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Abstract: In this paper, we propose a new lasso-type estimator for cen-
sored data after one-step em update. While several penalized likelihood
estimators have been proposed for censored data variable selection through
hazards regression, many such estimators require parametric or propor-
tional hazards assumptions. The proposed estimator, on the other hand, is
based on the linear model and least-squares principles. Penalized Buckley-
James estimators are also popular in this setting but have been shown
to be unstable and unreliable. Unlike path-based learning based on least-
squares approximation, our method requires no covariance assumption and
the method is valid for even modest sample sizes. Our calibration estima-
tor is equivalent to the minimizer of a well-defined convex loss function
and, thus, yields an exact regularized solution path. Thus, the numerical
algorithms are fast, reliable, and readily available because they build on
existing software for complete, uncensored data. We examine the large and
small sample properties of our estimator and illustrate the method through
simulation studies and application to two real data sets.

Keywords and phrases: Accelerated failure time model, Buckley-James
estimator, Least angle regression, Survival analysis, Synthetic data.

1. Introduction

Variable and model selection are very important topics in modern statistical in-
ference. Partly due to advances in supervised learning, computer and statistical
scientists have made significant strides in model selection over the last decade.
Many such ideas are first conceived and initially developed in a least squares
framework because no error distribution is necessary; a likelihood development
soon ensues. Extending computational methods and model selectors to censored
data applications presents a tremendous new challenge, particularly if the goals
of model selection from the original, uncensored case remain unchanged and
censoring is simply viewed as a nuisance. In this paper, we use a one-step em

update (Wang and Robins, 1999; Tsiatis, 2006; Jin et al., 2006) along with least
absolute shrinkage and selection operator (lasso; Tibshirani, 1996) to offer a
principled new estimator for the censored data problem. The ideas described
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B. A. Johnson/Lasso for censored data 1

here persist whenever the complete data are unobserved; in this sense, the ideas
are rather general and apply to many missing data problems.

Let yi be the natural logarithm of the failure time variable for the i-th subject
and consider the linear regression model

yi = x′
iβ + εi, (i = 1, . . . , n), (1)

where xi is a d-vector of fixed predictors for the ith subject, β is a d-vector of re-
gression coefficients, and (ε1, . . . , εn) are independent and identically distributed
errors with distribution function F . The lasso estimator estimates coefficients
in model (1) while setting some coefficients exactly equal to zero. Specifically,
the lasso estimator is given by the quadratic programming problem

min
β

1

2
‖y − Xβ‖2, (2)

subject to

d∑

j=1

|βj | ≤ τ,

where β = (β1, . . . , βd)
′, y = (y1, . . . , yn)′, X = (x′

1, . . . ,x
′
n)′, ‖ · ‖ is Euclidean

norm and τ ≥ 0 is a user-specified regularization parameter. Now, define the
observable random pair (Ui, δi) where Ui = min(yi, Ci) and δi = I(yi ≤ Ci) for
i = 1, . . . , n, where Ci is a random censoring variable for the i-th subject and I(·)
denotes the indicator function. The method proposed in this paper efficiently
estimates the lasso coefficients consistent with model (1) through the original
quadratic programming problem (2) using the observed data {(Ui, δi,xi), i =
1, . . . , n}.

When the response refers to the (natural) logarithm of a failure time, the
semiparametric linear regression model is often referred to as the accelerated
life or accelerated failure time (AFT) model (Cox and Oakes, 1984; Kalbfleisch
and Prentice, 2002). Alternatively, statisticians (e.g. Tibshirani, 1997; Zhang
and Lu, 2007) have extended lasso to censored data applications through the
proportional hazards (PH) model (Cox, 1972), where a subject’s hazard (i.e.
instantaneous probability of failing) is modeled

h(t|xi) = h0(t) exp(x′
iβ), (3)

for an unspecified baseline hazard function h0(t). By many accounts, the PH
model is most popular while the AFT model plays second fiddle. However, be-
cause the AFT model is based on the linear model, this has lead many prominent
statisticians, most notably Sir D. R. Cox himself, to observe that the acceler-
ated failure time model and the estimated regression coefficients to have a rather
‘direct physical interpretation,’ (Reid, 1994, p. 450). It is well-known that the
linear model and the proportional hazards model cannot hold simultaneously
except in the case of extreme value error distribution. For this and other reasons,
developing methods for the AFT model is sufficiently interesting and significant.

Two general estimation strategies in the AFT model (1) include extensions of
least-squares estimators through missing data techniques (Buckley and James,
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1979; Miller and Halpern, 1982; Koul et al., 1981; Ritov, 1990; Lai and Ying,
1991) and rank-based methods (Prentice, 1978; Tsiatis, 1990; Lai and Ying,
1991). The foci of this paper are numerical and theoretical properties for ex-
tensions of (2) to censored data while comments regarding rank-based esti-
mators are relegated to Section 5. Several authors have extended penalized
Buckley-James statistics for variable selection (Datta et al., 2007; Wang et al.,
2008; Johnson, 2008) and explored their small sample properties. An exemplary
small sample finding is given by Wang et al. (2008), who found their penal-
ized Buckley-James statistic converged in less than 50% of simulation studies.
Similarly, Huang et al. (2006) developed a coordinate-descent algorithm (Fried-
man and Popescu, 2004) for a regularized Buckley-James statistic but found
their algorithm to be rather unstable. Large sample properties of penalized
Buckley-James estimators are also not encouraging. Recently, Johnson et al.
(2008) proved that, under suitable regularity conditions, a penalized Buckley-
James estimator yields only an approximate, root-n consistent solution, which
is in stark contrast to the complete data case (Tibshirani, 1996; Knight and
Fu, 2000; Zou, 2006). Using ideas initially put forth elsewhere (Ritov, 1990;
Lai and Ying, 1991; Jin, Lin, and Ying, 2006), the method here is proposed to
address the aforementioned numerical and theoretical problems with penalized
Buckley-James statistics.

