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Summary. After a treatment is found to be effective in a clinical study, attention often focuses on the
effect of treatment duration on outcome. Such an analysis facilitates recommendations on the most beneficial
treatment duration. In many studies, the treatment duration, within certain limits, is left to the discretion of
the investigators. It is often the case that treatment must be terminated prematurely due to an adverse event,
in which case a recommended treatment duration is part of a policy that treats patients for a specified length
of time or until a treatment-censoring event occurs, whichever comes first. Evaluating mean response for a
particular treatment-duration policy from observational data is difficult due to censoring and the fact that
it may not be reasonable to assume patients are prognostically similar across all treatment strategies. We
propose an estimator for mean response as a function of treatment-duration policy under these conditions.
The method uses potential outcomes and embodies assumptions that allow consistent estimation of the
mean response. The estimator is evaluated through simulation studies and demonstrated by application to
the ESPRIT infusion trial coordinated at Duke University Medical Center.
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1. Introduction
The ESPRIT (Enhanced Suppression of the Platelet IIb/IIIa
Receptor with Integrilin Therapy) trial, which motivated this
research, targeted patients with coronary artery disease sched-
uled to undergo percutaneous coronary intervention with
stent implantation in a native coronary artery. The main ob-
jective of ESPRIT was to compare eptifibatide (Integrilin)
therapy to placebo on the basis of the composite binary end-
point of death, myocardial infarction (MI), or urgent target
vessel revascularization within 30 days. The study enrolled
2064 eligible patients who were randomized to either study
drug (1040) or placebo (1024) regimen. The experimental
treatment regimen consisted of an eptifibatide bolus and a
continuous eptifibatide infusion for 18–24 hours, with a simi-
lar regimen for the placebo group. The study protocol also re-
quired that patients experiencing serious complications, such
as abrupt closure, no reflow, or coronary thrombosis immedi-
ately discontinue the infusion process to receive appropriate
medical attention; we define these protocol-defined adverse
events as infusion-terminating events, or more generally as
treatment-terminating events.

The main study analysis suggested that the eptifibatide
regimen in the study is superior to placebo. The event pro-
portion for the composite endpoint was 10.5% for placebo
versus 6.8% for eptifibatide (p = 0.0034). A natural follow-up
question posed by the investigators involved the length of in-
fusion of eptifibatide that should be recommended for future
patients. Because infusion cannot continue after a treatment-
terminating event, a recommendation to infuse for t units
of time necessarily implies that treatment would be discon-
tinued after drug was administered for t units of time or
when a treatment-terminating event occurs, whichever comes
first. Thus, more precisely, the investigators were interested in
comparing the event proportions for different infusion length
“policies,” where a “policy” dictates a particular infusion
length t that may be possibly censored by events that require
treatment termination.

Formally then, interest focuses on characterizing the mean
response, here equal to the probability of whether a patient
experiences an event (death, MI, or target vessel revascular-
ization) within 30 days, as a function of treatment-duration
(infusion length) policy. For a particular policy involving
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duration t, then, the parameter of interest may be concep-
tualized as the mean response if all patients in the population
were to be treated according to this policy. Clearly, if a study
were conducted in which patients were assigned at random to
receive different treatment-duration policies at the beginning
of the study, estimation of this parameter for a particular pol-
icy would be straightforward following an intention-to-treat
principle.

Data from a study that did not randomize patients to dif-
ferent treatment-duration policies, such as the data from pa-
tients in the ESPRIT trial who received eptifibatide, include
the length of infusion for each patient and whether the in-
fusion was terminated because of a protocol-defined adverse
event or because of physician discretion. One difficulty in es-
timating the mean response for different treatment-duration
policies using the observed data is that, unlike a well-designed
randomized treatment-duration study, when a patient has
their treatment terminated because of an adverse event then
we do not know what treatment-duration policy was intended
for that patient. Also, as in most observational studies, be-
cause infusion length was left to the discretion of the physi-
cian rather than dictated by design (randomization), patients
receiving different durations may not be prognostically simi-
lar. It is intuitively apparent that simply averaging responses
among individuals observed to have completed infusion of
length t, either including or excluding patients experiencing a
treatment-terminating event prior to t, would yield a biased
estimator of the desired policy mean.

In this article, we demonstrate how methods developed for
estimating causal parameters in observational studies (e.g.,
Robins et al., 1994, 2000; Hernan et al., 2000, 2001; Satten
et al., 2001) may be used for our problem. Specifically, we
show that a treatment-duration policy is a specific example
of a dynamic treatment regime and delineate the conditions
and assumptions that enable us to use the theory developed
by Murphy, van der Laan, and Robins (2001) to derive a
consistent estimator of the mean response as a function of
treatment-duration policy from a sample of observed data
such as those in the ESPRIT infusion trial.

This article is organized as follows. The assumptions and
methods are developed in Section 2, and large sample proper-
ties of the estimator are outlined in Section 3. In Section 4, we
apply the procedure to the ESPRIT infusion data. We report
on simulation studies to evaluate small sample properties in
Section 5.

