: We have generated and characterized fluorescent-expressing H3N2 and H3N8 CIVs that display similar growth kinetics and plaque phenotype to their WT counterparts. These fluorescent-expressing recombinant H3N2 and H3N8 CIVs will allow us to easily monitoring viral infection without the need of secondary procedures to detect the presence of the virus in infected cells. We have also implemented our recently described fluorescent-based microneutralization assay for the rapid identification of antivirals or neutralizing antibodies against CIVs. We are currently evaluating the antiviral activity of Food and Drug Administration (FDA)-approved antivirals (Oseltamivir, NA inhibitor; and Amantadine, M2 inhibitor) against H3N2 and H3N8 CIVs. Likewise, we are using the fluorescent-based microneutralization assay to screen a panel of human monoclonal antibodies (hmAbs) for their neutralizing activity against H3N2 and H3N8 CIVs for their potential use as prophylactic and/or therapeutics against H3N2 and H3N8 CIV infections.
References:
1. Nogales A, Baker SF, Martínez-Sobrido L. Replication-competent influenza A viruses expressing a red fluorescent protein. Virology. 2015 Feb;476:206-16. doi: 10.1016/j.virol.2014.12.006.
2. Nogales A, Rodríguez-Sánchez I, Monte K, Lenschow DJ, Perez DR, Martínez-Sobrido L. Replication-competent fluorescent-expressing influenza B virus. Virus Res. 2016 Feb 2;213:69-81. doi: 10.1016/j.virusres.2015.11.014.
3. Breen M, Nogales A, Baker SF, Perez DR, Martínez-Sobrido L. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies. PLoS One. 2016 Jan 25;11(1):e0147723. doi: 10.1371/journal.pone.0147723.
4. Breen M, Nogales A, Baker SF, Martínez-Sobrido L. Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses. 2016 Jun 23;8(7). pii: E179. doi: 10.3390/v8070179. Review.
5. DiPiazza A, Nogales A, Poulton N, Wilson PC, Martínez-Sobrido L, Sant AJ. Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Sci Rep. 2017 Sep 7;7(1):10857. doi: 10.1038/s41598-017-11313-x.
3. Understanding the mechanism(s) of CIV pathogenesis. During the last year we have also studied the mechanisms by which influenza viruses adapt to new hosts to understand the mechanism of viral infection and pathogenesis. We focused our studies on the NS1 protein, a virulence factor essential for counteracting the host immune response and specially the production of type I interferon (IFN). Unlike other influenza viruses that impair IFN response by blocking general gene expression, we have shown that H3N8 CIV NS1 specifically counteract the IFN response without blocking general gene expression. However, the presence of a Glutamate (E) in the residue 186 of the H3N8 CIV NS1 protein restored the ability of H3N8 CIV NS1 to block general host gene expression. Notably, and contrary to the situation of H3N8 CIV NS1, the NS1 protein of H3N2 CIV has the ability to inhibit host protein expression. More recently we have confirmed the importance of this residue 186 in NS1 evolution during adaptation of H3N8 EIV, an avian-origin virus. Evolution of influenza NS1 protein, the mutations that sequentially appear during evolution and their effect on immune evasion are important to understand influenza virus adaptation to mammals.
References:
1. Nogales A, Chauche C, DeDiego ML, Topham DJ, Parrish CR, Murcia PR, et al. The K186E Amino Acid Substitution in the Canine Influenza Virus H3N8 NS1 Protein Restores Its Ability To Inhibit Host Gene Expression. J Virol. 2017 Oct 27;91(22). pii: e00877-17. doi: 10.1128/JVI.00877-17.
2. Chauche C, Nogales A, Zhu H, Goldfarb D, Ahmad Shanizza AI, Gu Q, et al. Mammalian Adaptation of an Avian Influenza A Virus Involves Stepwise Changes in NS1. J Virol. 2018 Feb 12;92(5). pii: e01875-17. doi: 10.1128/JVI.01875-17.