In a recent paper, Wang and Leng (2007) addressed similar concerns with pe-
nalized Buckley-James statistics through least-squares approximation. In simu-
lation studies, the authors showed their procedure worked effectively. We note
that the method of Wang and Leng (2007) requires a technical covariance as-
sumption and, in practice, requires an estimate of the asymptotic covariance
of the original unregularized regression coefficients and sufficiently large sam-
ple size to ensure the least-squares approximation is valid. In semi-parametric
Buckley-James estimator, one estimates the asymptotic covariance of regression
coefficients through resampling algorithms. First, our algorithm for estimating
coefficients requires no resampling. Second, we achieve similar theoretical con-
clusions as in Wang and Leng (2007) but with no covariance assumption. Third,
our method works for even modest sample sizes. The remainder of the paper
is organized as follows: the method is described in Section 2 and its operating
characteristics in Section 3. The utility of the proposed method is demonstrated
through real and simulated examples in Section 4.

2. Methods

For mean-zero predictors, one version of the penalized Buckley-James estimating
function (Datta et al., 2007; Wang et al., 2008; Johnson, 2008) is defined:

Ψ(β) = S(β) − nλ · s(β), S(β) =

n∑

i=1

xi(Ỹi(β) − x′
iβ), (4)
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where s(β) = (sgn(β1), . . . , sgn(βd))
′, λ is a user-defined regularization param-

eter,

Ỹi(β) = δiyi + (1 − δi)

[
x′

iβ +

∫ ∞

ei(β){1 − F̂ (s, β)} ds

1 − F̂{ei(β), β}

]
,

ei(β) = Ui−x′
iβ, and F̂ (t, β) is the left-continuous version of the Kaplan-Meier

estimator of F (t) based on {(ei(β), δi), i = 1, . . . , n}. It is well-known that
S(β) is not monotone in β and may contain multiple roots (Ritov, 1990; Lai
and Ying, 1991). Unfortunately, the poor behavior of the estimating function
S(β) carries over to the penalized estimating function Ψ(β). Johnson et al.
(2008, Corollary 2) have shown that for a class of penalty functions, there exists
an approximate root-n consistent zero-crossing of a penalized Buckley-James
estimating function but not an exact zero-crossing. In practice, this leads to
non-convergent estimation of the semi-parametric em algorithm (Datta et al.,
2007; Wang et al., 2008; Johnson, 2008). It does not apply to the Buckley-
James boosting method by Schmid and Hothorn (2008) because they assume a
parametric error distribution F .

As noted by Jin et al. (2006) as well as earlier authors (Ritov, 1990; Lai and
Ying, 1991), numerical problems typically associated with Buckley-James algo-
rithms could be avoided if we started with a root-n consistent initial estimator
for β0. Hence, the proposed estimator solves the penalized estimating function
(Fu, 2003; Johnson et al., 2008)

ΨC(β) = S
C(β) − nλ · s(β), S

C(β) =

n∑

i=1

xi(Ỹi(β0) − x′
iβ), (5)

where β0 is the true value for β in the linear model (1). For now, we assume
the errors have mean zero, i.e. E(ε1) = 0, and consider the minimizer of the
following convex loss function

1

2
‖Ỹ(β0) − Xβ‖2 + nλ

d∑

j=1

|βj |, (6)

where Ỹ(β0) = (Ỹ1(β0), . . . , Ỹn(β0))
′. It is not difficult to argue that a mini-

mizer of (6) is a solution to the estimating equations in (5). Thus, if the true
value β0 were known, we would define our regularized estimator as the solution
to following equivalent quadratic programming problem:

β̂C = min
β

1

2
‖Ỹ(β0) − Xβ‖2, (7)

subject to

d∑

j=1

|βj | ≤ τ,

which is exactly the complete data lasso (2) on synthetic data Ỹ(β0). Like the
lasso for uncensored data, the solution to the quadratic programming program
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(7) is exact for every τ . Since β0 is unknown in practice, we replace β0 with

an initial consistent estimator β̂I . As in Jin et al. (2006), we adopt the Gehan
(1965) estimator,

β̂I = min
β

n∑

i=1

n∑

j=1

δi {ei(β) − ej(β)}− ,

where c− = max(−c, 0). In short, the new method can be summarized in the
following three steps.

Algorithm 1.

1. Estimate β̂I using observed data {(Ui, δi,xi) i = 1, . . . , n},
2. Construct the pseudo responses ζi = Ỹi(β̂I) −

[
n−1

∑n
j=1 Ỹj(β̂I)

]
,

3. Lasso using synthetic data, {(ζi,xi), i = 1, . . . , n}.
Because the synthetic responses are normalized in step 2 prior to step 3, there

is no substantive requirement that E(ε1) = 0.

2.1. The impact of the initial estimator β̂I

While we use the Gehan estimator to derive asymptotic results, other consistent
estimators may be used. Under suitable regularity conditions, several candidate
consistent initial estimators include the Gehan (1965) estimator, the log-rank es-
timator (Mantel, 1966), the family of Gρ,δ estimators (Fleming and Harrington,
1991), the inverse-probability weighted estimator (Koul et al., 1981), doubly
robust estimators (van der Laan and Robins, 2003; Tsiatis, 2006; Rubin and
van der Laan, 2007), or the semi-parametric efficient estimator (Zeng and Lin,
2007). It is of sufficient interest to understand the impact of the initial esti-

mator β̂I on the efficiency of the procedure. This is a difficult problem even
without regularization. We offer some insight into this problem by making the
connection to multiple imputation.

