CT Agiography CTA

Leena Ketonen, MD, Ph.D. Neuroradiology

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

Page 1 of 76

The Fun and Easy Way to use CTA and CTP Your First Aid Kit for Reconstructions on Workstation

- Creating Your First Shaded Surface Rendered Image in Plain English
- How to get reimbursement
- How to finance 16 slice CT scanners

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

Celebrating the Values of an Educated Life

Clinical Use of CTA & CTP

- Fast diagnosis of major vessel occlusion in a stroke patient
- Fast diagnosis of the presence of an aneurysm

Screening of carotid stenosis

CT & CTA

• CT: Most accessible neurological imaging modality

• Fast, efficient and minimally invasive way to look at brain and neck vessels

• Suitable for high volume institutions

CT Angiography

1. Fast, thin section volumetric spiral CT examination

2. Performed with a time-optimized bolus of contrast

3. Reformatting of cross sectional images (raw data →source images)

4. Postprocessing and 3D imaging

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

CTA

• Can be performed in minutes

Downside: uses radiation and intravenous contrast

NEW CT TECHNOLOGY

Light Speed

- 16 slice / multislice
- 4,000 programmable protocols
- 3D image processing and display
- Perfusion, advanced vessel anal.
- Dynamic scan: 960 scans/minute
- Image reconstruction time: 6 fps

• Year product introduced: 2002

Light Speed

- 4 slice / multislice
- 4,000 programmable protocols
- 3D Image processing and display
- Perfusion, advanced vessel anal.
- Dynamic scan 240 scans/minute
- Image reconstruction time; 6 fps

• Available since 1998

CT Study for Stroke 16 slice scanner can do it all

- NCCT
- CT PERFUSION
- CT ANGIOGRAPHY

Clinical Aspects CTA - MRA

CTA

- Fast, needs less sedation
- Less invasive than DSA
- All ERs have CT
- Life support etc
- Less expensive than MRA

MRA

- No radiation
- Information regarding flow direction
- (DWI)

Downsides:

- Radiation
- Uses contrast
- No flow directions

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

Downsides:

- Difficult if monitors or life support,
- Sedation
- Long examination time

CTA study

 The value of CTA and MRA depends significantly on secondary reconstruction possibilities

CTA Postprocessing

- Image reformatting, performed by techs at the scanner console is the recomputation of raw CTA image data into source images with varying slice thickness, interslice spacing and display FOV
- Reconstructions refers to the creation of 2D and 3D models from CTA data sets for purposes of diagnosis and communication to referring clinicians

CTA Postprocessing

2D

- MIP: maximum intensity projection
- Curved reformat
- MPR: Multiplanar reformats

3D

ullet

- SSD: Shaded surface display
 - VR: Volume rendering

CTA Postprocessing

MIP (maximum intensity projection)

- Most commonly used
- Useful for rapid detection of vascular discontinuities
- Part of standard software
- Loss of information; only single layer of the brightest voxels are displayed
 - "depth" information is lost

- VR (volume rend.) "the best"
- Groups of voxels within defined attenuation thresholds selected
- Transparent images; opacity assigned

SSD (shaded surface display)

- First layer of voxels within a defined thresholds used for display
- "depth" information preserved but "attenuation" information lost

Advantage of Multisection CT for vascular imaging of stroke patient

Less than 20 seconds

- Intracranial vessels
- Carotid bifurcations
- Origins from aortic arch

Perfusion CT

- 4 detectors: 2cm slab
- 16 detectors: 3 cm slab
 - Whole brain CTP is not yet possible

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

Imaging Protocol for Lightspeed multislice scanner

- 1st group:C-1/2 to vertex
- 2nd group:Arch to C-1/2
- Contrast: IV: 120 cc nonionic contrast, 3 cc/sec,
 25 sec delay
- Computer merges both groups
- MIP reformatted images constructed within minutes

