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1 Introduction

A major challenge in regression analysis is to decide which predictors, among many poten-

tial ones, are to be included in the model. It is customary to use stepwise selection and

subset selection. These procedures, however, are unstable and ignore the stochastic errors

introduced by the selection process. Several methods, including bridge regression (Frank

and Friedman, 1993), least absolute shrinkage and selection operator (LASSO) (Tibshirani,

1996), smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), elastic net (EN)

(Zou and Hastie, 2005), and adaptive lasso (ALASSO) (Zou, 2006) have been proposed to

select variables and estimate their regression coefficients simultaneously. These methods

can be cast in the framework of penalized least-squares and likelihood.

Consider the linear regression model

Yi = βTxi + εi, i = 1, . . . , n, (1)

where Yi is the response variable and xi a d-vector of predictors for the ith subject, β is a d-

vector of regression coefficients, and (ε1, . . . , εn) are independent and identically distributed

errors. For simplicity, assume that the εi have zero means. Define l(β) = ‖y−Xβ‖2, where

y = (Y1, . . . , Yn)T and X = (x1, . . . ,xn)T . Then the penalized least-squares estimator of

β is the minimizer of the objective function

l(β) + n
d∑
j=1

pλ(|βj |), (2)

where pλ(·) is a penalty function. Appropriate choices of pλ (detailed in Section 2) yield the

aforementioned variable selection procedures. For likelihood-based models, the penalized

maximum likelihood estimator is obtained by setting l(β) to the minus log-likelihood.

For many semiparametric problems, the estimation of regression coefficients (without

the task of variable selection) does not pertain to the minimization of any objective func-

tion. Important examples include weighted estimating equations for missing data (Robins

et al., 1994; Tsiatis, 2006) and the Buckley-James (1979) estimator for semiparametric
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linear regression with censored responses. Another example arises from Lin and Ying’s

(2001) semiparametric regression analysis of longitudinal data. For the last example, Fan

and Li (2004) proposed a variable selection method by incorporating the SCAD penalty

into Lin and Ying’s estimator. They noted that their estimator may be cast in the form

(2), so that their earlier results (Fan and Li, 2001) for penalized least squares could be

applied. In this paper, we go beyond specific problems and provide a very general theory

for a broad class of penalized estimating functions. In this regard, only Fu’s (2003) work

on generalized estimating equations (GEE; Liang and Zeger, 1986) with bridge penalty

(Frank and Friedman, 1993; Knight and Fu, 2000) is similar. That work only deals with

smooth estimating functions whereas our theory applies to very general, possibly discrete

estimating functions. In addition, we present general computational strategies.

The remainder of the article is organized as follows. We present our penalized estimat-

ing functions in Section 2, paying special attention to the aforementioned missing data and

censored data problems. We state the asymptotic results in Section 3 and address imple-

mentation issues in Section 4. We report the results of our simulation studies in Section 5

and apply the methods to real data in Section 6.

2 Penalized estimating functions

2.1 General setting

Suppose that U(β) ≡ (U1(β), . . . , Ud(β))T is an estimating function for β ≡ (β1, . . . , βd)T

based on a random sample of size n. For maximum likelihood estimation, U(β) is simply

the score function. We are mainly interested in the situations where U(β) is not a score

function or the derivative of any objective function. A penalized estimating function is

defined as

UP (β) = U(β)− nqλ(|β|)sgn(β),
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where qλ(|β|) = (qλ,1(|β1|), . . . , qλ,d(|βd|))T , qλ,j(·), j = 1, . . . , d are coefficient-dependent

continuous functions, and the second term is the component-wise product of qλ and sgn(β).

In most cases, qλ,j = p′λ,j for some penalty function pλ,j and the functions qλ,j , j = 1, . . . , d

are the same for all d components of qλ(|β|), i.e. qλ,j = qλ,k, j 6= k. When the functions

qλ,j , j = 1, . . . , d do not vary with j, we drop the subscript for simplicity and ease of

notation.

When qλ = p′λ, we consider five penalty functions: (a) the LASSO penalty (Tibshirani,

1996, 1997) pλ(|θ|) = λ|θ|, (b) the hard thresholding penalty (Antoniadis, 1997) pλ(|θ|) =

λ2 − (|θ| − λ)2I(|θ| < λ), (c) the SCAD penalty (Fan and Li, 2001, 2002, 2004) defined by

p′λ(|θ|) = λ

{
I(|θ| < λ) +

(aλ− |θ|)+
(a− 1)λ

I(|θ| ≥ λ)
}

for a > 2, (d) EN penalty (Zou and Hastie, 2005) pλ(|θ|) = λ1|θ|+ λ2θ
2, and (e) ALASSO

penalty (Zou, 2006) pλ,j(|θ|) = λ|θ|ωj , for a known, data-driven weight ωj . In our applica-

tions, we use the weight ωj = 1/|β̃oj |, j = 1, . . . , d, where β̃
o

= (β̃o1 , . . . , β̃
o
d)
T refers to the

d-vector of regression coefficient estimates obtained from solving the original estimating

equation: U(β) = 0.

The hard thresholding penalty is important because it corresponds to best subset se-

lection and stepwise deletion in certain cases. The LASSO (Tibshirani, 1996, 1997) is one

of the most popular shrinkage estimators. However, the LASSO has deficiencies; in partic-

ular, it is inconsistent for certain designs (Meinshausen and Bühlmann, 2006; Zou, 2006).