Wang and Robins (1999) discuss this issue for related type-B imputation esti-
mators with parametric imputation. Actually, Wang and Robins’ (1999) type-B
estimator is asymptotically equivalent to the estimator of Jin et al. (2006) for
infinite imputations and parametric distribution F . Following Wang and Robins
(1999, Theorem 1), we deduce that without the task of variable, that a type-B
estimators has asymptotic variance VB ≈ V1 + V2 + V3, where V1 is the asymp-
totic variance of the estimator of Zeng and Lin (2007), V2 and V3 are two positive
semidefinite matrices, and the approximation “≈” is due to the Kaplan-Meier
estimate of the distribution function F . The second term V2 is attributable to the
inefficiency of β̂I and vanishes if the efficient estimator is used. The third term
depends of the complete-data covariance and missing information but vanishes
as the number of imputation increases; thus V3 ≡ 0 for Buckley-James type esti-
mators. As noted by Wang and Robins (1999), the type-B imputation estimator

may or may not be more efficient than the initial estimator β̂I . Heuristically,
the mixed message persists in regularized estimation.
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2.2. Algorithmic notes

We make three important points about the proposed procedure. First, it is im-
portant to note that the new method applies to any and all lasso extensions, in-
cluding adaptive lasso (alasso; Zou, 2006) and elastic net (enet; Zou and Hastie,
2005). Second, it is equally important to note that any algorithm (efficient or in-
efficient) which yields lasso coefficients can be used for our estimation purposes
here. Third, any path-based algorithm on synthetic data produces valid coeffi-
cient paths for any given data set and the paths are completely reproducible.
In particular, any lars (Efron et al., 2004) option (i.e. lars, forward stage-
wise, and stepwise regression) produces valid coefficient paths. In the sequel,
we use Berwin Turlach’s lasso2 package when considering coefficient estimates
for fixed τ (or λ) and the lars package (Efron et al., 2004) when considering
coefficient paths.

In general, all penalized least squares methods require tuning of the regular-
ization parameter. In our setup, we suggest V -fold cross-validation given by

CV(λ) =

V∑

v=1

∑

(ζk,xk)∈Dv

{Ỹk(β̂I) − x′
kβ̂

(v)

C }2,

where D is the full data set, Dv and D − Dv are the test and training data,

respectively, and β̂
(v)

C is the estimate found from the training set D −Dv.

3. Operating characteristics

In this section, we describe the operating characteristics for the estimator β̂C .

Without loss of generality, we use the notation β̂C to refer to the estimator
regardless of the penalty. The asymptotic properties of penalized least squares
subject to lasso constraints were first presented by Knight and Fu (2000). Knight
and Fu’s Theorems 1-2 suggest that the lasso estimator, for uncensored data,
converges in probability and distribution, respectively, to the unique minimiz-
ers of convex functions. By examining our calibrated loss function in (6), it
natural to believe that our estimator possesses similar limiting behavior. This
result, subject to certain regularity conditions, turns out to be true upon careful
inspection of the calibrated loss function.

3.1. Lasso shrinkage

We begin by stating several theorems regarding the limiting behavior of the reg-
ularized estimator with lasso penalty. For Theorems 1-2, we define the estimator
β̂C with lasso penalty as the minimizer of the random function

Φ1,n(u) = n−1
n∑

i=1

(Ỹi(β̂I) − x′
iu)2 +

λn

n

d∑

j=1

|uj |. (8)
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We also define the nonsingular matrix

Σ = lim
n

X′X.

Theorem 1. Assume conditions (C.1)-(C.4) and λn/n → λ0, then β̂C →p

argmin(Φ1), where

Φ1(u) = (u − β0)
′Σ(u− β0) + λ0

d∑

j=1

|uj |.

As noted in Knight and Fu (2000), if λn = o(n), then Theorem 1 implies

β̂C is consistent. Furthermore, Theorem 1 implies that as λn/n → λ0, the
regularized estimator shares the same limit as the lasso for uncensored data.
On the one hand, the conclusion of Theorem 1 is unimpressive because we have
only extended Knight and Fu’s (2000) Theorem 1. However, note that we must
impose much stronger conditions (C.1)-(C.4) because of censoring, not the least
of which is a tail modification in (C.1). Unlike the conclusions of Knight and
Fu’s (2000) Theorem 1, if conditions (C.1)-(C.4) do not hold, our conclusions in
Theorem 1 may no longer be true. Nevertheless, for point estimation purposes,
lasso behaves as if the pseudo data are the true data. The asymptotic price of
using pseudo data in Algorithm 1 is covered in Theorem 2.

Theorem 2. Assume (C.1)-(C.4), λn/
√

n → λ0 ≥ 0. Then,

√
n(β̂C − β0) →d argmin(Φ2),

where

Φ2(u) = −2u′W1−2u′W2+u′Σu+λ0

d∑

j=1

[ujsgn(βj0)I(βj0 6= 0) + |uj |I(βj0 = 0)] ,

W1 has a N(0,V), W2 has a N(0,D), where V and D are defined in the
Appendix.

While Theorem 1 suggests an asymptotically negligible effect for using pseudo
data in lasso-type estimation, the story is quite different in Theorem 2. The basic
form of the asymptotic distribution matches that of Knight and Fu’s (2000)
Theorem 2; however, our random variables W1 and W2 are quite different.

Hence, we have argued for the consistency and asymptotic normality of the
calibrated estimator with lasso penalty. Note, if we had defined the estimator
iteratively as in penalized Buckley-James estimators, the conclusions of Theo-
rems 1-2 would not follow (at least, not by the proofs given in the Appendix).
The latter iterative definition of penalized Buckley-James estimating function
leads, in principle, to the problems discussed in Johnson et al. (2008).
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3.2. Oracle properties

To make claims about the oracle behavior of the estimator, we first state a
preliminary result about the unpenalized, calibrated estimator by Jin et al.
(2006). Define the unpenalized estimator β̂U as the solution to 0 = S

U (β),
where,

S
U (β) =

n∑

i=1

xi{Ỹi(β̂I) − x′
iβ}.

The following Lemma from Jin et al. (2006) gives the consistency and asymptotic

normality of β̂U .

Lemma 1. Under conditions (C.1)-(C.4), ‖β̂U−β0‖ = Op(n
−1/2) and n1/2(β̂U−

β0) converges to a mean-zero Gaussian random vector with covariance Ω.

