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Mechanics
• Definition of “mechanics”

• The study of how solid materials deform, move or break 
under the action of applied forces 

F, material properties

x'

x

O

P′

O

P



Applications of mechanics in musculoskeletal 
research

• Determining the optimal material properties of a meniscal implant 
to minimize risk of cartilage damage

• Monitoring the material properties of a repaired ACL over time to 
guide clinical care (e.g., when weight bearing may be resumed)

• Computing joint stresses in fetuses at risk of hip dysplasia due to 
oligohydramnios to link mechanical loading and joint 
morphogenesis

• Assessing how the transcriptional and metabolic activity of 
osteocytes is altered by mechanical stresses in the bone

• Comparing the material properties of native cartilage to tissue-
engineered cartilage to assess readiness for in vivo use

• Calculating stresses in the hip joint in an individual with 
femoroacetabular impingement

• Determining whether a drug accelerates Achilles tendon healing 
after a rupture



Tools for biomechanics research
• Theoretical approaches

• Limb/joint scale: Biostatics and biodynamics
• Tissue/cell scale: Models of tissue and cell mechanics

• 1D models
• Continuum models (3D)
• Tensegrity

• Computational approaches
• Finite element analysis (FEA)

• Experimental approaches
• Gait analysis
• Dynamometry
• Materials testing
• Elastography

• Ultrasound
• MRI



Example application of mechanics in 
musculoskeletal research

• Determining the optimal material properties of a meniscal 
implant to minimize risk of cartilage damage

• Need: What mechanical loads does the knee experience 
during walking? Tools: Biostatics and biodynamics 
(theoretical), gait analysis (experimental)

• Need: What mechanical model is appropriate for tissues in the 
knee? Tool: Continuum mechanics 

• Need: What are the material properties of these tissues? Tool: 
Materials testing

• Need: Given these loading conditions and material properties 
how does knee cartilage deform? Tools: Finite element 
analysis (FEA)



• Determining whether a drug accelerates Achilles tendon 
healing after a rupture (human study)

• Assumption: Material properties of the Achilles tendon are a 
signature (readout) of Achilles tendon healing

• Need: What mechanical loads does the Achilles tendon 
experience during a diagnostic exercise? Tools: Biostatics 
and biodynamics, dynamometry

• Need: What mechanical deformations does the Achilles 
tendon experience during a diagnostic exercise? Tool: 
Ultrasound elastography

• Need: Given these deformations and loading conditions, what 
are the material properties of the tendon? Tools: Continuum 
mechanics, inverse finite element analysis

Example scenario
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Soleus 
muscle

Gastrocnemius 
muscle

Achilles tendon

Calcaneous
(heel bone)

Apply passive 
dorsiflexion, 

measure torque

• The foot is placed on the dynamometer 
attachment/armature such that the dynamometer axis 
of rotation and the ankle axis of rotation are in the same 
plane

• Passive dorsiflexion is applied at a constant angular 
speed such that the angular acceleration ! = 0
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Example approach to indirectly compute in vivo
forces in a tissue
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Balance moments (CCW is positive):
Σ" = 0 = %&'())* − ",-.

→ 01223= 4567/9:

Note: 4567 is the known moment applied 
by the dynamometer on the armature 
(generated by a rotating motor and 
measured with a torque sensor) ",-.

'())*

Dynamometer armature free body 
diagram

9:

Example approach to indirectly compute in vivo
forces in a tissue

Balance moments:
Σ" = 0 = %;'<=>?@@AB −%& '())*
→ 0CDEFGGHI=012239:/9J

Foot free body diagram
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Example approach to indirectly compute in vivo
forces in a tissue

• Comments
• Assumptions

• All other muscle/tendon units and ligaments inactive or disengaged

• The moment arm of the Achilles tendon (!") is known
• !" varies from individual to individual and with ankle angle

• On average, !"~56 && at neutral ankle position

• Added complexities
• Inertia: If the ankle angle velocity is not constant (as in the case of 

gait), Σ( = *+ ≠ 0.