Fan and Li (2001, 2002) attempted to avoid such deficiencies by constructing a new penalty

function (SCAD) which results in an estimator that achieves an oracle property: that is,

the estimator has the same limiting distribution as an estimator which knows the true

model a priori. Recently, Zou (2006) introduced ALASSO which, like SCAD, achieves the

oracle property and may have numerical advantages for some problems. Finally, Zou and

Hastie (2005) introduced the mixture penalty EN to effectively select ‘grouped’ variables

and has been popular in the statistical analysis of large data sets.
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2.2 Application to censored data

Censoring is a common phenomenon in scientific studies (cf. Kalbfleisch and Prentice, 2002,

p. 12). The presence of censoring causes major complications in the implementation of the

penalized least-squares approach because the values of the Yi are unknown for the censored

observations. The problem is much simpler for the proportional hazards regression because

the partial likelihood (1975) plays essentially the same role as the standard likelihood

(Tibshirani, 1997; Fan and Li, 2002; Cai et al, 2005). However, the proportional hazards

model may not be appropriate in some applications, especially when the response variable

does not pertain to failure time.

Let Yi and Ci denote, respectively, the response variable and censoring variable for

the ith subject, i = 1, . . . , n. The data consist of (Ỹi,∆i,xi), i = 1, . . . , n, where Ỹi =

min(Yi, Ci), ∆i = I(Yi ≤ Ci), and xi is a d-vector of predictors. We relate Yi to xi through

the semiparametric linear regression model given in (1), where εi are independent and

identically distributed with an unspecified distribution function F (·). We assume that Yi

is independent of Ci conditional on xi. When the response variable pertains to failure

time, both Yi and Ci are commonly measured on the log scale and model (1) is called the

accelerated failure time model (Kalbfleisch and Prentice, 2002, p. 44).

Clearly,

E
{

∆iYi + (1−∆i)E(Yi|∆i = 0)
∣∣xi} = α+ βTxi,

and

E(Yi|∆i = 0) = βTxi +

∫∞
ei(β){1− F (s)} ds

1− F{ei(β)}
,

where α = E(εi) and ei(β) = Ỹi − βTxi. Thus, Buckley and James (1979) proposed the

estimating function for β

U(β) =
n∑
i=1

xi{ξi(β)− βTxi}, (3)

where

ξi(β) = ∆iYi + (1−∆i)

[
βTxi +

∫∞
ei(β){1− F̂ (s; β)} ds

1− F̂{ei(β); β}

]
,

5



and F̂ (t; β) is the Kaplan-Meier estimator of F (t) based on {ei(β),∆i}, i = 1, . . . , n. If

∆i = 1 for all i, then the penalized estimating function UP (β) corresponding to (3) be-

comes the penalized least-squares estimating function arising from (2). Thus, the penalized

Buckley-James estimator is a direct generalization of the penalized least-squares estimator

to censored data.

2.3 Application to missing data

It is often difficult to have complete data on all study subjects. Let Ri be the miss-

ingness indicator for the ith subject, the event {Ri = ∞} indicating that the ith sub-

ject has complete data. The observed data for the ith subject is Gr(Zi), where Gr(·)

is the missingness operator acting on the full data Zi of the ith subject when Ri = r.

In simple linear regression, for example, we may only consider Ri ∈ {1, 2,∞} corre-

sponding to G1(Zi) = {Yi}, G2(Zi) = {xi}, and G∞(Zi) = {Yi, xi} = Zi, respectively.

The observed data are represented as {Ri, GRi(Zi), i = 1, . . . , n}. We focus on mono-

tone missingness and make two assumptions: (i) P (Ri = ∞|Zi = z) > κ > 0, and (ii)

P (Ri = r|Zi = z) = P (Ri = r|Gr(z) = gr).

Consider the semiparametric linear regression model given in (1). The weighted complete-

case estimating function takes the form

S(β) =
n∑
i=1

I(Ri =∞)si(β)
π(∞,Zi)

,

where si(β) = xi(Yi − α − βTxi), and π(r,Gr(z)) = P (Ri = r|Gr(z) = gr). To improve

efficiency, we adopt the strategy of Robins et al. (1994) and propose the estimating function

U(β) = S(β)−
n∑
i=1

∑
r

[
I(Ri = r)− λ̃r{Gr(Zi),η}I(Ri ≥ r)

π̃{r,Gr(Zi),η}

]
Ẽ{si(β)|Gr(Zi)},

where λ̃r{Gr(Zi),η} = {1 + exp[−µr{Gr(Zi),η}]}−1, µr{Gr(Zi),η} is a linear predictor

based on Gr(Zi) and η, π̃{r,Gr(Zi),η} =
∏r
m=1 λ̃m{Gm(Zi),η}, and Ẽ{si(β)|Gr(Zi)} is

the conditional expectation of si(β) given Gr(Zi) under a posited parametric submodel for

the full-data generating process.

6



3 Asymptotic results

Fan and Li (2001) showed that the penalized least-squares estimator minimizing (2), or

more generally the penalized maximum likelihood estimator, with the SCAD or hard

thresholding penalty behaves asymptotically as if the true model is known a priori —

the so-called oracle property. We show that this property holds for a very broad class

of penalized estimating functions, of which the Buckley-James and weighted estimating

functions with the SCAD and hard thresholding penalty functions are special cases.

Let β0 ≡ (β01, . . . , β0d)T denote the true value of β. Without loss of generality, suppose

that β0j 6= 0 for j ≤ s and β0j = 0 for j > s. We impose the following conditions.

C.1. There exists a nonsingular matrix A such that for any given constant M ,

sup
|β−β0|≤Mn−1/2

|n−1/2U(β)− n−1/2U(β0)− n1/2A(β − β0)| = op(1).

Furthermore, n−1/2U(β0)→d N(0,V), for V a d× d matrix.

C.2. The penalty function qλn(·) possesses the following properties:

(i) For non-zero fixed θ, limn1/2qλn(|θ|) = 0 and lim q′λn
(|θ|) = 0;

(ii) For any M > 0, lim
√
n inf |θ|≤Mn−1/2 qλn(|θ|)→∞.

Remark 1. Condition C.1 is not unusual and is satisfied by many commonly used esti-

mating functions. This condition is implied by standard conditions for Z-estimators (van

der Vaart and Wellner 1996, Thm 3.3.).