Using the results of Lai and Ying (1991), Jin et al. (2006) show that

β̂U
∼= (Id − Σ−1A)β̂I + (Σ−1A)β̂BJ,

where Id is the identity matrix of dimension d. In other words, the estimator
β̂U lies on the line-segment between the Gehan and Buckley-James estimator.

Because both Σ and A are assumed nonsingular, the consistency of β̂U follows
immediately.

Theorem 3 states the asymptotic result for the estimator with alasso penalty
(Zou, 2006) including the existence of an n1/2-consistent estimator, the sparsity
of the estimator and the asymptotic normality of the estimator. Let A denote
the indices of the predictors in the true model, i.e. A = {j : β0j 6= 0}. Define the

calibrated estimator β̂C with alasso penalty as the minimizer of the following
objective function:

Φ3,n(u) = n−1
n∑

i=1

(Ỹi(β̂I) − x′
iu)2 +

λn

n

d∑

j=1

πj |uj |. (9)

where πj = 1/|β̂I,j| for j = 1, . . . , d. Recall, β̂I is root-n consistent for β0.

Using the Gehan estimator β̂I in the definition of weights πj is novel but also
consistent with the literature (Zou, 2006; Zhang and Lu, 2007; Wang et al.,
2007; Johnson et al., 2008).

Theorem 3. Let β̂C be defined as in (9) and assume the regularity conditions

(C.1)-(C.4). If
√

nλn → 0 and nλn → ∞, then ‖β̂C − β0‖ = Op(n
−1/2),

limn P (β̂C,j = 0) = 1, for every j 6∈ A, and

n1/2
(
β̂C,A − β0,A

)
→d N(0,ΩA),

where Ω is defined in Lemma 1 and ΩA is the sub-matrix containing only the
elements of Ω whose indices belong to A.
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Recently, Johnson (2008) argued that, at least approximately, his penalized
Buckley-James estimator possessed an oracle property with non-concave penalty
(Fan and Li, 2001). The estimator in Theorem 3 possesses the same asymptotic

properties as Johnson’s (2008) estimator under similar conditions but β̂C is the
global minimizer of a convex loss function.

3.3. Grouping effect

Here, we illustrate that our estimator with elastic net penalty possesses the
small sample grouping effect property (Zou and Hastie, 2005, Theorem 1). The
grouping effect of the elastic net asserts that the regression coefficient estimates
for highly correlated predictors will be nearly identical. The proposed näıve
elastic net estimator for censored data is defined as the minimizer of the following
näıve elastic net criterion:

‖Ỹ(β̂I) − Xβ‖2 + λ1

d∑

j=1

|βj | + λ2

d∑

j=1

β2
j , (10)

where λ1 and λ2 are user-defined regularization parameters. Let β̂C(λ1, λ2) be

the minimizer of (10) using regularization parameters (λ1, λ2) and β̂C,j(λ1, λ2)

denote j-th element of β̂C(λ1, λ2). Suppose that the product β̂C,j(λ1, λ2) ·
β̂C,k(λ1, λ2) > 0. Define the scaled difference between coefficient estimates

∆j,k(λ1, λ2) =
1

‖Ỹ(β̂I)‖1

∣∣∣β̂C,j(λ1, λ2) − β̂C,k(λ1, λ2)
∣∣∣ .

Using the same arguments as in Zou and Hastie (2005, Appendix) and the
calibrated loss function in (10), one can show that

∆j,k(λ1, λ2) ≤
1

λ2

√
2(1 − ρjk)

where ρjk = corr(xj , xk), the correlation between predictors xj and xk. In other
words, the calibrated estimator with elastic net penalty possesses the group-
ing effect property, albeit on a slightly different scale than its uncensored data
counterpart.

3.4. Statistical Inference

Statistical inference for regularized estimators is tricky, even for ordinary lasso
and penalized least squares estimators (Tibshirani, 1996; Osborne et al., 2000).
Fan and Li (2001) suggest drawing approximate inference through local quadratic

approximation for the regression coefficient estimates in the active set, i.e. β̂C,A.
For estimators that achieve an oracle property, this inferential procedure is based
on an asymptotic argument where the standard errors for inactive coefficients
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are set to zero (Fan and Li, 2001; Zou, 2001; Johnson et al., 2008). For lasso,
elastic net, and all other penalties, this inferential procedure is ad hoc, although
authors report reasonable behavior of the “approximate” standard errors. Under
the assumption that these standard errors are indeed valid across the spectrum
of penalized estimators, one can obtain standard error estimates for the one-
step, calibrated estimators using the resampling technique described by Jin et
al. (2006).

4. Examples

4.1. Comparison of one-step versus fully iterative estimators

In multiple linear regression, Jin et al. (2006) describe an iterative algorithm

that partially motivated the calibrated estimator β̂C . Here, we investigate small
sample differences between an iterative estimator compared to the one-step es-
timator. We simulated 500 data sets from the normal-theory linear model

yi = x′
iβ + σεi, i = 1, . . . , n,

where β = (1, 1/4, 0, 1/2)′, σ = 1, and εi are independent and identically dis-
tributed standard normal. Here, we consider a fixed design x with correlation
between the j-th and k-th components of x equal to 0.5|j−k|. The censoring
distribution is assumed to be uniform(0, τ), where τ yielding 20% censoring. In
this particular simulation study, we only consider the lasso penalty. We compare
the Monte Carlo average and standard deviation of the lasso on the unobserved
(true) data, the calibrated and a second fully iterative estimator. We consid-
ered a range values of the regularization parameter an order of magnitude apart
but only present the extreme values, λ1 = n−1/2 and λ2 = n−2. Note that
a regularization parameter λ = n−1 corresponds roughly to the rule-of-thumb
regularization parameter for Akaike Information Criterion (AIC) in uncensored
data (Tibshirani, 1996; Wang et al., 2007). The simulation results for three
sample sizes are presented in Table 1.