2. Assumptions and Methods
Although the ESPRIT trial involves a dichotomous outcome,
the following development allows for a general response vari-
able that could be continuous or discrete. In order to con-
ceptualize properly the question of interest, it is useful to
introduce the idea of potential (counterfactual) random vari-
ables (Rubin, 1974; Rosenbaum and Rubin, 1983). Specifi-
cally, we define the potential random variable C to represent
the time at which a randomly selected individual from our
population, if continuously treated, would have a treatment-
terminating event. We also define the potential random pro-
cess (Y �

t , t≤C), where Y�
t denotes the response of the individ-

ual, if treatment were terminated at time t, for t ≤ C. In terms
of these potential random variables, the policy of treating an

individual for t units of time or until a treatment-terminating
event results in the response Y �

t∧C , where t ∧ C denotes the
minimum of t and C. This may also be written as

Y �
t∧C = Y �

t I(C ≥ t) + Y �
CI(C < t), (1)

and the parameter of interest is the population mean response
for this treatment-duration policy, namely, E(Y �

t∧C).
The variables defined above are referred to as potential

random variables, or counterfactuals, because, contrary to the
fact, they may not actually be observed. In contrast, for a ran-
domly selected individual from our population, the observable
random variables are (Y , U , ∆), where Y denotes the observed
response, U denotes the actual treatment duration, and ∆ is
an indicator variable such that ∆ = 0 if treatment duration
was stopped due to a treatment-terminating event and ∆ =
1 if stopped due to physician discretion.

For simplicity, we will assume that when patients do not
experience treatment-terminating events (∆ = 1), then their
actual treatment duration U realizes one of k finite values,
t1, . . . , tk . However, when treatment is stopped because of an
intervening event (∆ = 0), U can take values along a contin-
uum of time. Under these conditions, the specific parameters
on which we focus are the population mean responses for the
k treatment-duration policies, µj = E(Y �

tj∧C), j = 1, . . . , k.
A key assumption is that the observed response Y may be

written in terms of the potential outcomes as

Y =

{
k∑

j=1

Y �
tj
I(U = tj ,∆ = 1)

}
+ Y �

CI(∆ = 0). (2)

In words, assumption (2) says that if a patient experiences
a treatment-terminating event, then the observed response is
Y �

C ; otherwise, the observed response is Y �
tj

corresponding to
the realized value of actual treatment duration U.

Along with the data (Y , U , ∆), we assume that additional,
possibly time-dependent covariate, information is also avail-
able. Let Z(u) denote the value of a vector of covariates for
an individual at time u, where u is measured as time from
the individual’s entry into the study. We define Z̄(x) to be
the history of covariate information up to and including time
x, i.e., {Z(u), u ≤ x}, and use Z̄j to denote Z̄(tj). We define
the jth discrete cause-specific hazard function to be the condi-
tional probability λj(Z̄j) = P (U = tj ,∆ = 1 |U ≥ tj , Z̄j), j =
1, . . . , k. The key assumption that allows us to estimate con-
sistently the parameter µj = E(Y �

tj∧C) from a random sample
of observed data is given by

P
(
U = tj ,∆ = 1 |U ≥ tj , Z̄j , C, Y �

x , tj ≤ x ≤ C
)

= λj(Z̄j),

j = 1, . . . , k.

(3)

In words, assumption (3) implies that the decision to ter-
minate or continue a patient’s treatment at time tj —given
the patient has continuously received treatment up to and
including time tj without a treatment-censoring event, and
given the patient’s covariate history up to and including time
tj —does not depend on future prognosis. Such an assumption
is plausible if information about an individual through time
tj , which may be prognostic and which an investigator may
use to make decisions on treatment duration, are captured in
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the data Z̄j . The assumption given by (3) is the “sequential
randomization assumption” or the assumption of “no unmea-
sured confounders” discussed by Robins (1997).

It is shown in detail in the Appendix that the treatment-
duration policy “treat for tj units of time” is a specific example
of a dynamic treatment regime as defined by Murphy et al.
(2001) and µj is the mean response for this dynamic treat-
ment regime. As such, under the sequential randomization
assumption (3), we also demonstrate in the Appendix that
the theory developed by Murphy et al. (2001) can be used to
find a consistent estimator for µj . Specifically, we show that

E

[
(Y − µj)×

{
I(U = tj ,∆ = 1)

fj(Z̄j)
+

I(U < tj ,∆ = 0)

K[U ]

(
Z̄[U ]

)
}]

= 0,

(4)

under assumption (3), where

fj(Z̄j) = λj(Z̄j)

j−1∏
m=1

{1 − λm(Z̄m)} (5)

and

Kj(Z̄j) =

j∏
m=1

{1 − λm(Z̄m)}. (6)

We also define [U ] = maxj{j : tj < U}; therefore, Z̄[U ] refers
to all covariate information up to and including time tj just
prior to U, and K[U ](Z̄[U ]) will be the product of (1 − λm)
from m = 1 to m = [U ].