Remark 2. Condition C.2 pertains to the choices of the penalty function and regular-

ization parameter. This condition is key to obtaining the oracle property. In particular,

condition C.2(i) prevents the j-th element of the penalized estimating function from being

dominated by the penalty term, qλn(|βj |)sgn(βj), for βj0 6= 0, because
√
nqλn(|βj |)sgn(βj)

vanishes. However, if βj0 = 0, condition C.2(ii) implies that
√
nqλn(|βj |)sgn(βj) diverges

to +∞ or −∞ depending on the sign of βj in the small neighborhood of βj0. Hence, the
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j-element of the penalized estimating function is dominated by the penalty term so any

consistent solution, say β̂, to the estimating equation UP (β) = 0 must satisfy β̂j = 0.

Remark 3. Condition C.2 is satisfied by several commonly used penalties with proper

choices of the regularization parameter λn.

(a) Under the hard penalty, i.e., qλn(|θ|) = 2(λn − |θ|)I(|θ| < λn), it is straightforward

to verify that condition C.2 holds if λn → 0 and
√
nλn →∞.

(b) Under the SCAD penalty, i.e.,

qλn(|θ|) = λn

{
I(|θ| < λn) +

(aλn − |θ|)+
(a− 1)λn

I(|θ| ≥ λn)
}

with a > 2, it is easy to see that if we choose λn → 0 and
√
nλn →∞, condition C.2

holds because
√
nqλn(|θ|) = q′λn

(|θ|) = 0 for θ 6= 0 and
√
n inf |θ|≤Mn−1/2 qλn(|θ|) =

√
nλn.

(c) For the ALASSO penalty, we assume
√
nλn → 0, nλn →∞ and qλn(|θ|) = λnŵ, for

some data-dependent weight ŵ. First, n1/2qλn(|θ|) = n1/2λnŵ → 0 and q′λn
(|θ|) = 0

for |ŵ| < ∞ and θ 6= 0. Second, to obtain sparsity, we require that the weights are

sufficiently large for θ sufficiently small, say |θ| < Mn−1/2. For simplicity, suppose the

data-dependent weights are defined ŵ = |θ̃|−γ , for some γ > 0 and θ̃ pertaining to the

solutions to the unpenalized estimating equations. Then, trivally
√
n(θ̃−θ0) = Op(1),

which implies
√
n inf |θ|≤Mn−1/2 λnŵ = Mnλn → ∞, as desired. In this paper, we

chose γ = 1 but Zou (2006) notes that other weights may be useful; see Zou (2006,

Remarks 1-2) for additional comments on the weights.

(d) When qλn(|θ|) = λn/|θ|, condition C.2 is satisfied if
√
nλn → 0 and nλn → ∞. To

see this, note that
√
nqλn(|θ|) =

√
nλn/|θ| → 0, q′λn

(|θ|) = −λn/|θ|2 → 0, for θ 6= 0,

and
√
n inf |θ|≤Mn−1/2 λn/|θ| = Mnλn → ∞. An anonymous referee pointed out that

qλn(|θ|) = λn/|θ| pertains to pλn(|θ|) = λn log(|θ|) on the original scale.

(e) Condition C.2 does not hold for the LASSO and EN penalty functions.
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To accommodate discrete estimating functions such as (3), we provide a formal defini-

tion of the solution to the penalized estimating equation. An estimator β̂ = (β̂1, . . . , β̂d)T

is called a zero-crossing to the penalized estimating equation if, for j = 1, . . . , d,

limε→0+n
−1UPj (β̂ + εej)UPj (β̂ − εej) ≤ 0,

where ej is the jth canonical unit vector. Also, an estimator β̂ is called an approximate

zero-crossing if

limn→∞limε→0+n
−1UPj (β̂ + εej)UPj (β̂ − εej) ≤ 0.

If UP is continuous, then the zero-crossing is an exact solution to the penalized estimating

equation.

The following theorem states the main theoretical results regarding the proposed pe-

nalized estimators, including the existence of a root-n consistent estimator, the sparsity of

the estimator and the asymptotic normality of the estimator.

Theorem 1 Define the number of non-zero coefficients s = #{j|βj0 6= 0}. Under condi-

tions C.1 and C.2, the following results hold:

(a) There exists a root-n consistent approximate zero-crossing of UP (β), i.e, β̂ = β0 +

Op(n−1/2) such that β̂ is an approximate zero-crossing of UP (β).

(b) For any root-n consistent approximate zero-crossing of UP (β), denoted by β̂ ≡ (β̂1, . . . , β̂d)T ,

limn P (β̂j = 0 for j > s) = 1. Moreover, if we denote β̂1 = (β̂1, . . . , β̂s)T and β01 =

(β01, . . . , β0s)T , then

n1/2(A11 + Σ11)
{

β̂1 − β01 + (A11 + Σ11)−1bn
}
→d N(0,V11),

where A11,Σ11 and V11 are the first s × s sub-matrices of A, diag
{
−q′λn

(|β0|)sgn(β0)
}

and V, respectively, and bn = −(qλn(|β01|)sgn(β01), . . . , qλn(|β0s|)sgn(β0s))T .

(c) Let UP
1 (β) and U1(β) denote the first s-components of UP (β) and U(β), respectively,

let β = (βT1 ,β
T
2 )T , where β1 denotes the first s-components of β and β2 denote the second
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(d− s)-components of β. That is, without loss of generality, β2 = 0. If U1((βT1 ,0
T )T ) is

continuous in β1, then there exists β̂1 such that

UP
1 ((β̂

T

1 ,0
T )T ) = 0.

That is, the solution is exact.

The proof of Theorem 1 is relegated to Appendix A. The asymptotic results for pe-

nalized weighted estimators follow easily from this theorem. Applying this theorem to the

penalized Buckley-James estimators, we obtain the following result.

Corollary 1 Assume that condition C.2 holds in addition to the following three conditions:

D.1. There exists a constant c0 such that P (Ỹ − βTx < c0) < 1 for all β in some neigh-

borhood of β0.