Our simulation studies indicate that for appropriate choices of the regulariza-
tion parameter λ, the Monte Carlo average of the one-step estimator approaches
the lasso in uncensored data as n → ∞ and λ → 0, which suggests the con-
clusions of Theorem 1 are correct. Note the absolute difference in β̂1 between
the one-step estimator and uncensored lasso is about 0.05 for λ1 at n = 50 and
about 0.03 for λ2 at n = 100. Small sample differences in Monte Carlo aver-
ages between the one-step and uncensored data estimator is partially due to the
tail modification of the the pseudo data (See condition (C.1) in the Appendix).
However, the Monte Carlo average of the iterative estimator is nearly identical
to the uncensored lasso for the particular values of λ, especially as n increases.
We also note that for fixed λ, the Monte Carlo standard deviation for both the
one-step and iterative estimators is about the same. Thus, in small samples, we
found no evidence to suggest that an iterative estimator is significantly more
precise than the one-step estimator.
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Table 1

Comparing the differences of the proposed estimation procedures. Table entries (×10e-3) are
equal the mean and standard deviation of lasso estimates over 500 Monte Carlo data sets

for λ1 = n−1/2 and λ2 = n−2.

One-step Iterative True data
λ1 λ2 λ1 λ2 λ1 λ2

n = 50, σ = 1

β̂1 901 (130) 956 (133) 935 (126) 999 (132) 948 (124) 1002 (128)

β̂2 182 (147) 252 (189) 175 (142) 262 (188) 182 (141) 259 (180)

β̂3 66 (113) 13 (242) 46 (91) -10 (239) 54 (95) -13 (227)

β̂4 329 (186) 493 (225) 314 (179) 500 (224) 328 (180) 499 (219)

n = 75, σ = 1

β̂1 905 (116) 961 (121) 942 (116) 1000 (120) 951 (114) 1001 (117)

β̂2 135 (123) 162 (150) 194 (134) 247 (153) 197 (132) 247 (149)

β̂3 80 (107) 81 (175) 44 (84) 9 (177) 45 (87) 5 (170)

β̂4 316 (157) 442 (179) 340 (154) 497 (180) 353 (153) 498 (175)

n = 100, σ = 1

β̂1 918 (110) 968 (114) 948 (110) 1005 (114) 957 (107) 1004 (110)

β̂2 188 (122) 216 (142) 201 (121) 249 (142) 211 (118) 248 (135)

β̂3 49 (76) 40 (145) 32 (63) 6 (146) 34 (64) 7 (140)

β̂4 396 (124) 484 (136) 379 (120) 494 (135) 400 (118) 495 (131)

4.2. Illustration of Oracle Properties

In this simulation exercise, we illustrate that the calibrated estimator β̂C pos-
sesses the so-called oracle properties (cf. Fan and Li, 2001; Zou, 2006; Wang et
al., 2008; Johnson et al., 2008). Here, we simulated 200 data sets from the linear
model

yi = x′
iβ + σεi, i = 1, . . . , n,

where β = (3, 3/2, 0, 0, 2, 0, 0, 0)′, and xi and εi are independent standard nor-
mal with correlation between the j-th and k-th components of x equal to
0.5|j−k|. This model has been considered elsewhere in the model selection lit-
erature (cf. Tibshirani, 1996; Fan and Li, 2001). We compare the model error

ME ≡ (β̂ − β0)
′E(xx′)(β̂ − β0) of the lasso and adaptive lasso (alasso) esti-

mator for both the one-step and fully iterative estimator. The median model
error (MME) over 200 Monte Carlo data sets is reported for each simulation
scenario. We also compare the average numbers of regression coefficients that
are correctly (C) or incorrectly (I) shrunk to 0. Furthermore, we consider two
different strategies for parameter tuning: one based on cross-validation and a
second based on the rule-of-thumb λ̂ = log(n)/n (Wang et al., 2007). All simu-
lation results are presented in Table 2, where oracle pertains to the situation in
which non-zero coefficients are known a priori.

First, we note that using the rule-of-thumb λ̂ leads to very poor performance
in both the calibrated estimator and fully iterative estimators regardless of the
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Table 2

Simulation results on model selection. Table entries include the median model error
(MME), average number of correct (C) and incorrect (I) zeros over 200 Monte Carlo data
sets. For each of lasso and alasso estimators, the regularization parameter is either set equal

to a rule-of-thumb value or selected after cross-validation.

Iterative One-step

Method MME (×100) C I MME (×100) C I
n = 50, σ = 3

λ̂ 143.77 0.74 0 152.03 0.64 0
lasso

CV 193.85 3.11 0.06 179.09 2.60 0.04

λ̂ 134.10 2.31 0.02 145.59 2.13 0.02
alasso

CV 126.47 4.25 0.10 125.70 3.92 0.08

n = 50, σ = 1

λ̂ 18.21 2.11 0 20.97 1.52 0
lasso

CV 22.24 2.46 0 25.86 2.19 0

λ̂ 10.37 4.58 0 12.26 4.33 0
alasso

CV 11.80 4.37 0 13.71 4.24 0

n = 75, σ = 3

λ̂ 93.72 0.58 0 106.81 0.52 0
lasso

CV 161.32 3.30 0.01 130.48 2.58 0

λ̂ 79.27 2.26 0 92.27 2.10 0
alasso

CV 79.60 4.32 0.04 77.98 4.05 0.04

n = 75, σ = 1

λ̂ 12.52 1.77 0 13.43 1.38 0
lasso

CV 18.68 2.58 0 18.14 2.27 0

λ̂ 6.71 4.63 0 7.92 4.42 0
alasso

CV 6.79 4.55 0 8.35 4.36 0
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B. A. Johnson/Lasso for censored data 12

penalty. This is due, in part, to the fact that λ̂ was proposed for uncensored
data, not censored data. One can see that tuning based on λ̂ produces models
that are too complex, on average, suggesting that λ̂ is too small in censored
data applications. Cross-validating λ leads to estimates with the desired oper-
ating characteristics. By now, it is well-known that lasso performs better than
alasso when the signal-to-noise ratio is low while the opposite is true when the
signal-to-noise ratio is large. This phenomenon can be observed in Table 2. We
observe that the there may be some advantage (i.e. smaller model error and
model complexity) in the iterative estimator over the one-step as the sample
size increases. However, the convergence of the iterative estimator is not guar-
anteed. Nevertheless, with careful tuning of the regularization parameter λ for
the iterative estimator, both the one-step and the iterative estimator possess
similar operating characteristics, on average; however, the one-step estimator
does so with far less computational cost.