Thus for a sample of data {Yi, Ui,∆i, Z̄(Ui), i = 1, . . . , n},
if the probabilities fj(Z̄j) and K[U ](Z̄[U ]) were known, then
a natural estimator for µj would be obtained by solving the
estimating equation

n∑
i=1

(Yi − µ̂jn)

{
I(Ui = tj ,∆i =1)

fj(Z̄ij )
+

I(Ui <tj ,∆i =0)

K[Ui]

(
Z̄[Ui]

)
}

= 0,

(7)

where Z̄ij refers to the covariate information up to and includ-
ing time tj for the ith individual. This yields the estimator

µ̂jn =

n∑
i=1

Yiwij

n∑
i=1

wij

,

wij =
I(Ui = tj ,∆i = 1)

fj(Z̄ij )
+

I(Ui < tj ,∆i = 0)

K[Ui]

(
Z̄[Ui]

) ,

which is a weighted average of the responses.

Remark. If we view the probability fj(Z̄ij ) as the propen-
sity score (Rosenbaum and Rubin, 1983) for the ith individ-
ual to have treatment terminated at time tj , then, if there
were no treatment-terminating events, the estimator would
equal

∑
Yiwij/

∑
wij , where wij = I(Ui = tj)/fj(Z̄ij ). This is

a weighted average of the responses for individuals with treat-
ment duration tj and weights equal to the inverse of their
propensity score. Such inverse propensity score estimators
have been suggested by Cassel, Särndal, and Wretman (1983)

and Rosenbaum (1987) to adjust for confounding of treatment
with baseline time-independent covariates. With censoring,
the weighted average also includes responses from individuals
who have a treatment-censoring event at time C < tj . How-
ever, their contribution is weighted by

1

K[Ui]

(
Z̄[Ui]

) =
1

fj(Z̄ij )

fj(Z̄ij )

K[Ui]

(
Z̄[Ui]

) .
Intuitively, this weight can be viewed as the inverse propen-
sity score multiplied by the conditional probability that the
individual would have treatment stopped at time tj given that
treatment duration was known to be greater than C. Heuris-
tically, this shows how the response of an individual who has
treatment censored at time C is “distributed to the right”
(Blight, 1970; Turnbull, 1974, 1976) to estimate µj for all
{j : tj > C}.

Because (7) contains the unknown probabilities fj(Z̄j) and
K[U ](Z̄[U ]), which are functions of the unknown parameters
λj(Z̄j), j = 1, . . . , k, these probabilities must be estimated
from the data. This requires that we posit a model for the
discrete hazards λj(Z̄j , γ), j = 1, . . . , k − 1, as a function of a
finite-dimensional parameter vector γ. Assuming (3) holds, it
is straightforward to derive the observed-data likelihood of
Di = {Ui,∆i, Z̄(Ui)}, i = 1, . . . , n, as

∏
n
i=1L(γ;Di ), where

L(γ;Di) =

k−1∏
j=1

{
λij (γ)

1 − λij (γ)

}I(Ui=tj ,∆i=1)

{1 − λij (γ)}I(Ui≥tj ) ,

(8)

and λij (γ) = λj(Z̄ij , γ). The estimator for γ is obtained by
maximizing this likelihood. Of course, the exact form of (8)
depends on how we model λj(Z̄j) as a function of Z̄j .

Generalized linear models are often used for their inter-
pretability and general applicability. We consider one such
class of generalized linear models, where

λj(Z̄j) = F
(
αj + βt

jZ̄j

)
, j = 1, . . . , k − 1,

and F(t) is the logistic function, i.e., et/(1 + et). This is similar
to the continuation ratio logit model (Agresti, 1990, p. 319),
in which case (8) becomes

k−1∏
j=1

∏
i∈Rj

exp
{(

αj + βt
jZ̄ij

)
I(Ui = tj ,∆i = 1)

}
1 + exp

(
αj + βt

jZ̄ij

) ,

where Rj = {i :Ui ≥ tj }. This likelihood is similar to Cox’s
partial likelihood for continuous time proportional hazards
models.

To summarize, the proposed estimator for µj , j = 1, . . . , k
is given by

µ̂jn =

n∑
i=1

Yiŵij

n∑
i=1

ŵij

,

ŵij =
I(Ui = tj ,∆i = 1)

fj(Z̄ij , γ̂)
+

I(Ui < tj ,∆i = 0)

K[Ui]

(
Z̄[Ui], γ̂

) ,

where γ̂ is the maximum likelihood estimator which maxi-
mizes (8).