D.2. The random variable x has compact support.

D.3. F has finite Fisher information for location.

Then the conclusions of Theorem 1 follow.

Remark 4. Corollary 1 implies that the penalized Buckley-James estimators with the

penalty functions satisfying condition C.2 possess the oracle property. Conditions D.1-D.3

are the regularity conditions given in Ritov (1990, p. 306) to ensure that condition C.1

holds. The expressions for A and V can be found in Ritov (1990) and Lai and Ying

(1991a). The matrix V is directly estimable from the data whereas A is not because the

latter involves the unknown density of the error term ε.

Remark 5. A result similar to Corollary 1 exists for the adaptive estimators presented in

Subsection 2.3. Namely, the penalized, weighted estimators with SCAD, hard thresholding,

and ALASSO penalties also possess an oracle property. Technical conditions needed to

obtain a strongly consistent estimator sequence and hence establish condition C.1 are
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given in Robin, Rotnizky, and Zhao (1995, Appendix A.1). Such technical conditions are

assumed throughout the Tsiatis (2006) text, for example. The matrices A and V may be

calculated directly; examples are given in Tsiatis (2006, chs.10-11).

Theorem 1 implies that the asymptotic covariance matrix of β̂1 is

Ω11 = n−1(A11 + Σ11)−1V11(A11 + Σ11)−1,

and a consistent estimator is given by

Ω̂11 = n−1(Â11 + Σ̂11)−1V̂11(Â11 + Σ̂11)−1.

Other authors (e.g. Fu, 2003) use the following alternative estimator for cov(β̂1),

ĉov(β̂1) = Ω̃11, Ω̃ = n−1

[(
Â + Σ̂

)−1
V̂
(
Â + Σ̂

)−1
]
.

Using the sandwich matrix Ω̃ actually produces a standard error estimate for the entire

vector β̂, that is, both non-zero and zero coefficient estimates. On the other hand, Ω̂11

implicitly sets v̂ar(β̂2) = 0, its asymptotic value. In this paper, we use Ω̂11 which agrees

with the following earlier papers on variable selection: Fan and Li (2001, 2002, 2004), Cai

et al. (2005) and Zou (2006). Note the matrix Ω̂11 can be readily calculated when A and

V can be directly evaluated. For discrete estimating functions such as the Buckley-James

estimating function, A cannot be estimated reliably from the data. To solve this problem,

we propose a resampling procedure.

Let UP
1 (β) denote the components of UP (β) corresponding to the regression coefficients

whose penalized estimating function estimates are nonzero and define β̂
∗
1 as the solution

to the following estimating equation

UP
1 (β) =

n∑
i=1

W1iGi, (4)

where (G1, . . . , Gn) are independent standard normal variables, and (W11, . . . ,W1n) are

given in Appendix B. We show in Appendix B that the conditional distribution of n1/2(β̂
∗
1−

11



β̂1) given the observed data is the same in the limit as the unconditional distribution of

n1/2(β̂1−β01). Thus, we may estimate the covariance matrix of β̂1 and construct confidence

intervals for individual regression coefficients by using the empirical distribution of β̂
∗
1.

4 Implementation

In this paper, we use a majorize-minorize (MM) algorithm to estimate the penalized re-

gression coefficients (Hunter and Li, 2005). The MM algorithm may be viewed as a Fisher-

scoring (or Newton-Raphson) type algorithm for solving a perturbed, penalized estimating

equation and is closely related to the local quadratic algorithm (Tibshirani, 1996; Fan

and Li, 2001). By using condition C.1 and the local quadratic approximations for penalty

functions (Fan and Li, 2001, Section 3.3), the MM algorithm is:

β̂
(k+1)

= β̂
(k)

+
{

A(β̂
(k)

) + Σλ(β̂
(k)

)
}−1

UP (β̂
(k)

), k ≥ 0,

where β̂
(0)

is the solution to U(β) = 0, and

Σλ(β) = diag {qλ(|β1|)/(ε+ |β1|), . . . , qλ(|βd|)/(ε+ |βd|)} ,

for ε a small number (ε = 10−6 in our examples). This algorithm requires that the estimat-

ing function U(β) is continuous so that the asymptotic slope matrix A can be evaluated

directly, as in the missing data example. For general estimating functions, we propose the

iterative algorithm:

β̂
(k+1)

= arg minβ‖U(β)− nΣλ(β̂
(k)

)β‖, k ≥ 0,

where β̂
(0)

is a minimizer of ‖U(β)‖. For the penalized Buckley-James estimator, there is

a simple iterative algorithm:

β̂
(k+1)

=
{

XTX + nΣλ(β̂
(k)

)
}−1

XT ξ(β̂
(k)

), k ≥ 0,

where β̂
(0)

is the original Buckley-James estimator, and ξ(β) = [ξ1(β), . . . , ξn(β)]T . In

each algorithm, we iterate until convergence; the final solution is an approximate solution
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to the penalized estimating equation UP (β) = 0. To improve numerical stability, we

standardize each predictor to have mean 0 and variance 1.

We need to choose λ for LASSO, ALASSO, and hard thresholding penalty functions,

(a, λ) for the SCAD penalty, and (λ1, λ2) for the EN penalty. Fan and Li (2001, 2002)

showed that the choice of a ≡ 3.7 performs well in a variety of situations; we use their

suggestion throughout our numerical analyses. Zou and Hastie (2005) show that the EN

estimator is equivalent to an `1-penalty on augmented data. In the rest of this section,

we include the subscript λ on β̂, i.e. β̂λ, to stress the dependence of the estimator on the

regularization parameter λ. In the case of EN penalty, it is understood that cross-validation

is two-dimensional.