4.3. Mayo Primary Biliary Cirrhosis Study

We consider the Mayo primary biliary cirrhosis (PBC) data (Fleming and Har-
rington, 1991, Appendix D.1). The data contains information about the sur-
vival time and prognostic variables for 418 patients who were eligible to par-
ticipate in a randomized study of the drug D-penicillamin. Of 418 patients
who met standard eligibility criteria, a total of 312 patients participated in the
randomized portion of the study. The study investigators used stepwise dele-
tion to build a Cox proportional hazards model for the natural history of PBC
(Dickson et al., 1989). We perform model selection with ten predictors includ-
ing age, log(albumin), log(alkaline phosphatase), ascites, log(bilirubin), edema,
hepatomegaly, log(protime), sex and spiders. This is the same data set used by
Johnson (2008) but his method estimated regression coefficients through local
quadratic approximation (Tibshirani, 1996; Fan and Li, 2001), which is very
different than the algorithm presented here. Coefficient paths for each of the
ten predictors are displayed in Figure 1.

Figure 1 illustrates the coefficient paths for each of lasso, alasso, and elas-
tic net (enet). In panels (a)-(c), we present coefficient paths from both Berwin
Turlach’s lasso2 package as well as the piecewise-linear lars coefficient paths
(Efron et al., 2004) in panels (d)-(f). Finally, we cross-validated each of the
three estimators using the BIC criterion. The final estimated regression coef-
ficients using the optimal regularization parameter (not shown here but in an
earlier technical report) are similar for lasso and elastic net coefficient estimates.
However, the alasso coefficient estimates are rather different than the other two
estimators; in particular, the final alasso model has two fewer coefficients than
either lasso or elastic net.

4.4. Lung cancer microarray data

In 2003, Research Triangle Park (North Carolina, U. S. A.) hosted the third
international conference on the Critical Assessment of Microarray Data Anal-
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Fig 1. Coefficient paths for estimation and variable selection in the semiparametric linear
regression model using calibrated one-step estimation and data from the Mayo primary biliary
cirrhosis study. Panels (d)-(f) are piece-wise linear coefficient paths with a cross (x) marking
changes in the active set A(λ); panels (a)-(c) are approximate coefficient paths fit over a
range of the regularization parameter τ .
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ysis (CAMDA). CAMDA offers researchers from all areas the opportunity to
brainstorm new methodologies for the analysis of microarray data. We an-
alyze part of the CAMDA 2003 challenge data set for which survival end-
points and microarray data are both available. Specifically, our original data set
consists of 124 Harvard samples, analyzed using Affymetrix microarray chips,
and 1034 genes while our actual data analysis uses a smaller subset of genes
(see below). Additional details can be found on the CAMDA 2003 website
(http://www.camda.duke.edu/camda03/datasets/index.html).

In this data set, the survival endpoint is the natural logarithm of time-to-
death (in months) , which may be right-censored at the end of the study followup
period. Our analysis consists of 94 gene expression levels on 124 samples. The 94
genes represents an important subset of the original 1034 genes chosen through
univariate Gehan regressions on each gene separately and selecting those genes
with a Wald test statistic greater than 2.25 in absolute value. This initial prepro-
cessing step is ad hoc and not included as part of the original estimation scheme
in Algorithm 1 but also not uncommon in the microarray literature (cf. Wang
et al., 2008, and references therein). Available software for simultaneous testing
(e.g. local FDR, Efron, 2005) suggests that fewer than 94 genes are important.

We fit the calibrated estimator with elastic net penalty (Zou and Hastie, 2005)
to the reduced lung cancer microarray data. We then constructed two and three
risk groups from quantiles of the elastic net predictions and then estimate the
stratified survivor function P (y1 ≥ t) using the Kaplan-Meier estimator. The
estimated survivor functions are presented in Figure 2 and suggest the elastic
net predictions on the 94 significant genes yield reasonable separation. The score
(i.e. logrank) test statistics are 22.9 and 24.7 on one and two degrees of freedom
for the two and three group analyses, respectively. Wang et al. (2008) present
a similar analysis of their microarray data based on penalized Buckley-James
estimators with elastic net penalty.

5. Remarks

Penalized Buckley-James statistics seem like a natural way of extending penal-
ized least squares to censored data. Unfortunately, the unreliability of the es-
timator has not supported its use in practice. Instead, we propose a calibrated
lasso-type estimator that offers investigators a new method for simultaneous es-
timation and variable selection in the linear regression model (1) with censored
data. The hypotheses of the new estimator are similar to penalized Buckley-
James statistics, but our estimator possesses better small sample properties.
The small and large sample properties of the one-step calibrated estimator il-
lustrates its good performance.

The success of our method is due to a principled initial value (Jin et al., 2006)
which provides a solid footing for local estimation. The subsequent use of nor-
malized pseudo response data leads to a reliable estimator which can be written
as the unique solution of a convex loss function. While others have considered
similar lasso-type estimation in the AFT model, none appear quite as simple,
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Fig 2. Stratified Kaplan-Meier curves for the lung cancer microarray data and elastic net
predicted values.

straightforward, or generalizable as the proposed approach. Our procedure is
accomplished through three easy steps: find a consistent initial estimate for β0

in the linear model (1), construct synthetic responses, and compute the lasso
optimization problem (2). Because there are no additional iterative steps, this
fundamentally sets it apart from other penalized Buckley-James statistics (e.g.
Wang et al., 2008). Technically, we place modest assumptions on the tail of the
error distribution but these are the same regularity conditions as in Jin et al.
(2006).