CTA -- MRA

MRA

- Flow direction
- Does not visualize collateral flow

CTA

- Shows collateral flow
- Does not show flow direction

CTA and MRA are complementary tests

Neck Vessels MRA vs CTA

- PC (2D/3D)
 - Velocity dependent. Needs specification for VENC (arterial vs venous flow) and flow direction (left-to-right, right-to-left, s/i, a/p)
- 2D TOF
 - Antegrade flow. Saturation pulse to minimize the retrograde flow (including jugular vein)
- CE MRA
 - T1 WI, does not take in account the flow direction or velocity. Uses rapid bolus of Gd
 - **3D TOF**

-for circle of Willis

New need: 3D Lab Service

- Since late 1990s
- MGH (June 2003)
 - Processed 67 exams/day
 - 47 were neuro CTA/MRA studies and 20 nonvascular 3D CT and MRI exams

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

3D post-processing by experiences tech

 It takes 45-60 minutes for head/neck CTA post-processing (source images and MIPs are available "immediately")

• Full training of a tech took two months

resentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

Normal Anatomy

Various ways to look at the Anatomy in CTA 2D • 3D

Normal Anatomy

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

IC-EC Graft, curved reformatted image

Curved reformatted image

Curvature Reformatted Image Tracing The Vessel

Vertebrobasilar Analysis

Analysis of Carotid bifurcation

curvat, reformat.

All rights reserved. ©2002 URMC Radiology

34 year old with headaches

Venous angioma

Saphenous IC-EC Graft

Clinical Use of CTA & CTP

- Fast diagnosis of major vessel occlusion in a stroke patient
- Fast diagnosis of the presence of an aneurysm

Screening of carotid stenosis

CT Perfusion CTP

IV bolus of contrast

 Changes of brain tissue attenuation monitored during the 5 second transit time with high-temporal resolution dynamic CT

CT Perfusion

- 40 cc bolus of contrast IV
- Semiautomated postprocessing
- TTP, CBF, CBV in less than a minute

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

TIA vs Stroke

• NC CT

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

CTA with contrast:
 Perfusion window
 ("CBV")

TIA vs Stroke

• DWI

• Perfusion MRP: MTT

CTA

• MIP

• Source image

- MIP Ca++ marked with arrows. Residual lumen not visualized.
- **3D VR** -demonstrates Ca ++ and lumen

91 y/o with stroke

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

 Perfusion window (poor man's perfusion study, CBV)

CTA, MIP

 Patient underwent IA thrombolysis with good initial result

Acute Stroke

• NCCT

CTA, Stroke 1 year follow-up

Initial CTA

Recanalized vessel

Acute Stroke

• CECT

• Source image

CTA Curved reformat images

Acute Stroke

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

Basilar artery

Page 45 of 76

CTA 75 y/o with stroke

Acute stroke

• NCCT

Acute stroke

- 3/3/03 NCCT
- Follow-up

- 3/2/03 perfusion window
- Initial CTA

CTA Embolus

Stroke; 77 y/o Female

• Source

• MIP

Acute Stroke

• DWI

• ADC

Acute Stroke

Clinical Use of CTA & CTP

- Fast diagnosis of major vessel occlusion in a stroke patient
- Fast diagnosis of the presence of an aneurysm or other vascular lesion

Screening of carotid stenosis

Orbital Trauma a Week Ago Proptosis

• CECT

R/O AV fistula

Page 5 of 76

CTA video reversal

•

Noncontrast CT

Source image

Coronal MIP

• MIP; magnified

CTA Surface Rendered Image 3D Image

102 URMC Radiology

Page 60 of 76

SAH

ruptured aneurysm

Surface rendered

• MIP

CTA basilar tip aneurysm

• 3D SSD

• MIP, mag

• Source image

• MIP

CTA Postprocessed images

Curved reformat

• Surface rendered

CTA 72 y/o with TIA vs stroke

Clinical Use of CTA & CTP

- Fast diagnosis of major vessel occlusion in a stroke patient
- Fast diagnosis of the presence of an aneurysm

 Screening of carotid stenosis or other vascular lesions

Neck Vessel CTA

78 y/o with dizziness and abnormal US

MIP

 R/O glomus jugulare tumor. Abnormal US

Carotid Dissection

Curved reformatted image

• Source image

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

CTV

• Contrast enhanced CT • CTV

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology

CTV

The End

Thank You

Presentation material for educational purposes only. All rights reserved. ©2002 URMC Radiology