For uncensored data, Tibshirani (1996) and Fan and Li (2001) suggested the following

generalized cross-validation statistic (Wahba, 1985):

GCV†(λ) =
RSS(λ)/n
{1− d(λ)/n}2

,

where RSS(λ) is the residual sum of squares ‖y−Xβ̂λ‖2, and d(λ) is the effective number

of parameters, i.e., d(λ) = tr[{Â + Σλ(β̂λ)}−1ÂT ]. Note that the intercept is omitted in

RSS(λ) since y may be centered at n−1
∑n

i=1 Yi. When the Yi are potentially censored, d(λ)

may still be regarded as the effective number of parameters; however, RSS(λ) is unknown.

We propose to estimate n−1RSS(λ) by

ν̂(λ) =
∑n

i=1 ∆i(Yi − α̂− β̂
T

λxi)2/K̂(Yi)∑n
i=1 ∆i/K̂(Yi)

,

where K̂(t) is the Kaplan-Meier estimator for K(t) = P (C > t), and α̂ = n−1
∑n

i=1 ξi(β̂
(0)

).

For missing data, we propose to estimate n−1RSS(λ) by

ν̂(λ) =
∑n

i=1 I(Ri =∞)(Yi − β̂
T

λxi)2/π̃(∞,Zi, η̂)∑n
i=1 I(Ri =∞)/π̃(∞,Zi, η̂)

.

Both proposals are based on large-sample arguments. Namely, ν̂(λ) is a consistent estima-

tor for limn−1RSS(λ) for fixed λ under conditional independence between censoring and

13



failure time distribution, for censored outcome data, and under the MAR assumption for

missing data (cf. Tsiatis, 2006, ch. 6). Thus, our generalized cross-validation statistic is

GCV(λ) =
ν̂(λ)

{1− d(λ)/n}2
,

and we select λ̂ = arg minλGCV(λ).

5 Simulation studies

5.1 Censored data

We simulated 1000 data sets of size n from the model

Yi = βTxi + σεi, i = 1, . . . , n,

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , εi and xi are independent standard normal with the

correlation between the jth and kth components of x equal to 0.5|j−k|. This model was

considered by Tibshirani (1996) and Fan and Li (2001). We set the censoring distribution to

be uniform(0, τ), where τ was chosen to yield approximately 30% censoring. We compared

the model error ME ≡ (β̂−β)TE(xxT )(β̂−β) of the proposed penalized estimator to that

of the original Buckley-James estimator using the median relative model error (MRME).

We also compared the average numbers of regression coefficients that are correctly or

incorrectly shrunk to 0. The results are presented in Table 1, where oracle pertains to the

situation in which we know a priori which coefficients are non-zero.

The performance of the proposed estimator with the SCAD, hard thresholding, and

ALASSO penalties approach that of the oracle estimator as n increases. When the signal-

to-noise ratio is small (e.g. large n or small σ), oracle methods (SCAD, hard thresholding,

ALASSO) outperform LASSO and EN in terms of model error and model complexity. On

the other hand, LASSO and EN tend to perform better than the oracle methods as σ/n

increases.
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Table 1: Simulation results on model selection with censored data where table entries are

median relative model error (MRME) and the average number of correct and incorrect

zeros, C and I respectively.

Avg. No. of 0s

Method MRME(%) C I

n = 50, σ = 3

SCAD 69.48 4.73 0.35

Hard 73.41 4.30 0.17

LASSO 66.16 3.99 0.11

ALASSO 57.77 4.40 0.17

EN 76.48 3.54 0.08

Oracle 32.76 5 0

n = 50, σ = 1

SCAD 40.11 4.78 0.01

Hard 69.79 4.18 0.01

LASSO 64.48 3.97 0.01

ALASSO 48.21 4.90 0.01

EN 95.55 3.49 0

Oracle 31.30 5 0
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Table 2: Simulation results on standard error estimation for the non-zero coefficients

(β1, β2, β5) in least squares regression with censored data. SD refers to the mean abso-

lute deviation of the estimated regression coefficients divided by 0.6745 while SDm refers

to the median of the standard error estimates. Table entries are for a sample size n = 100

and (error) standard deviation σ = 1.

β̂1 β̂2 β̂5

SD SDm SD SDm SD SDm

SCAD 0.145 0.129 0.135 0.128 0.128 0.114

Hard 0.151 0.130 0.145 0.129 0.138 0.119

LASSO 0.160 0.134 0.145 0.143 0.161 0.130

ALASSO 0.149 0.132 0.130 0.133 0.133 0.113

EN 0.172 0.113 0.151 0.111 0.155 0.103

Oracle 0.144 0.129 0.136 0.126 0.143 0.111
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Table 2 reports the results on the accuracy of the proposed resampling technique in

estimating the variances of the non-zero estimated regression coefficients. The standard

deviation (SD) pertains to the median absolute deviation of the estimated regression coef-

ficients divided by 0.6745. The median of the standard error estimates, denoted by SDm,

gauges the performance of the resampling procedure. Evidently, the resampling procedure

yields reasonable standard error estimates, particularly for large n.

5.2 Missing data

We simulated 1000 datasets of size n from the model

Yi = βTxi + σεi, i = 1, . . . , n,

where εi and xi are independent standard normal with the correlation between the jth and

kth components of x equal to 0.5|j−k|. We considered two scenarios:

Model 1: β = (0.25, 0.5, 0, 0, 0.75, 1.5, 0.75, 0, 0, 1)T ,

Model 2: β = (0, 1.25, 0, 0, 0, 2, 0, 0, 0, 1.5)T .

For a random design X, define the theoretical R2

R2 =
βT0E(xxT )β0

βT0E(xxT )β0 + σ2
.

For σ = 1 and 2, both Models 1-2 have theoretical R2=0.89 and 0.67, respectively. Al-

though Models 1-2 have the same theoretical R2, they have differing numbers of non-zero

coefficients; the number of non-zero coefficients over the total number of coefficients (i.e.

d = 10) in a given model is sometimes referred to as the model fraction. The model fraction

in Model 1 is 0.6 while Model 2 has a model fraction of 0.3. We simulated data such that

subjects fall into one of three categories: R = 1 means that the subject is missing (x1, x2);

R = 2 means that the subject is missing x1; and R = ∞ means that the subject has

complete data. The observed data {R,GR(Z)} were generated in the following sequence

of steps:
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1. Simulate a Bernoulli random variable B1 with probability λ̃1{G1(Zi),η}.