318 Biometrics, June 2004

3. Large Sample Properties
We derive the large sample properties of µ̂jn under the as-
sumption that when ∆ = 1, actual treatment duration, U,
can take only one of a finite number of values t1 < · · · < tk .
Hence, k is assumed fixed as the number of patients n goes to
infinity. As mentioned previously, this is an approximation to
the truth when ∆ = 1 and U is, in fact, continuous and the
data are grouped into k categories by partitioning treatment
duration into intervals, with tj representing the midpoint of
the jth interval. A rigorous approach to this problem would
assume that E{Y �

t∧C} is a smooth function of t and that the
number of intervals k increases as a function of n. Such a
technical development is beyond the scope of the paper and,
we believe, would not add additional practical insight into
the problem. We make additional comments on the effect of
partitioning in Section 6.

Because the proposed estimator µ̂jn uses the estimated dis-
crete hazard λj(Z̄ij , γ̂), it is convenient to define the estimator
as the first element in the solution to the system of equations

n∑
i=1

(
ψµj

(Yi,Di, µ̂jn , γ̂n)

ψγ(Di, γ̂n)

)
= 0, (9)

where

ψµj
(Yi,Di, µj , γ)

= (Yi − µj)

{
I(Ui = tj ,∆ = 1)

fj(Z̄ij ; γ)
+

I(Ui < lj ,∆ = 0)

K[Ui]

(
Z̄[Ui]; γ

)
}

,

ψγ(Di, γ) =
∂

∂γ
logL(γ;Di).

Note that we have characterized the proposed estimator as
an M-estimator (Huber, 1964), whose asymptotic properties
are well known. Hence, under suitable regularity conditions,
µ̂jn can be shown to be consistent and asymptotically nor-
mal when the model for the discrete hazards (8) is correctly
specified.

A consistent estimator for the asymptotic variance of
the limiting normal distribution can be derived using stan-
dard arguments (Carroll, Ruppert, and Stefanski, 1995, Sec-
tion A.3.6) and is given by

n−1
n∑
i=1

[
(Yi − µ̂jn)

2

{
I(Ui = tj ,∆=1)

f 2
j (Z̄ij ; γ̂n)

+
I(Ui <tj ,∆=0)

K2
[Ui]

(
Z̄[Ui]; γ̂n

)
}

− Ĥi

{
Ê
(
SγS

t
γ

)}−1
Ĥt

i

]
,

where Ê(SγS
t
γ) is a consistent estimator of the Fisher infor-

mation for γ, and

Ĥi = (Yi − µ̂jn)




I(Ui = tj ,∆ = 1)
∂fj(Z̄ij )

∂γ
f 2
j (Z̄ij ; γ̂n)

+

I(Ui < tj ,∆ = 0)
∂K[Ui]

(
Z̄[Ui]

)
∂γ

K2
[Ui]

(
Z̄[Ui]; γ̂n

)

 .

The asymptotic results above pertain to the marginal dis-
tribution of µ̂jn for a fixed j. It would be straightforward to
consider the system of estimating equations

n∑
i=1




ψµ1(Yi,Di, µ̂1n, γ̂n)
...

ψµk
(Yi,Di, µ̂kn, γ̂n)

ψγ(Di, γ̂n)


 = 0, (10)

simultaneously, in order to derive the joint asymptotic normal
distribution of (µ̂1n, . . . , µ̂kn). This may be useful, for example,
if formal tests of contrasts of mean response for the different
treatment-duration policies are desired.

4. Analysis of the ESPRIT Infusion Trial
We demonstrate the proposed methods by application to data
from patients in the ESPRIT trial who received eptifibatide.
The outcome of interest is a composite endpoint of death, MI,
or revascularization within 30 days of the initiation of treat-
ment. The data are discretized by taking tj to be the midpoint
of five intervals Ij , namely Ij = {(tj−1 + tj )/2, (tj + tj+1)/2}
for t = (t1, t2, t3, t4, t5) = (16, 18, 20, 22, 24), and we redefine
Ui = tj for any patient, where Ui ∈ Ij and ∆i = 1. Four pa-
tients did not have both observed random variables (Ui , ∆i)
and were excluded from all subsequent analyses. There are
seven patients who completed infusion before 15 hours and
are assigned to the first group (Ui = 16), and seven patients
who completed infusion after 25 hours and are assigned to
the last group (Ui = 24). The inclusion or exclusion of these
14 observations does not appreciably change the results. The
frequency for the number of patients who completed infusion
at tj is 61, 479, 194, 85, and 111 for j = 1, . . . , 5. Among pa-
tients censored because of an infusion-terminating event, 89
were censored before 16 hours, 11 between 16 and 18 hours,
and 6 patients between 18 and 20 hours.

As in most observational studies, the assumption of no un-
measured confounders is key in deriving unbiased estimators
for the mean response as a function of treatment-duration
policy. As such, the ESPRIT infusion trial investigators were
asked to identify factors that they believed would influence
treatment duration. The investigators confirmed that treat-
ment would be discontinued with certainty if a patient expe-
rienced a protocol-defined adverse event, but otherwise, could
not identify any variables that they believed would affect the
decision of the participating physicians in any systematic way
to terminate treatment. Thus the investigators believed that
there were no obvious measured or unmeasured confounders.
We further investigated the issue of measured and unmea-
sured confounders using a series of analyses that we will de-
scribe shortly.