• Determining whether a drug accelerates Achilles tendon 
healing after a rupture (human study)

• Assumption: Material properties of the Achilles tendon are a 
signature (readout) of Achilles tendon healing

• Need: What mechanical loads does the Achilles tendon 
experience during a diagnostic exercise? Tools: Biostatics 
and biodynamics, dynamometry

• Need: What mechanical deformations does the Achilles 
tendon experience during a diagnostic exercise? Tool: 
Ultrasound elastography

• Need: Given these deformations and loading conditions, what 
are the material properties of the tendon? Tools: Continuum 
mechanics, inverse finite element analysis

Example scenario



Computing strain in a region of the Achilles tendon

!"
!" + ∆%

& = ∆%
!"



• Determining whether a drug accelerates Achilles tendon 
healing after a rupture (human study)

• Assumption: Material properties of the Achilles tendon are a 
signature (readout) of Achilles tendon healing

• Need: What mechanical loads does the Achilles tendon 
experience during a diagnostic exercise? Tools: Biostatics 
and biodynamics, dynamometry

• Need: What mechanical deformations does the Achilles 
tendon experience during a diagnostic exercise? Tool: 
Ultrasound elastography

• Need: Given these deformations and loading conditions, what 
are the material properties of the tendon? Tools: Continuum 
mechanics, inverse finite element analysis

Example scenario



Assessing the cross-sectional area of the Achilles 
tendon

Enclosed 
area = !



If the Achilles tendon were a simple material…
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YOUNG’S MODULUS - = )/$

Material property



• Determining whether a drug accelerates Achilles tendon 
healing after a rupture (human study)

• Assumption: Material properties of the Achilles tendon are a 
signature (readout) of Achilles tendon healing

• What are the material properties of the tendon at a given time 
point? Tool: Shear wave elastograpy

Example scenario



Slide courtesy of S. McAleavey

trackpush

• Material properties may be 
estimated from observation of speed 
and distortion of propagating shear 

wave (e.g., !" = $
%& in a simple 

material under no stress)

Shear wave elastography



• Determining whether a drug accelerates Achilles tendon 
healing after a rupture (animal study)

• Assumption: Material properties of the Achilles tendon are a 
signature (readout) of Achilles tendon healing

• What are the material properties of the tendon at a given time 
point? Tool: Ex-vivo materials testing

Example scenario (alternative)



• One grip is coupled to a linear actuator (e.g., a piezoelectic crystal)
• Other grip is coupled to a load cell or other force transducer (could be as simple as 

a spring of known ! whose displacement is measured)
• Tests may be performed with microscope-mounted systems, enabling 

measurement of local strains and local mechanical properties and avoiding 
artefacts due to specimen slippage

Ex-vivo uniaxial tensile test 

Elsheikh et al. (2007)

Load 
cell

Actuator

Stain line



Gripping strategies
• Screw-tightened clamps or vices (may be serrated for enhanced adhesion)
• Pneumatically-tightened clamps
• Cyanoacrylate (super glue, optimal glue for tissues)
• Sandpaper (used in conjunction with clamps for tension or by itself for 

shear)
• Freeze clamps (clamps jacketed with liquid nitrogen that adhere to the 

specimen through freezing)

F F



Tension/extension in 1D
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Tension/extension in 1D

A

H

y

F

F

STRAIN e = y/H
STRESS s = F/A
YOUNG’S MODULUS E = s/e
STIFFNESS k = F/y



Uniaxial tension/extension: The stress-strain curve

• sys is the yield stress, eyp is the yield strain
• suts is the ultimate tensile strength, eu is the ultimate strain
• ef is the failure strain
• Say we obtain the curve above.  We now know that s vs. e is linear 

up until the yield point sys.  E is then most appropriately the slope 
of s vs. e, but is technically also just equal to s/e for any s up to sys.

• Young’s modulus E and suts are measured material properties, and 
E = s/e is the empirically-derived constitutive relationship.



