Testing a deep learning algorithm for automatic detection of prenatal ultrasound for under-resourced communities Marika Toscano¹, MD; Junior Arroyo², BS; Ana C, Saavedra², BS; Thomas J, Marini³, MD; Timothy M, Baran³, PhD; Kathryn Drennan¹, MD; Ann M, Dozier⁴, PhD; Lorena Tamayo⁵, BS; Tina Zhao⁶, MD; Benjamin Castaneda², PhD. Considerate in triggers and its Techniques on Expension Publisher International Parts and New York Considerate Principles (Service Street Association (Service Association of Service Street Association (Service Ass ### Introduction In rural and under-resourced communities, the scarcity of Obstetric ultrasound (OB US) imaging results in a considerable gap in the perinatal healthcare. ## Objective To test a new automated diagnostic framework performed without an experienced sonographer or interpreting provider for assessment of fetal biometry measurements, fetal presentation, and placental position. ### Methods - A standardized volume sweep imaging (VSI) protocol based solely on external body landmarks was used to obtain OB USN without an experienced sonographer - A deep learning algorithm (U-net) was trained to automatically segment the fetal head and placental location from VSI OB US to evaluate fetal biometry, fetal presentation, and placental position without a radiologist A deep learning algorithm accurately predicts fetal presentation, placental location, and fetal biometry from ultrasound images obtained by individuals without prior ultrasound training. This offers a promising means for expanding access to vital Obstetric ultrasound imaging in rural and under-resourced # Fig 1. Scheme for the generation of the spatial location likelihoods Stage 1: Volume sweep imaging (VSI) protocol (depicted by arrows) is performed on gravid abdomen by ultrasound-naïve operator with 8 hours of training and guided solely by external body landmarks. Stage 2: Deep learning algorithm applied, with frames containing the target region (in this case fetal head) colored Stage 3: A Gaussian filter is applied to produce the spatial location likelihood. Based on this map, our algorithm produces a diagnosis: non-cephalic fetus # Fig 2. Heatmaps of cephalic (A) and non-cephalic (B) presentation. Color signal corresponds to location of fetal head