Rather the estimate coefficient paths based on imputation and least-squares
principle, one may choose a rank-based approach. Johnson (2008a) first stud-
ied penalized rank-based estimators for censored data. Subsequently, Cai et al.
(2008) provided an elegant path algorithm by applying the technique of Zhu
et al. (2004); for alternative estimation, see Johnson (2008b). It is important
to note that the rank-based setup is very different than the least-squares setup
proposed here. In particular, the proposed one-step estimator reduces to Tibshi-
rani’s (1996) lasso as the proportion of censored observations approaches zero.
The regularized Gehan estimator reduces to the regularized Wilcoxon estimator
(Johnson and Peng, 2008) for uncensored data. So the method proposed here
is a direct extension of Tibshirani’s (1996) lasso estimator to censored data.
The argument for supremacy between rank-based or least-squares methods is
difficult to judge and subject to debate. An improved estimator over both pro-
posals is the semi-parametric efficient estimator in the AFT model (Lin and
Zeng, 2007). A potential difficulty with the semi-parametric efficient estimator
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is that it requires smoothing the hazard function. The beauty of the proposed
approach here is its simplicity.

In statistics, as in life, there is usually a trade-off for such simplicity. Al-
though the unpenalized, one-step, synthetic data calibrated estimator (Jin et
al., 2006) is a consistent estimator of the regression coefficient in model (1), it is
not an efficient one. This is partially due to an inefficient initial estimator (i.e.
Gehan), the approximation of the error distribution, and the Buckley-James
imputation or transformation. In variable selection, inefficiency translates into
larger model error. There exist other synthetic data techniques which fall under
the heading “censoring unbiased transformations” (cf. Fan and Gijbels, 1996;
Rubin and van der Laan, 2007, and references therein). These methods are sim-
ilar to inverse weighting (Koul et al., 1981) in that they model the censoring
or conditional censoring distribution given covariates, however, they are signifi-
cantly more precise than the method of Koul et al. (1981). Fan and Gijbels refer
to the Buckley-James transformation as the “best restoration” in the sense that
it minimizes squared error loss; then, the proposed one-step estimator may be
interpreted as a one-step approximation to the best restoration. Compared with
censoring unbiased transformations, the method here does not require a model
for the (conditional) censoring distribution and the technical requirements on
the censoring distribution are the same as in Ritov (1990) and Lai and Ying
(1991). At the same time, as this method was primarily developed to address
concerns with the “inexactness” of coefficient estimates in the AFT model us-
ing Buckley-James estimation procedures, any one-step regularized estimator
on synthetic data could claim similar improvement.

Appendix: Large Sample Theory

Regularity conditions

Throughout, we assume the linear model

yi = x′
iβ + εi, (i = 1, . . . , n),

assume the true coefficient vector β0 is an interior point of a compact parame-
ter space B, and that (Ui, δi,xi) are independent replicates from the underlying
distribution of (y, C,x). For completeness, we define the original, unpenalized

Buckley-James estimating function S(β) =
∑n

i=1 xi(Ỹi(β) − x′
iβ), and the fol-

lowing d × d matrices:

A =

∫
Var(x|C − x′β0 ≥ u) {u − E[ε|ε > u]} ×
[
− ḟ(u)

f(u)
+ E

{
ḟ(ε)

f(ε)
|ε > u

}]
P (C − x′β0 ≥ u) dF (u),

V =

∫
Var(x|C − x′β0 ≥ u) {u − E[ε|ε > u]}2

P (C − x′β0 ≥ u) dF (u),
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where ḟ(t) = (d/dt)f(t), f(t) = (d/dt)F (t). Finally, we adopt the following
regularity conditions:

C.1. There exists a constant c0 such that P (U − x′β < c0) < 1 for all β in
some neighborhood of β0.

C.2. The random variable x has compact support.
C.3. F has finite Fisher information for location.
C.4. The asymptotic slope matrix A is nonsingular.

It is important to note that (C.1)-(C.4) are Ritov’s (1990) regularity conditions
to show the existence of a root-n consistent root to the unpenalized, Buckley-
James estimating equations, 0 ∼= S(β̂BJ) (where ∼= denotes a difference of order

op(n
−1/2)), and to demonstrate that n1/2(β̂BJ − β0) converges in distribution

to a mean-zero, Gaussian random vector with covariance matrix A−1VA−1.
Alternatively, we could impose Lai and Ying’s (1991) technical conditions to
prove Theorems 1-3.

Proof of Theorem 1

Define β̂(0) = argmin(Φ0,n), where

Φ0,n(u) = n−1
n∑

i=1

(Ỹi(β0) − x′
iu)2 +

λn

n

d∑

j=1

|uj|. (A.1)

Note the difference between Φ0,n(u) and Φ1,n(u) is that the former defines the
pseudo response as a function of the true regression coefficient β0 while the

latter uses the Gehan estimate β̂I . We will first show that β̂(0) →p argmin(Φ1)

and then show β̂C converges to the same limit.
Expanding the calibrated squared error loss in Φ0,n(u), we have

n−1
n∑

i=1

(Ỹi(β0) − x′
iu)2 =

n−1
n∑

i=1

(Ỹi(β0) − x′
iβ0)

2 + 2n−1(β0 − u)S(β0) + (u − β0)
′Σ(u − β0) (A.2)

where S(β0) was defined above. Using a Taylor series expansion, integration-
by-parts (cf. Lai and Ying, 1991), and the martingale representation of the
Kaplan-Meier estimator (Fleming and Harrington, 1991), one can show that

n−1
n∑

i=1

(Ỹi(β0) − x′
iβ0)

2 ∼= n−1
n∑

i=1

ξ1i →p Eξ11, (A.3)

where ξ11, . . . , ξ1n are iid random variables with E|ξ11| < ∞. For the second
expression in (A.2), note that n−1/2

S(β0) →d N(0,V) by conditions (C.1)-
(C.3) and Theorem 5.1 of Ritov (1990). Thus, as n → ∞, {(β0 − u)/

√
n} ·
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n−1/2
S(β0) →p 0 because n−1/2

S(β) = Op(1). Therefore, Φ0,n(u) →p Φ1(u) for
every u. Because Σ is positive definite, Φ1(u) has a unique minimizer. By the

convexity of Φ0,n(u) and epiconvergence (Geyer, 1994), β̂(0) = argmin(Φ0,n) →p

argmin(Φ1).