Strength vs. toughness

• Toughness = area under stress strain curve (units = energy/volume)
• Toughness is larger for materials with high failure strains
• Tough materials are not always strong (see curve above)



Plastic deformation vs. damage

• Plastic deformation = permanent deformation in a material
• Modulus is unaltered

• Damage = reduced modulus

e

s
Plastic deformation Damage

https://en.wikipedia.org/wiki/Work_hardening
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Mechanisms of plastic deformation

• Plasticity
• Permanent deformation (due 

to dislocations—molecular 
rearrangements that relieve 
stress, bond breakage, etc.) 
increases the effective gauge 
length L0 of the specimen so 
that more strain is now 
required to engage fibers and 
get a stress response 



Material vs. structural properties

• Q: What is the difference between material and structural properties 
(e.g., Young’s modulus E vs. stiffness k)?

• Structural property (k=F/y) changes with specimen size, material property 
(E=s/e) doesn’t

• Q: You apply a vertical tensile force of F to two cylindrical aluminum 
bars of radius R and height H and 2H under uniaxial extension. Which 
bar has a higher modulus? Which bar is stiffer? Which bar stretches 
more?

• e = y/H
• s = F/A
• Modulus of aluminum E = s/e = material property of aluminum à E = E1 = E2

• For bar 1, k1 = F/y = As/He = AE/H
• For bar 2, k2 = F/y = As/2He = AE/2H
• Thus, 0.5k1 = k2 à k1 > k2

• y1 = F/k1
• y2 = F/k2 = F/(0.5k1) à y2 = 2y1 à y2 > y1



Compression in 1D

A

H



Compression in 1D
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STRAIN e = y/h
STRESS s = F/A
YOUNG’S MODULUS E = s/e
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Simple shear
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Simple shear
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SHEAR STRAIN g = x/h

SHEAR STRESS t = F/A

F

SHEAR MODULUS G = t/g

F



Three-point bending

• ! = moment of inertia of beam
• " = applied load (concentrated at 

the center of the beam)
• # = length of beam
• $%&'= maximum deflection
• ( = modulus of beam 

• $)*+ = -./
0123

d



Three-point bending

• 3 point bending of rat tibias (University of Minnesota)



Torsion testing
• From the figure on the right:

• Shear stress at the edge = t(r=a) = Ta/Ip
• Ip is the polar moment of inertia of 

the specimen = pa4/2 for a cylinder = 
!
"# $%# − $'# for a hollow shell 
(cortical bone)

• T is the torque measured by the 
torque transducer

• Shear g(r) = qr/h
• Shear strain at the edge = g(r=a) = qa/h

• The arc length L corresponding to 
the angle q on the top surface of the 
cylinder (see figure) is given by 
q=L/a  à L = qa

• Similarly, on the side of the cylinder, 
g = L/h (see the figure) à L = gh

• Thus, qa = gh and g = qa/h
• Angular displacement q is controlled 

by a motor attached to the lower 
platen

• Shear modulus = t(r=a) / g(r=a) à G = ()*+,



Complications of this simple picture

• Multidimensionality
• Biological materials are 3D, not 1D

• Nonlinearity
• Stress-strain curves of biological materials are almost never straight lines

• Anisotropy
• Young’s modulus and other material properties are different along different directions

• Viscoelasticity/poroelasticity
• Mechanical response depends on loading rate, loading history and time

• Heterogeneity
• Mechanical properties vary by location within a cell, tissue or organ

• Objectivity
• For large strains, this definition of strain, known as “infinitesimal strain” is flawed (won’t discuss today)
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y STRAIN e = y/H
STRESS s = Fext/A

F

YOUNG’S MODULUS E = s/e

F

• Complex geometry
• Biological materials are not 

always cylinders or 
rectangular boxes
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Tension/extension in 2D
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Tension/extension in 2D

A

H

y
VERTICAL STRAIN ey = y/H

VERTICAL STRESS sy = Fy/A

0.5x

L

YOUNG’S MODULUS E = sy/ey

POISSON RATIO = -ex/ey

HORIZONTAL STRAIN ex = x/L

• In general, we need to consider not only deformation resulting from parallel stresses (e.g., ey
due to sy) but also deformation resulting from transverse stresses (e.g., ex due to sy). 
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Nonlinearity due to realignment or uncrimping

Mow et al. (1991)