Numerous measurements were collected for every patient
enrolled in the ESPRIT trial, only a few of which appear
prognostic for both infusion length and the 30-day endpoint.
The baseline variables that we include in our analyses are dia-
betes (0/1), percutaneous transluminal coronary angioplasty
(PTCA, 0/1), angina (0/1), heparin (0/1), and weight (in
kg). A descriptive summary of these variables is given in
Table 1.

One potentially important time-dependent covariate in-
cluded in our analysis was enzyme level. Enzyme levels were
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Table 1
Summary statistics for the ESPRIT trial

Event within 30 days

No (n = 77) Yes (n = 959)

Diabetes 0.17 0.20
PTCA 0.34 0.22
Angina 0.31 0.40
Heparin 0.18 0.13
Weight 83.99 85.17

recorded at baseline and then at each subsequent 6-hour in-
terval up to and including 24 hours. We defined the time-
dependent covariate at time tj as the last enzyme level mea-
sured just prior to time tj .

Naive estimators for µj commonly employed in practice in-
clude an overall event proportion for all patients belonging to
the interval Ij , which we denote by T1j , and an uncensored
event proportion for all patients completing infusion in Ij ,
which we denote by T2j . In Table 2, we present the results of
the estimated event proportions for the two naive estimators
and estimators proposed in this article. As part of a sensitivity
analysis we considered three different estimators that make
different assumptions about the confounding relationship—
µ̂

(0)
jn assumes no confounding is present, µ̂

(1)
jn assumes con-

founding is present only through baseline covariates, and
µ̂

(2)
jn assumes the possibility of time-dependent confounding;

thus, this last estimator includes the time-dependent covari-
ate related to enzyme level in addition to the baseline covari-
ates. We immediately note that for the first interval T11 is
much larger than T21. This can be explained by the higher
event proportion among censored patients compared to un-
censored patients, i.e., 0.189 compared to 0.061, and by the
fact that 89 patients were censored at or before 16 hours while
only 61 patients completed physician-recommended infusion
at 16 hours. As might be expected under these conditions, the
proposed estimator µ̂jn is greater than the naive uncensored
event proportions, T2j , for all j = 1, . . . , k.

In Table 2, we also give the estimated standard errors for
µ̂jn derived in Section 3. We note that the three estimators

µ̂
(0)
jn , µ̂

(1)
jn , and µ̂

(2)
jn are in good agreement which is consistent

Table 2
Estimated event proportions for the ESPRIT trial. T1j denotes the overall event proportion
for all patients belonging to interval Ij , T2j denotes the uncensored event rate for patients
belonging to Ij , µ̂

(0)
jn is the proposed estimator assuming no confounding is present, µ̂(1)

jn is
the proposed estimator assuming confounding is present through baseline factors only, and
µ̂

(2)
jn is the proposed estimator assuming time-dependent confounding. Standard errors are

presented in parentheses.

j tj (hours) T1j T2j µ̂
(0)
jn µ̂

(1)
jn µ̂

(2)
jn

1 16 0.140 0.018 0.047 (0.021) 0.040 (0.016) 0.044 (0.018)
2 18 0.047 0.046 0.065 (0.010) 0.066 (0.010) 0.070 (0.011)
3 20 0.068 0.068 0.079 (0.017) 0.078 (0.017) 0.078 (0.017)
4 22 0.050 0.050 0.071 (0.024) 0.071 (0.024) 0.067 (0.022)
5 24 0.124 0.124 0.116 (0.027) 0.121 (0.035) 0.109 (0.032)

with the intuition of the study investigators that no strong
measured confounders exist in the data set. Based on the re-
sults from Table 2, there is a strong suggestion that infusing
patients for more than 16 hours does not improve the event
rate and could possibly be detrimental to the patients.

Verifying the conjecture that assumption (3) holds, that is,
that there are no unmeasured confounders, is a much more
delicate issue since this assumption is inherently nonidentifi-
able from the observed data. To obtain indirect evidence of
the validity of this assumption we analyzed the data from the
placebo group. It may be reasonable to assume that placebo
has no effect on outcome. That is, the counterfactual re-
sponse at time t for an arbitrary individual in our popula-
tion receiving placebo, namely Y ∗P

t , is independent of t for
t ≤ CP , where CP represents the time that this individual, if
continuously treated with placebo, would have a treatment-
terminating event. One may view this assumption as a causal
null hypothesis. Under such an assumption, the counterfactual
mean response µP

j = E(Y ∗P
tj∧CP ) for the treatment-duration

policy tj would be the same for all j. Consequently, if an anal-
ysis of the placebo patients showed that the estimates for
µP
j were sufficiently different, then we might conclude that

there are unmeasured confounders not properly accounted
for. We estimated µP

j in the placebo group using the iden-
tical methods and variables used in the group treated with
eptifibatide. The results, summarized in Table 3, did not show
evidence of a dose (treatment-duration) response relationship.
We emphasize that this is not proof of no unmeasured con-
founders but only suggestive that this may be a reasonable
assumption.

