Biology Brief: Brain Cells and Drugs

Brain nerve cells are called **neurons**. Neurons have a **cell body** that contains the nucleus. Attached to the cell body are two types of branches: short **dendrites** (receiving branches) and a long **axon** (conducting branch). The axon is covered by an insulating **myelin sheath**. The axon ends in branches with **terminal branches** (sending branches). The knobs on the ends of the terminal branches contain vesicles that store and release **neurotransmitters**.

Neurons conduct electrical signals called **impulses** through the nervous system. Neurons do not touch each other. Instead, they are separated by a tiny gap called a **synapse**. Electrical impulses cannot jump this gap.

When an impulse (an electrical signal) reaches the end of a sending neuron, **neurotransmitter** molecules are released. These neurotransmitters diffuse across the synapse and attach to **receptors** on the surface of the receiving neuron. Receptors are like key holes into which only a specific key can fit. Specific neurotransmitters are like the keys that can fit into specific receptors. When neurotransmitters attach to receptors, it causes the receiving neuron to make a new impulse.

- 1. Obtain two large diagrams of neurons and a set of 9 label cards.
- 2. Use the information in the reading (*Biology Brief: Brain Cells and Drugs*) to place the label cards in the correct boxes on the <u>Sending Neuron</u> diagram. Then label the diagram of a sending neuron on page 3.
 - Put 2 beads in each of the vesicles on the sending neuron and the receiving neuron. Vesicles are small sacs that store neurotransmitter molecules. The beads represent neurotransmitter molecules.
- 3. Place an "impulse" diagram on cell body of the sending neuron. Move the impulse diagram along the axon and the terminal branches to a terminal branch.
- 4. When the impulse reaches the terminal branches, it causes the vesicles to release neurotransmitter into the synapse. The neurotransmitter then diffuses across the synapse and attaches to the receptors.
 - Model the release and movement of neurotransmitters by moving the beads out of the vesicles, across the synapse, and into the binding sites on receptors.

- 5. When a neurotransmitter binds to the receptor, the receptor triggers an impulse that travels through the receiving cell.
 - Place another impulse diagram on the receiving cell and move it along the axon to the terminal branches.
 - When the impulse reaches the terminal branches, the receiving neuron becomes a sending neuron that releases its neurotransmitters to messages to other neurons.
- Meanwhile, back at the synapse, there are reuptake carriers in the terminal branches that collect neurotransmitter molecules and return them to the vesicles so that the neurotransmitters to <u>not</u> remain in the synapse.
 - Act like a reuptake carrier by returning all of the beads to the vesicles.
- 7. Circle the number of the statement which best explains why a nerve impulse (electrical signal) cannot pass directly from one nerve cell to another.
 - 1. There is a synapse between nerve cells
 - 2. Nerve cells do not have receptors
 - 3. Nerve impulses only occur in the brain
 - 4. Nerve cells do not receive chemical signals
- 8. What causes the sending nerve cell to release neurotransmitters into the synapse?
- 9. How does the receiving cell "know" that neurotransmitters are present in the synapse?
- 10. What happens in the receiving nerve cell after neurotransmitters have attached to receptors on the receiving cell?
- 11. Cocaine blocks the reuptake carriers on the sending cell. Explain how the neuron model action would be different in a cocaine user's brain.

Dopamine is one type of neurotransmitter that is produced in areas of the reward regions of the brain that are associated with pleasure. An experience that we find enjoyable is actually caused by an increase of dopamine in the synapses of our brain reward regions. Dopamine levels can be slightly increased by natural pleasurable experiences such as eating or listening to music.

All drugs of abuse act by causing large increases of dopamine in the brain reward regions. When dopamine is increased in the synapses, more dopamine receptors are activated and more impulses are then sent from one neuron to other neurons. This large increase in neuron impulses in the reward regions of the brain causes an increase in pleasurable sensations – a "high" feeling.

- 12. What parts of the neuron model that you used would represent dopamine molecules?
- 13. How could you change the neuron model to show how drugs of abuse affect the communication between neurons in the brain reward regions?

Crossing the Divide: How Neurons Talk to Each Other http://learn.genetics.utah.edu/content/addiction/reward/neurontalk.html

Slide #	Write answers below each question.
1	What is the reward pathway made of?
	What analogy describes how neurons send signals?
2	What analogy describes now nearons send signals :
3	What happens at the synapse?
4	What is a synaptic cleft?
	Sketch a synaptic cleft. Label the synaptic cleft, sending cell, and receiving cell.
5	What are the vesicles in the sending cell filled with?
	What is the name for the neurotransmitter in the reward pathway?
6	Where are receptors located?

7	What triggers the release of neurotransmitter into the synapse?
8	Why does dopamine dock (bind) with the receptor?
9	What change happens in the receiving cell with dopamine binds to receptors?
10	Where does the neurotransmitter go after it does its job in the synapse?
11	What does the second messenger do?
12	What happens when an impulse reaches the end of an axon?
13	What is an inhibitory neurotransmitter?
14	Approximately how many neurons will one neuron synapse with in order to perform complex functions?