2. If B1 = 1, set R = 1; else

3. Simulate a Bernoulli random variable B2 with probability λ̃2{G2(Zi),η}.

4. If B2 = 1, set R = 2; else set R =∞.

The missingness process was formulated by logistic models

logit λ̃1{G1(Zi)} = η10 + η11Yi +
10∑
j=3

η1jxij ,

logit λ̃2{G2(Zi)} = η20 + η21Yi +
10∑
j=2

η1jxij ,

where

η1 = (−6, 0.75, 0, 0, 1.25, 1.5, 1.25, 0, 0, 1.25)T ,

η2 = (−1.5, 0.5, 1.5, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0.5)T .

These models yielded approximately 40% missing with subjects falling in the R = 1, 2

categories in roughly equal proportions.

We present the numerical results with n = 250 in Table 3. Oracle methods (SCAD, hard

thresholding, ALASSO) perform better than LASSO and EN in terms of relative model

error and complexity when there are a few strong predictors of response, as in Model 1.

However, oracle methods perform worse than LASSO and EN when there are many weakly

significant predictors, as in Model 2.

6 The Paul Coverdell Stroke Registry

The Paul Coverdell National Acute Stroke Registry collects demographic, quantitative

and qualitative factors related to acute stroke care in four prototype states: Georgia,

Massachusetts, Michigan, and Ohio (cf. The Paul Coverdell Prototype Registries Writing
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Table 3: Simulation results on model selection with missing data where MRME is the

median relative model error, C and I report the average number of correct and incorrect

zeros, respectively. For σ = 1 and σ = 2, Models 1-2 have theoretical R2 = 0.89 and 0.67,

respectively; however, the number of non-zero coefficients is six in Model 1 while only three

in Model 2.

Model 1 Model 2

Avg. No. of 0s Avg. No. of 0s

Method MRME(%) C I MRME(%) C I

σ = 1

SCAD 81.79 3.35 0.21 42.60 5.56 0

Hard 82.38 3.37 0.25 48.73 5.79 0.01

LASSO 87.88 2.42 0.09 66.49 4.11 0

ALASSO 82.24 3.55 0.23 37.74 6.25 0

EN 85.59 2.38 0.08 70.56 3.92 0

σ = 2

SCAD 93.64 3.33 0.69 48.73 5.92 0.02

Hard 90.10 3.70 1.12 46.24 6.37 0.05

LASSO 82.29 2.54 0.40 59.96 4.56 0.02

ALASSO 82.01 3.37 0.70 48.87 6.08 0.02

EN 88.62 2.55 0.44 66.17 4.63 0.03
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Group, 2005). The goals of the registry include a better understanding of factors associated

with stroke and a general improvement in the quality of acute stroke care in the United

States. For purposes of illustration, we consider a subset of 800 patients with hemorragic or

ischemic stroke from the Georgia prototype registry. Our data set includes nine predictors

and a hospital length-of-stay (LOS) endpoint, defined as the number of days from hospital

admission to hospital discharge. Conclusions from analyses like ours would be important

to investigators in health policy and management, for example. The complete registry data

for all four prototypes consists of several thousand hospital admissions but has not been

released publicly. A more comprehensive analysis is ongoing.

Our data include the following nine predictors: Glasgow Coma Scale (GCS; 3-15, with

15 representing excellent health), serum albumin, creatinine, glucose, age, sex (1 if male),

race (1 if white), whether the patient was admitted to the intensive care unit (ICU; 1 if

yes), and stroke subtype (1 if hemorrhagic, 0 if ischemic). Of 800 patients, 419 (52.4%)

have complete data (i.e. R = ∞). A total of 94 (11.8%) patients are missing both GCS

and serumn albumin (i.e. R = 1) and 287 (35.9%) patients are missing GCS only (i.e.

R = 2).

Estimates for the nuisance parameter η in the stroke data are presented in Table 4.

We find that in subjects missing both GCS and albumin (i.e. R = 1) tend to have higher

creatinine and glucose levels but less likely to be admitted to the ICU upon admission to

the hospital. Ischemic stroke and ICU admission were strongly associated with missing

GCS score (i.e. R = 2) only. Because the missingness mechanism is related to other

important prognostic variables, this is mild evidence that the MCAR (missing completely

at random) assumption is not well-supported and variable selection techniques based on

such an assumption will lead to to incorrect conclusions. Our analyses using methods

described in Section 2 assuming MAR (missing at random) are displayed in Table 5.

We use λ̂ = (0.28, 0.63, 0.11, 0.16) for the SCAD, Hard, LASSO, and ALASSO esti-

mates, respectively, and use (λ̂1, λ̂2) = (0.34, 0.9) for the EN estimates. Table 5 presents
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Table 4: Estimates of η in the stroke data, where η pertains to the parameters in the

coarsening models λ̃1{G1(Z)} and λ̃2{G2(Z)}.

η1 η2

(int) -2.342 (0.152) 0.478 (0.082)

Albumin − − -0.112 (0.089)

Creatinine -0.492 (0.291) -0.101 (0.091)

Sex 0.172 (0.113) 0.043 (0.079)

Glucose -0.286 (0.164) -0.067 (0.084)

ICU -0.470 (0.155) -0.304 (0.091)

Age 0.045 (0.124) 0.006 (0.087)

Type -0.101 (0.144) -0.213 (0.094)

Race 0.084 (0.122) -0.034 (0.085)

LOS -0.007 (0.140) -0.045 (0.092)
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Table 5: Estimated regression coefficients and their standard errors in the stroke data.