5. Simulation Results
In this section, we investigate the small sample properties of
our estimator and explore the sensitivity of our estimator to
the assumption of no unmeasured confounders. These simula-
tions assume that patients are assigned to one of a finite num-
ber of treatment-duration policies at values t = (t1, . . . , t4).
Although the proposed method allows for time-dependent co-
variates, for simplicity, we only consider time-independent
covariates.

In the first simulation, we let t = (15, 20, 25, 30). We
considered a single covariate, Z1, following a standard nor-
mal distribution, for each individual. We then generate a



320 Biometrics, June 2004

Table 3
Estimated event proportions in the placebo arm. T1j denotes the overall event rate for all

patients belonging to interval Ij , T2j denotes the uncensored event rate for patients
belonging to Ij , µ̂

(0)
jn is the proposed estimator assuming no confounding is present, µ̂(1)

jn is
the proposed estimator assuming confounding is present through baseline factors only, and
µ̂

(2)
jn is the proposed estimator assuming time-dependent confounding. Standard errors are

presented in parentheses.

j tj (hours) T1j T2j µ̂
(0)
jn µ̂

(1)
jn µ̂

(2)
jn

1 16 0.187 0.097 0.106 (0.036) 0.116 (0.040) 0.131 (0.045)
2 18 0.073 0.071 0.083 (0.012) 0.083 (0.012) 0.091 (0.013)
3 20 0.116 0.116 0.125 (0.022) 0.125 (0.022) 0.126 (0.022)
4 22 0.070 0.070 0.081 (0.026) 0.079 (0.026) 0.079 (0.026)
5 24 0.187 0.187 0.191 (0.033) 0.170 (0.031) 0.124 (0.024)

treatment-censoring random variable C as exp{ρ(Z)} random
variable, where

ρ(Z) = 0.005 exp(ϕ1Z1), ϕ1 = −2.

The treatment-duration data are simulated according to the
following algorithm, which is consistent with the assumptions
made: Start by letting m = 1.

1. If C < tm , then define U = C and ∆ = 0.
2. For C ≥ tm , generate a Bernoulli random variable Qm ,

the indicator variable for stopping treatment at time tm ,
with probability λm(Z), where

logit{λm(Z)} = αm + β1Z1.

3. If Qm = 1, then assign U = tm and ∆ = 1; if Qm = 0 and
m < k, then increment m to m + 1 and go to Step 1.

4. If U = tj and ∆ = 1, then generate the corresponding re-
sponse Y as a Bernoulli random variable with probability
π, where

logit(π) = ηj + ζ1Z1,

whereas, if U = C and ∆ = 0, then generate the corre-
sponding response Y as a Bernoulli random variable with
probability π, where

logit(π) = min
{a:ta≥C}

ηa + ζ1Z1 + υ.

Note that the parameter υ is only present when ∆ = 0, thus
inducing a dependence of censoring of treatment infusion on

Table 4
Simulation summary of mean response for 1000 Monte Carlo data sets when

treatment-duration data are discrete. T1j is the average Y for Ui ∈ Ij and T2j is the
average Y for (Ui ∈ Ij , ∆i = 1). µ̂jn is our estimator assuming confounding is present

through Z1. ECP is defined as the empirical coverage probability. Estimated standard errors
are given in parentheses.

tj µj µ̂jn T1j T2j ECP µ̂jn ECP T1j ECP T2j

t1 0.055 0.056 (0.010) 0.118 0.045 0.949 0.029 0.808
t2 0.091 0.091 (0.015) 0.099 0.068 0.947 0.927 0.703
t3 0.100 0.099 (0.016) 0.064 0.046 0.949 0.441 0.099
t4 0.151 0.151 (0.027) 0.063 0.052 0.938 0.005 0.000

the probability of outcome. The population parameter of in-
terest µj is difficult to evaluate analytically; thus, we approx-
imated its value by simulation. Using the above algorithm,
we forced treatment duration to be stopped at time tj , if not
already censored by replacing Step 2 with “Qm = 0 for m =
1, . . . , j − 1 and Qj = 1,” generating the outcome Y 100,000
times, and then taking the sample average.

The chosen values of the parameters are as follows: α =
(−1.2, −0.75, 0), β1 = −0.5, η = (−5, −4, −4, −2), ζ1 =
−2, υ = 2. For each data set, nominal 95% Wald confidence
intervals were constructed using µ̂jn , its standard error from
Section 3, and a critical value of 1.96. Then, the empirical
coverage probability (ECP) is calculated as the number of MC
data sets where the true µj falls within the Wald confidence
interval divided by the total number of MC data sets.

Table 4 presents simulation results for estimating mean
response as a function of treatment-duration policy tj , j =
1, . . . , 4 when the no unmeasured confounders assumption is
true. We use a sample size of n = 1000 and generate 1000
Monte Carlo data sets. Monte Carlo bias is <2% in every case
and <1% in most cases; interval coverage is approximately the
nominal level. The naive estimators, T1j and T2j , are biased
and do not possess the correct coverage probability.