Tendon crimp

Mouse anterior tibialis tendon

Human Achilles tendon



Tendon crimp (SEM)

Nigg and Herzog (1999)



Characterization and modeling of nonlinearity

Buckley et al. (2013)
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• One simple approach: Decompose stress-strain curve into 
two lines (bilinear fit) and compute 2 Young’s moduli (toe 
and linear moduli)

* Data from murine FCU tendon
* Dashed black lines = bilinear fit



Characterization and modeling of nonlinearity
• Another simple approach: Consider E to be a function of e or s such that either: 

• Esec(e) = s/e (secant modulus) or 
• Etan(e)  = ds/de (tangent modulus)

• What is the disadvantage of this strategy?
• How can we compare treated and untreated tendons (or other tissues) when our 

readout parameter (e.g., Etan) is not constant (i.e., depends on e)? Do we 
compare Etan at a specific strain? At a few strains? 

• A better approach is to characterize the stress-strain curve with a small number of 
parameters
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Characterization and modeling of nonlinearity
• Alternative approach: Fit 2+ parameter function to s vs. e (only 

requires 2+ material properties instead of 1 at each strain)

• Example 1: s = c1e + c2e2

• !"#$%&' = )/+ = c1 + c2eà !'%&,#&' ∝ +
• !'%&,#&' = ds/de = c1 + 2c2e à !'%&,#&' ∝ +
• So what does c1 represent?

• Secant or tangent modulus at e = 0
• Example 2 (Fung’s exponential): s = A(eBe -1)

• Q: What’s the point of the - 1? 
• So that s(e = 0) = 0

• Etangent = ds/de = ABeBe = sB + AB à !'%&,#&' ∝ )



Kastelic et al. (1980); Frisen et al. (1969)

Characterization and modeling of nonlinearity
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Would you expect the modulus for this…



Would you expect the modulus for this…
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…to equal the modulus for this?



…to equal the modulus for this?
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Biaxial testing

Photo from Michael Sacks’s lab
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What is Viscoelasticity?

• From R. Lakes:
“Viscoelastic materials are those for which the relationship between 
stress and strain depends on time.”

• From J. Maxwell: 
“The state of the [viscoelastic] solid depends not only on the forces 
actually impressed on it, but on all the strains to which it has been 
subjected during its previous existences.”

• From R. M. Christensen:
“[Viscoelastic] materials possess a capacity to both store and dissipate 
energy.”

• From Wikipedia:
“Viscoelasticity is the property of materials that exhibit both viscous and 
elastic characteristics when undergoing deformation.”



Viscoelasticity: Rate dependence
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Viscoelasticity: Hysteresis

ELASTIC 
MATERIAL

VISCOELASTIC 
MATERIAL Hysteresis loop

* Energy dissipated per cycle = area between yellow and blue curves
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Relationships between viscoelastic phenomena

• All viscoelastic phenomena are related and are manifestations of the 
same general behavior

• For example, the rate dependence of the stress strain curve in a 
viscoelastic material is due to stress relaxing over time as strain is 
applied at a finite rate

Strain

Fast loading

Slow loading (stress 
has more time to relax 
as strain is applied)St

re
ss



Cyclic loading of an elastic material



Cyclic loading of a viscous material



Cyclic loading of a viscoelastic material



Viscoelastic materials: Modeling 

MAXWELL MODEL

VOIGT MODEL

SLS MODEL

G

G

G

G

* Many more modeling strategies exist. Take BME 212 to learn more!



Complications of this simple picture

• Multidimensionality
• Biological materials are 3D, not 1D

• Nonlinearity
• Stress-strain curves of biological materials are almost never straight lines

• Anisotropy
• Young’s modulus and other material properties are different along different directions

• Viscoelasticity/poroelasticity
• Mechanical response depends on loading rate, loading history and time

• Heterogeneity
• Mechanical properties vary by location within a cell, tissue or organ

• Objectivity
• For large strains, this definition of strain, known as “infinitesimal strain” is flawed (won’t discuss today)

A

H

y STRAIN e = y/H
STRESS s = Fext/A

F

YOUNG’S MODULUS E = s/e

F

• Complex geometry
• Biological materials are not 

always cylinders or 
rectangular boxes



Shear deformation of articular cartilage

• Different regions of the tissue exhibit distinct strain patterns due to different material 
properties

• Bulk mechanical testing (apply shear strain to entire specimen, measure shear 
stress, infer G) cannot identify local variations in properties



Mechanics of heterogeneous materials
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How do we account for these complexities?