Now, replace β0 with the root-n consistent estimate β̂I in the pseudo response

Ỹi(β0) in (A.1) and consider the expansion of the calibrated squared error loss
as in (A.2). The third expression in (A.2) is the same while the first expression
does not depend on u but, nevertheless, converges in probability to the same
limit in (A.3). The second expression is

−2n−1(β0 − u) ·
{

n∑

i=1

xi

(
Ỹ (β̂I) − x′

iβ0

)}
.

By conditions (C.1)-(C.3), in a neighborhood of β0,

n∑

i=1

xi

(
Ỹ (β̂I) − x′

iβ0

)
= S(β0) − nA(β̂I − β0) + op(n

1/2). (A.4)

Multiplying the right-hand side of (A.4) by n−1/2, the first term is Op(1), the

third term is op(1), and the second term is equal to A · √n(β̂I − β0) = Op(1).
Hence, (A.4) = Op(n

1/2) and the rest of the proof follows straightforwardly

from the above paragraph. Therefore, β̂C →p argmin(Φ1), as desired.
�

Proof of Theorem 2

Rewrite the random function Φ1,n as

ηn(u) =

n∑

i=1

[Ỹi(β̂I) − x′
i(β0 +

λn

n
u)]2 +

d∑

j=1

|βj0 +
λn

n
uj |.

Note that û minimizes the difference ηn(u) − ηn(0) and that the latter term
does not depend on u. Now, define Φ2,n(u) = ηn(u) − ηn(0), where:

Φ2,n(u) = u′

(
X′X

n

)
u− 2n−1/2

{
n∑

i=1

xi

(
Ỹ (β̂I) − x′

iβ0

)}
· u

+λn

d∑

j=1

(|βj0 − n−1/2uj| − |βj0|).

Again, we have an expression like (A.4). Using integration by parts and the
martingale representation of the Kaplan-Meier estimator, one can show that,
almost surely,

(A.4) = S(β0) + (β̂I − β0)

n∑

i=1

∫ ∞

−∞

ξ2i(t) dMi(t) + o(n1/2 + ‖β̂I − β0‖),
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(Lai and Ying, 1991) where ξ2i(t) are independent random vectors and

Mi(t) = δiI{ei(β0) ≤ t} −
∫ t

0

I{ei(β0) ≥ t}λ(s) ds.

From Tsiatis (1990), it was shown that

n1/2(β̂I − β0) = n−1/2
n∑

i=1

∫ ∞

−∞

γi(t) dMi(t) + op(1),

for nonrandom functions γi(t). If ξ̄2(t) = limn n−1
∑n

i=1 ξ2i(t), then it follows
that

(β̂I − β0)

n∑

i=1

∫ ∞

−∞

ξ2i(t) dMi(t) =

n∑

i=1

∫ ∞

−∞

{
ξ̄2(t) · γi(t)

}
dMi(t) + op(n

1/2).

Multiplying both sides by n−1/2, we have that

n−1/2
n∑

i=1

∫ ∞

−∞

{
ξ̄2(t) · γi(t)

}
dMi(t) →d W2,

where, by the martingale CLT, W2 ≡ N(0,D) and

D =

∫ ∞

−∞

E
[{

ξ̄2(t) · γi(t)
}⊗2

I{ei(β) ≥ t}
]
λ(t) dt,

a⊗2 = aa′. Then, for every u, Φ2,n(u) →p Φ2(u). The conclusion then follows
from the convexity of Φ2,n and the fact that Φ2 has a unique minimizer (Geyer,
1994; Knight and Fu, 2000, Theorem 2).

�

Proof of Theorem 3

Append the alasso penalty to the estimating function S
U (β) from Jin et al.

(2006) to define the following system of penalized estimating equations:

ΨC(β) = S
U (β) − nλ · πs(β),

and π = (π1, . . . , πd)
′. Johnson et al. (2008) recently showed that subject to

two regularity conditions, carefully defined zero-crossings of ΨC(β) possess the
oracle property and all conclusions of Theorem 3 follow. First, we must show
that

J.1. There exists a nonsingular matrix A such that for any given constant M ,

sup
|β−β

0
|≤Mn−1/2

|n−1/2Ψ(β) − n−1/2Ψ(β0) − n1/2A(β − β0)| = op(1).

Furthermore, n−1/2Ψ(β0) →d N(0,V), for V a d × d matrix.
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Condition J.1 follows from conditions (C.1)-(C.4), Theorem 5.1 of Ritov (1990),
and arguments similar to the Appendix of Jin et al. (2006). Key steps include
integration by parts, the martingale representation of the Kaplan-Meier estima-
tor, and the martingale CLT. The second technical condition is:

J.2. The penalty function qλn(|θ|) = λnπ possesses the following properties:

(i) For non-zero fixed θ, limn1/2qλn(|θ|) = 0 and lim q′λn
(|θ|) = 0;

(ii) For any M > 0, lim
√

n inf |θ|≤Mn−1/2 qλn(|θ|) → ∞.

Condition J.2 follows from the definition of π = |θ|−1 and the root-n consistency
of the Gehan estimator and is described in detail in Remark 3(c) of Johnson
et al. (2008). Therefore, by Theorem 1 of Johnson et al. (2008), the calibrated
one-step estimator with alasso penalty possesses the oracle property and its so-
lution given by (9) is exact.

�
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