Next, we investigate the sensitivity of our estimator to de-
viations from the “no unmeasured confounders” assumption.
For this, we include an additional covariate Z2 to represent a
potential unmeasured confounder. To induce additional con-
founding, we include an additional term β2Z2 in the treatment
choice model in Step 2 of the algorithm and an additional term
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Table 5
Simulation summary of mean response for 1000 Monte Carlo
data sets when the no unmeasured confounder assumption is
violated. µ̂jn assumes confounding is present only through Z1.

ECPs are given in parentheses.

ζ2 = −1 ζ2 = −0.5

tj β2 µj µ̂jn(ECP) µj µ̂jn(ECP)

−0.5 0.094 (0.961) 0.087 (0.970)
t1 −0.25 0.090 0.092 (0.974) 0.084 0.085 (0.961)

0 0.090 (0.958) 0.085 (0.955)

−0.5 0.126 (0.957) 0.118 (0.961)
t2 −0.25 0.125 0.126 (0.966) 0.117 0.117 (0.963)

0 0.126 (0.955) 0.117 (0.958)

−0.5 0.130 (0.907) 0.126 (0.942)
t3 −0.25 0.134 0.133 (0.924) 0.130 0.127 (0.949)

0 0.137 (0.973) 0.129 (0.954)

−0.5 0.152 (0.767) 0.152 (0.877)
t4 −0.25 0.172 0.161 (0.871) 0.166 0.157 (0.917)

0 0.173 (0.944) 0.164 (0.954)

ζ2Z2 in the prognostic model in Step 4 of the algorithm. We
fix β1 = −0.5, ζ1 = −2, and let the other parameters, α, η,
υ, be the same as in the first simulation. Different values of
β2 and ζ2 are considered to study the effect of the strength of
confounding of the unmeasured variable Z2 on the resulting
estimator.

The estimator µ̂jn is computed using only the covariate Z1.
We again use a sample size of n = 1000 and 1000 Monte Carlo
data sets. The simulation results are displayed in Table 5.

As expected, our estimator performs well when β2 = 0 (no
unmeasured confounders); however, even with modest con-
founding of the unmeasured covariate Z2, the estimator per-
formed relatively well.

6. Discussion
We have discussed methods to estimate the mean response
as a function of treatment-duration policy, possibly right-
censored, in an observational study. The methods use the the-
ory of causal inference for time-dependent treatments that
was developed by Robins and his colleagues based on rep-
resentation of the problem in terms of potential outcomes
and inverse probability weighted methods. Simulation stud-
ies show that the proposed estimator performs reliably well
in realistic sample sizes when the assumptions underlying the
theory hold.

As in most observational studies, the key assumption that
allows us to derive estimators of causal parameters using the
observed data is that of no unmeasured confounders. This
assumption is, unfortunately, also the most difficult to ver-
ify. In order that this assumption be plausible we must have
some degree of confidence that all important information that
may affect the treatment decision process be captured in the
database. For that reason, it is important during the design
stage of such an observational study that discussions with in-
vestigators be carried out to identify all the factors that they
believe would influence their treatment decisions and all pos-

sible effort be made to capture such information. In addition,
various sensitivity analyses should be conducted such as those
described in Section 4.

We derived methods where treatment-duration data are as-
sumed to occur at finitely many time points—t1, . . . , tk—in
the population. When this is untrue, i.e., treatment duration
occurs along a continuum of time, then, we suggest partition-
ing treatment duration (U) into intervals and estimating the
mean response at the midpoint of the interval, as we did in
the ESPRIT analysis. This approach seemed to work reason-
ably well in simulation scenarios (not shown here) analogous
to those presented in Section 5.
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Résumé

Après qu’un traitement a été trouvé efficace dans une étude
clinique, l’attention se porte souvent sur l’influence de la
durée du traitement sur le résultat. Une telle analyse fa-
cilite l’établissement de recommandations sur la durée la plus
bénéfique. Dans beaucoup d’études, la durée du traitement
est laissée, dans certaines limites, à l’appréciation des in-
vestigateurs. Il arrive souvent que le traitement doive être
arrêté prématurément à cause d’un événement indésirable,
auquel cas la recommandation d’une durée de traitement con-
siste à traiter les patients jusqu’à la première des deux dates
suivantes :une date prédéfinie ou la date de survenue d’un
événement indésirable. L’évaluation de la réponse moyenne
pour un choix particulier d’une durée de traitement à par-
tir de données d’observation est difficile en raison de la cen-
sure et parce qu’il n’est pas raisonnable de supposer que les
différentes stratégies ont un pronostic similaire. Nous pro-
posons un estimateur de la réponse moyenne comme fonction
de la stratégie choisie pour la durée de traitement. La méthode
fait appel à des résultats potentiels et s’appuie sur des hy-
pothèses permettant une estimateur cohérent de la réponse
moyenne. Cet estimateur est évalué par le biais de simula-
tions et est appliqué à l’essai ESPRIT coordonné par le Centre
médical de la Duke University.
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Appendix