Full SCAD Hard LASSO ALASSO EN

GCS -0.762 (0.327) -0.603 (0.434) -0.864 (0.587) -0.681 (0.480) -0.584 (0.400) -0.628 (0.424)

Albumin -1.142 (0.306) -0.958 (0.450) -1.043 (0.486) -0.984 (0.425) -0.876 (0.402) -0.882 (0.387)

Creatinine -0.726 (0.331) -0.372 (0.177) -0.734 (0.347) -0.529 (0.255) -0.365 (0.179) -0.402 (0.199)

Sex -0.007 (0.288) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

Glucose -0.312 (0.310) 0 (-) 0 (-) -0.140 (0.165) 0 (-) -0.030 (0.039)

ICU 1.861 (0.323) 2.043 (0.442) 1.970 (0.469) 1.807 (0.419) 1.947 (0.415) 1.771 (0.392)

Age -0.696 (0.324) -0.293 (0.203) -0.678 (0.465) -0.586 (0.369) -0.405 (0.260) -0.516 (0.312)

Type 0.553 (0.333) 0.200 (0.155) 0 (-) 0.448 (0.335) 0.213 (0.158) 0.381 (0.273)

Race -1.316 (0.315) -1.403 (0.374) -1.320 (0.366) -1.216 (0.331) -1.242 (0.332) -1.151 (0.310)

the regression coefficient estimates for the stroke data. Higher levels of albumin and crea-

tine are strongly related to shorter hospital stays while patients admitted to the ICU are

associated with longer hospital stays. Older patients tend to have shorter stays in the hos-

pital than younger patients; this is most easily explained by the fact that those older stroke

patients die in the hospital quickly because their bodies are too weak to recover. Patients

with hemorrhagic strokes have longer recovery periods and thus stay at the hospital for

a longer duration. White stroke patients tend to have shorter hospital stays than non-

whites. Finally, sex and glucose are weak predictors of hospital stays. The LASSO and EN

estimates tend to retain more predictors in the final model and, hence, have more complex

models than compared to the other penalized estimators. Among the SCAD, Hard, and

ALASSO estimates, SCAD and ALASSO yield similar coefficient estimates while the Hard

thresholding estimates yield the sparsest model. Our methods yield models that appear to

have reasonable scientific interpretation and do not make a strong MCAR assumption, an

assumption that is not supported by the data.
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7 Remarks

We have developed a general methodology for selecting variables and simultaneously esti-

mating their regression coefficients in semiparametric models. This development overcame

two major challenges that are not present with any of the existing variable selection meth-

ods. First, UP (β) may not correspond to the derivative of an objective function nor quasi-

likelihood, so that the mathematical arguments employed by previous authors to establish

the asymptotic properties of penalized maximum likelihood or penalized GEE estimators

do not apply. Second, UP (β) may be discrete in β, which entails considerable theoretical

and computational challenges. In particular, the variances of the estimated regression coef-

ficients cannot be evaluated directly and we have developed a novel resampling procedure,

which can also be used for variance estimation without the task of variable selection. Our

simulation results indicate that the resampling method works well for modest sample sizes.

Rank estimators (Prentice, 1978; Tsiatis, 1990; Wei et al., 1990; Lai and Ying, 1991b;

Ying, 1993) provide potential alternatives to the Buckley-James estimator, but are com-

putationally more demanding to implement. In general, the rank estimating functions do

not correspond to the derivatives of any objective functions. This is also true of estimating

functions for many other semiparametric problems. In all those situations, we can use

Theorem 1 to establish the asymptotic properties of the corresponding variable selection

procedures and use the proposed resampling technique to estimate the variances of the

selected variables.

The proportional hazards and accelerated failure time models cannot hold simultane-

ously unless the error distribution is extreme-value. Thus, it is useful to have variable

selection methods for both models at one’s disposal since one model may fit the data bet-

ter than the other. A major advantage of model (1) is that the regression coefficients have

direct physical interpretation. Hazard ratio can be an awkward concept, especially when

the response variable does not pertain to failure time.
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Appendix A. Proof of Theorem 1

To prove part (a), we consider β̂ = (β̂
T

1 ,0
T )T , where β̂1 = β01 + n−1A−1

11 U1(β0). Because

n1/2qλn(|β0j |)→ 0, j = 1, . . . , s, under condition C.2 (i) and β̂ = β0 +Op(n−1/2), we have

n−1/2UPj (β̂ ± εej) = op(1)− n1/2qλn(|β̂j ± ε|) = op(1).

Under Condition C.2 (ii), for j = s+ 1, . . . , d, n−1/2UPj (β̂ + εej) and n−1/2UPj (β̂− εej) are

dominated by −n1/2qλn(ε) and n1/2qλn(ε), respectively, so they have opposite signs when

ε goes to zero. Therefore, β̂ is an approximate zero-crossing by definition.

To prove part (b), we consider the sets in the probability space: Cj =
{
β̂j 6= 0

}
,

j = s+ 1, . . . , d. It suffices to show that for any ε > 0, when n is large enough, P (Cj) < ε.

Since β̂j = Op(n−1/2), there exists some M such that when n is large enough,

P (Cj) < ε/2 + P
{
β̂j 6= 0, |β̂j | < Mn−1/2

}
.

Using the jth component of the penalized estimating function and the definition of the

approximate zero-crossing, we obtain that on the set of {β̂j 6= 0, |β̂j | < Mn−1/2},

op(1) =
{
n−1/2Uj(β0) + n1/2Aj(β̂ − β0) + op(1)− n1/2qλn(|β̂j |)sgn(β̂j)

}2
,

where Aj is the jth row of A. The first three terms on the right-hand side are of order

Op(1). As a result, there exists some M ′ such that for large n,

P (β̂j 6= 0, |β̂j | < Mn−1/2, n1/2qλn(|β̂j |) > M ′) < ε/2.

