STRONG CHILDREN'S RESEARCH CENTER

Summer 2014 Research Scholar

Name: Yaakov Bishop School: Boston University

Mentor: George J. Schwartz, MD

ABSTRACT

Title: Bicarbonate secretion in immature rabbits is deficient despite pendrin expression in beta-intercalated cells

Background: The kidney is responsible for maintaining blood pH via acid/base transport which occurs in the cortical collecting duct (CCD). β -intercalated cells secrete bicarbonate (HCO₃⁻) while α-intercalated cells secrete protons. HCO₃⁻ secretion is accomplished through pendrin, a Cl⁻/ HCO₃⁻ anion-exchanger expressed apically in β -intercalated cells. Peanut agglutinin (PNA) apically binds β -intercalated cells. Previous studies have shown that Cl⁻/ HCO₃⁻ exchange in β -intercalated cells is diminished in immature rabbits (\leq 4weeks).

Objective: To determine whether lack of pendrin expression accounts for the observed bicarbonate secretion deficiency in immature rabbits.

Results: We assessed the number of PNA+ cells by staining CCDs for PNA and found that 9-day-old rabbits contain β -intercalated cell at amounts comparable to adults per CCD. We then assessed pendrin expression of β -intercalated cells by staining CCDs for pendrin and observed comparable numbers of pendrin-expressing cells per CCD in 9-day rabbits and adults. To quantify pendrin mRNA abundance we conducted a real time reverse transcriptase polymerase chain reaction (qRT-PCR) which indicated that pendrin mRNA levels were not significantly different in 9-day rabbits versus adults.

Conclusions: Diminished bicarbonate secretion in immature rabbits is not due to lack of pendrin expression.