Proof of Formula (7)
We now argue that the policy of infusing for tj units of time
is a special case of a dynamic treatment regime as defined by
Murphy, van der Laan, and Robins (2001) and that the key
result given by (4) follows directly from the general theory
developed for estimating the mean response for such dynamic
treatment regimes. Using notation consistent with Murphy
et al. (2001), denote the level of treatment at time t as at . For
our problem at is the indicator of treatment continuation at
time t; that is, at = 1 if treatment infusion is continuing at

time t and at = 0 if the infusion was stopped prior to time t
for t ≤ tk . The history of treatment up to and including time
t is denoted by āt = {au, 0 ≤ u ≤ t}. The treatment assign-
ment at time t is stochastic and is denoted by the random
variable At and the history of treatment assignment up to
and including time t is denoted by the stochastic process
Āt = {Au, 0≤u≤ t}. We also define the history of treatment
assignment up to and not including time t by Āt− = {Au, 0 ≤
u < t}. Other variables available at time t are denoted by Lt

and the history up to and including time t by L̄t = {Lu, 0 ≤
u ≤ t}. For our problem Lt = {I(C > t), Z(t)I(C > t)};
hence, L̄t denotes whether a treatment-terminating event has
occurred prior to time t or not, the time C of the treatment-
terminating event if it occurred prior to time t, and the co-
variate history through the minimum of t and C.

A dynamic treatment regime is a rule that dictates the
level of treatment at time t as a function of L̄t and in Murphy
et al. (2001) is denoted by the rule d̄ which assigns treat-
ment dt(L̄t) at time t for t ≤ tk . In our problem, the
treatment-duration policy “infuse for tj units of time or until
a treatment-terminating event” is an example of a dynamic
treatment regime which we will denote by d̄j , where, in our
notation,

djt(L̄t) = I(tj > t,C > t), t ≤ tk.

Also, in our problem, treatment is terminated immediately
upon the occurrence of a treatment-terminating event; other-
wise, treatment is terminated by physician discretion at one
of the finite set of times t1, . . . , tk . Moreover, once treatment
is terminated, it will not be continued at some later time.
Therefore, in terms of our notation, when t �= {t1, . . . , tk}

P (At = 0 | L̄t, Āt−) = I(U < t) + I(U = t,∆ = 0). (A.1)

Equation (A.1) reflects the fact that, at times t �= {t1, . . . , tk},
treatment decisions, as a function of past covariate-treatment
history, are deterministic. Whereas, for tj , j = 1, . . . , k

P
(
Atj = 0 | L̄tj , Āt−

j

)
= λj(Z̄j)I(U ≥ tj), (A.2)

where λj(Z̄j) is defined by (3).
Under assumption (3) of no unmeasured confounders, we

use equation (4.5) of Murphy et al. (2001) to deduce that

E

(
(Y − µj)

[∏
t≤tk

I
{
At = djt

(
L̄t−

)}
πt(At | L̄t, Āt−)

])
= 0, (A.3)

where µj denotes the mean response for the dynamic treat-
ment regime d̄j and

πt(at | l̄t, āt−) = P (At = at | L̄t = l̄t, Āt− = āt−).

By definition of the dynamic treatment regime d̄j ,∏
t≤tk

I
{
At = djt

(
L̄t−

)}
= I(U = tj ,∆ = 1) + I(U < tj ,∆ = 0).

Because of (A.1) and (A.2), when (U = tj , ∆ = 1)

πt(At | L̄t, Āt−) = 1 if t �= {t1, . . . , tj},

πtm

(
Atm

∣∣ L̄tm , Āt−m

)
= P

(
Atm = 1

∣∣ L̄tm , Āt−m

)
= 1 − λm(Z̄m) if tm = {t1, . . . , tj−1},
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πtj

(
Atj

∣∣ L̄tj , Āt−
j

)
= P

(
Atj = 0

∣∣ L̄tj , Āt−
j

)
= λj(Z̄j),

and when (U < tj , ∆ = 0)

πt(At | L̄t, Āt−) = 1 if t �=
{
t1, . . . , t[U ]

}
,

πtm

(
Atm

∣∣ L̄tm , Āt−m

)
= P

(
Atm = 1

∣∣ L̄tm , Āt−m

)
= 1 − λm(Z̄m) if tm =

{
t1, . . . , t[U ]

}
.

The results above lead us to the conclusion that the statistic
in (A.3)

(Y − µj)

[∏
t≤tk

I
{
At = djt

(
L̄t−

)}
πt(At | L̄t, Āt−)

]

= (Y − µj)

{
I(U = tj ,∆ = 1)

fj(Z̄j)
+

I(U < tj ,∆ = 0)

K[U ]

(
Z̄[U ]

)
}

,

which gives the desired result in (4).




