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Our proof is a straightforward adaptation of the arguments of Oberhofer
(1983). He supposes that:

S1. The parameter vector 6 is confined to a compact domain K C RPtL
The true parameter vector # is an interior point of K.

S2. The random errors e; = y; — u— %3 are independent; e; has distribution
function F;(e) with F;(0) = 3.

S3. For every ¢ > 0 there exists an f > 0 with

illlfmin{Fi(C) - % % - E(—c)} > f.

S4. The predictor vectors z! = (1, x}) satisfy ||z;]|2 < B for some B > 0.

S5. For some e > 0 and d > 0, the predictors z; satisfy

Z {|ztv|>e} > d

IIUII 1 n
for n sufficiently large.
Theorem 1 Under the reqularity conditions S1 through S5, the sequence of
estimators minimizing the criterion, f(0) = g(0) + AZ?ZI |Bjl, is weakly

consistent.

Proof: Consider the random difference d,(0) = f,(0) — f,(6), where
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2t =(1,2%), and 6 is the true parameter vector. On one hand at an optimal
point 6,,, we have d,(6,) < 0. On the other hand according to Chebychev’s
inequality, the random variable d,,(0) satisfies

Pr{d.(0) > Eld,(6)] ) > 1- n(?) 1)

for every positive §. Our analysis hinges on three facts. Fact a) says that
for all # and 6*
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|dn(0) —dn(67)] < B0 -0 ||2+EZIBJ-—
—1

Facts b) and c¢) involve a compact subset C C K excluding 0. Fact b)
says that infgcco Eld,(0)] is bounded below by a positive constant n for all
sufficiently large n, and fact c) says that lim, . supgec Varld,(0)] = 0.
Before we prove these facts, let us demonstrate weak consistency.

If we take § = 17 in inequality (1), then fact b) entails

1 Var[d,(0)]
The uniform continuity assertion a) implies that d,(6*) — dn(0) > —n for
all 8* in some neighborhood N of §. Hence,

_ . 1 Var[d,,(0)]
> — > - 77
Pr {eygvd"(e )2 47]} = 52
By compactness, a finite number of such neighborhoods Ny,...,N,, cover

C. It follows that

{mfd( } ZPr{ mf dy, 9*)<in} < i\hr[{iw)]

=1

According to assertion c), the scaled sum of variances in the second of these
inequalities can be made smaller than any € > 0 by taking n sufficiently
large. Hence, 6, € C with probability at most e for large n. Taking C' to
be the complement in K of a small open ball around 6 then implies that én
converges in probability to 6.
Let us tackle facts a) through c) in reverse order. Because
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we have Var[d,(#)] = n=2 X", Var[le; + 2£(0 — 0)| — |e;]]. In view of the
inequality

llei +2H0 =) —lesl| < 12HO—0)] < Jzill2- 10—

and assumptions S1, S2; and S4, we conclude that

1 ¢ 2 2 < B? 2
Varlda(®)) < 5Dl 10013 < T4 sup o3
This clearly proves assertion c).

To deal with assertion b), Oberhofer considers the objective function

gn(0) = TIL ? 1 |yi — 20| without the penalty and proves the lower bound
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E [gn<9> ~ gu(0)] > 2 )| min { Ey[|i(0)]] - 5., 5 — Bl-Ih(O)[]},

where h;(0) = 3210 — 0). If we set ¢ = §mingec [|60 — 0|, then assumptions
S3 and S5 imply that

inf B [g.(6) ~ 9.(6)] > ;gggzl{h oy 5l0-d1) 510~ b1l
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for n large and appropriate constants d and f. Because 2 1851 = 15511

tends to 0 uniformly on the compact set C, assertion b) now follows
To prove assertion a), note that
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Application of assumption S4 and the Cauchy-Schwarz inequality finishes
the proof of assertion a) and the theorem. ]

Assumption S5 is unusual and deserves comment. Suppose the z; con-
stitute a random sample from a bounded random vector X with positive
definite covariance matrix 3. Consider the random vector Z! = (1, X*) and
the continuous function U(z,v) = min{|z'v|,1}. The mean pu(v) of U(Z,v)
is a continuous function of v owing to the dominated convergence theorem.
On the unit sphere |[v||2 = 1, p(v) attains its minimum. If the minimum
is 0, then Z'v = u + 3"_; Xjw; is identically 0 for the pertinent vector
vt = (u,w'). This implies that X*w is constant. Because Var(X‘w) = w'Xw,
we must have w = 0. However, this can only occur if u = 0 as well, contra-
dicting the condition ||v||2 = 1. We conclude that there exists a 6 > 0 such
that p(v) > § for all v on the unit sphere.

According to the uniform strong law of large numbers (Ferguson 1996),

1 & 1 1)
lim inf — ) U(z,v) > = min u(v) = = 2
n=0 ||v||:1n,.§::1 Giv) 2 5 i alv) 2 ®
with probability 1. We now claim that inf||v||:1%2?:1 1{‘Ztv‘>é} > % for
i 1=6
large n. If this condition fails, then for infinitely many n there exists a unit
vector v with

1 & 1 & 1 &

H;U("’“”) = ﬁ;U(Z’“”)l{\zﬁv\z%}+ﬁ;U(zi7”)1{\zfv\<%}
= g; {|zfv|zg}+g;g
R
— 6 67

an evident contradiction to inequality (2). Thus, assumption S5 follows.
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