Since limn
√
n inf |θ|≤Mn−1/2 qλn(|θ|)→∞ by condition C.2 (ii), β̂j 6= 0 and |β̂j | < Mn−1/2

imply that n1/2qλn(|β̂j |) > M ′ for large n. Thus, P (β̂j 6= 0, |β̂j | < Mn−1/2) = P (β̂j 6=

0, |β̂j | < Mn−1/2, n1/2qλn(|β̂j |) > M ′). Therefore, P (Cj) < ε/2 + P (β̂j 6= 0, |β̂j | <

Mn−1/2, n1/2qλn(|β̂j |) > M ′) < ε.

To prove the second part of (b), since

op(1) = n−1/2U1(β0) + n1/2A11(β̂1 − β01)− n1/2qλn(|β̂1|)sgn(β̂1),
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after the Taylor series expansion of the last term, we conclude that

n1/2
{

(A11 + Σ11)(β̂1 − β01 + (A11 + Σ11)−1bn
}

= −n−1/2


U1(β0)

...

Us(β0)

+op(1)→d N(0,V11).

To prove part (c), we consider β1 ∈ Rs on the boundary of a ball around β01, i.e.,

β1 = β01 + n−1/2u with |u| = r for a fixed constant r. From the penalized estimating

function UP
1 , we have

n−1/2(β1 − β01)TAT
11U

P
1 (β)

= (β1 − β01)TAT
11

{
n−1/2U1(β)− n1/2qλn(|β1|)sgn(β1)

}
= Op(|β1 − β01|) + n1/2(β1 − β01)TAT

11A11(β1 − β01)

−n1/2(β1 − β01)AT
11diag{q′λn

(|β∗j |)sgn(β0j)}(β1 − β01),

where β∗j is between βj and β0j for j = 1, . . . , s. Since A11 is nonsingular, the second

term on the right-hand side is larger than a0r
2n−1/2, where a0 is the smallest eigenvalue

of AT
11A11. The first term is of order rOp(n−1/2). Since maxj q′λn

(|β∗j |) → 0, the third

term is dominated by the second term. Therefore, for any ε, if we choose r large enough

so that for large n, the probability that the absolute value of the first term is larger than

the second term is less than ε, then we have

P

[
min

|β1−β01|=n−1/2r
(β1 − β01)TAT

11U
P
1 ((βT1 ,0

T )T ) > 0

]
> 1− ε.

Applying the Brouwer fixed-point theorem to the continuous function UP
1 ((βT1 ,0

T )T ), we

see that min|β1−β01|=n−1/2r(β1−β01)TAT
11U

P ((βT1 ,0
T )T ) > 0 implies that AT

11U
P
1 ((βT1 ,0

T )T )

has a solution within this ball, or equivalently, UP
1 ((βT1 ,0

T )T ) has a solution within this

ball. That is, we can choose an exact solution β̂ = (β̂
T

1 ,0
T )T to UP

1 (β) = 0 with

β̂ = β0 +Op(n−1/2). Hence, β̂ is a zero-crossing of UP (β).
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Appendix B: Conditional distribution of (β̂
∗
1 − β̂1)

Here, we justify the resampling procedure for the penalized Buckley-James estimator. Sim-

ilar justifications can be made for other estimators. Under conditions D.1-D.3, we have the

following asymptotic linear expansion for the penalized Buckley-James estimating function:

n−1/2UP
1 (β) = n−1/2UP

1 (β0)+(A11+Σ11)n1/2(β1−β01)+o(max{1, n1/2‖β1−β01‖}). (A.3)

In addition,

n−1/2U1(β0) = n−1/2
n∑
i=1

w1i + o(1),

where w1i consists of the components of wi corresponding to β1, and wi, i = 1, . . . , n, as

given in Lin and Wei (1992), are n independent zero-mean random vectors. Replacing the

unknown quantities in wi with their sample estimators yields Wi. Recall that β̂
∗
1 satisfies

UP
1 (β̂

∗
1) =

∑n
i=1 W1iGi, where W1i consists of the components of Wi corresponding to

β̂1. Applying (A.3) to β̂1 and β̂
∗
1 yields

n−1/2
n∑
i=1

W1iGi = (A11 + Σ11)n1/2(β̂
∗
1 − β̂1) + o(1).

The conclusion then follows.

References

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66,

429–436.

Cai, J., Fan, J., Li, R., and Zhou, H. (2005). Variable selection for multivariate failure

time data. Biometrika, 92, 303–316.

Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the

Royal Statistical Society, Ser. B , 34, 187–202.

26



Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

Fan, J. and Li, R. (2002). Variable selection for Cox’s proportional hazards model and

frailty model. The Annals of Statistics, 30, 74–99.

Fan, J. and Li, R. (2004). New estimation and model selection procedures for semipara-

metric modeling in longitudinal data analysis. Journal of the American Statistical

Association, 99, 710–723.

Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression

tools. Technometrics, 35, 109–148.

Fu, W. J. (2003). Penalized Estimating Equations. Biometrics, 35, 109–148.

Hunter, D. R. and Li, R. (2005). Variable selection using MM algorithms. The Annals of

Statistics, 33, 1617–1642.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time

Data, 2nd Ed. Hoboken, Wiley.

Knight, K. and Fu, W. (2000) Asymptotics for lasso-type estimators. The Annals of

Statistics, 28, 1356–1378.

Lai, T. L. and Ying, Z. (1991a). Large sample theory of a modified Buckley-James estimator

for regression analysis with censored data. The Annals of Statistics, 19, 1370–1402.

Lai, T. L. and Ying, Z. (1991b). Rank regression methods for left truncated and right

censored data. The Annals of Statistics, 19, 531–556.

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear

models. Biometrika, 73, 13–22.

27



Lin, J. S. and Wei, L. J. (1992). Linear regression analysis for multivariate failure time

observations. Journal of the American Statistical Association, 87, 1091–1097.

Lin, D. Y. and Ying, Z. (2001). Semiparametric and nonparametric regression analysis

of longitudinal data (with discussion). Journal of the American Statistical Associa-

tion, 96, 103–126.
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