• In a Reuss composite, F is the same in 
all layers. It is assumed that the stress 
s=F/A is also the same in all layers (i.e., 
stress concentrations at the edges of the 
specimens and stress variations across 
the  x direction are ignored) 

• ! = #$%$ = &'∆)'
) → ∆+$ = !+/#$

• But ! = %-#- = ∑/ ∆)/
)'0)1

#-

• So  2&3 =
4'2 5
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Finite Element Analysis (FEA)
• The finite element method is a computationally efficient method of solving 

partial differential equations (PDE)
• The PDE is written in a “variational” or “weak” form wherein the solution 

– a trial function ! in a function space " – must satisfy an integral 
equation (across some spatial domain Ω) for any choice of a test function 
$ in a function space %"

• To approximate the solution in Ω, the spaces " and %" are discretized 
such that ! and $ are taken to be finite dimensional (e.g., polynomials of 
degree 2 or less rather than polynomials of infinite degree or less)

• Each spatial domain (Ω) defines an “element” and is prescribed by a 3D 
mesh. Intuitively, the smaller the size of each element, the closer the 
approximate solution is to the real solution

• Boundary conditions are lumped into the definitions of " and %"
• The finite element method can be used to find solutions to heat transfer 

problems, mechanics problems, and a host of other problems involving PDEs



FEA ingredients

1. Model geometry (locations of nodes and 
how they connect)

2. Boundary conditions (boundary/body 
displacements/loads*)

3. Constitutive model (stress-strain 
relationship)

4. Material properties

* May also need to consider boundary/body velocities and 
accelerations (kinematics) for some problems



Measuring geometry and boundary
displacements

FEA example



Inverse finite element analysis
• Thus far, we have been focusing on forward finite element analysis

• E.g.,  for a given geometry, boundary load (or boundary displacement), 
constitutive equation and material properties, what is the global and local 
deformation of the model?

• We can also use FEA to determine the material properties of a tissue, 
cell, etc. (e.g., for diagnosis of a disease) if we know the geometry and as 
much additional information as possible (e.g., boundary loads and
boundary displacements).
• This is a more complex procedure than forward FEA and involves iterative 

optimization. Essentially, the forward model is run with the known boundary 
displacements. If the measured boundary force is not attained, the material 
properties are changed and the model us run again. This procedure is 
continued until the simulation matches the experimentally measured 
boundary force. 

• We must assume a constitutive equation. If a complex constitutive model is 
chosen (i.e., with several material properties), it becomes more difficult to find 
a unique solution, as different combinations of material properties could yield 
similar behavior.



Inverse finite element analysis: Demo
• Scenario: 

• You have a conically-shaped biological tissue whose Young’s modulus you 
want to know.

• The bottom radius is 1 mm, the top radius is 5 mm and the height is 10 mm
• You know it is an isotropic, elastic, incompressible material,.
• In the lab, you subject the material to a uniaxial compression test (i.e., you 

compress it axially between two platens). For an applied deformation of -0.5 
mm, the measured force on the material is -100 N.

• You don’t know the analytical relationship between force, deformation and 
Young’s modulus in a material with this geometry, so you decide to use 
inverse FEA



Inverse finite element analysis: Demo
• First, run the forward model for a conically-shaped material with arbitrary 

Young’s modulus (say, 100 MPa) subjected to the deformation you 
applied in the lab

• If the force (output from the forward mode) is greater in magnitude than -
100 N, decrease the Young’s modulus in the model and rerun the 
simulation.

• If the force (output from the forward mode) is lower in magnitude than -
100 N, increase the Young’s modulus in the model and rerun the 
simulation.

• Repeat similar steps until the rigid force is -100 N. Then the modulus you 
prescribed is the modulus of the material.


