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Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system.
The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the
ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex,
amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the
pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity
between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in
neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional
and structural imaging results map increasingly close to primate anatomy.
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INTRODUCTION

The demonstration by Olds and Milner that rats would work
for electrical stimulation in specific brain sites led to the
idea that there is an anatomically identifiable reward circuit
(Olds and Milner, 1954). Support for the existence of such a
circuit came with pharmacological manipulation of those
sites, in particular intracranial injections of drugs of abuse
(Carlezon and Wise, 1996; Carr and White, 1983; Phillips
and Fibiger, 1978). Although several brain regions are part
of this circuit, based on self-stimulation, pharmacological,
physiological, and behavioral studies, the nucleus accum-
bens (NAcc) and the ventral tegmental area (VTA)
dopamine neurons appear to be at the center (Hikosaka
et al, 2008; Kelley and Berridge, 2002; Rolls, 2000;
Schultz, 2000; Schultz et al, 2000; Stefani and Moghaddam,
2006; Wise, 2002). Recent studies have shown that the
striatal and midbrain areas that are involved in the
reward are more extensive than previously thought. They
include the entire ventral striatum (VS) and the dopa-
mine neurons of the substantia nigra (SN), respectively.
The VS receives its main cortical input from the orbital

frontal cortex (OFC) and anterior cingulate cortex (ACC)
and a massive dopaminergic input from the midbrain.
The VS projects to the ventral pallidum (VP) and to the
VTA/SN, which, in turn, project back to the prefrontal
cortex, via the medial dorsal (MD) nucleus of the thalamus.
This circuit is an integral part of the cortico-basal ganglia
system. In addition, other structures including the amyg-
dala, hippocampus, lateral habenular (LHb) nucleus, and
specific brainstem structures, such as the pedunculopontine
nucleus and the raphe nuclei, are key components that
regulate the reward circuit (Figure 1).
Reward is a central component for driving incentive-

based learning, appropriate responses to stimuli, and the
development of goal-directed behaviors. One of the main
goals of animal and human studies is to understand how the
different brain regions in the circuit work together to
evaluate environmental stimuli and transform that informa-
tion into actions. A key challenge is to translate what we
know about reward from animal studies to the human
brain. At the foundation of brain image analysis is anatomy,
the identification of structures and their connectivities.
While the basic anatomy of the structures and pathways
of the reward circuit are now well established, new
anatomical studies continue to add important data that
shape our understanding of how its different components
are related. In contrast to animal studies, human imaging
work is relatively new. Nonetheless, there has been anReceived 16 May 2009; revised 1 August 2009; accepted 4 August 2009
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explosion of such studies that focus on the function of the
prefrontal cortex and striatum in reward. These studies use
different reward paradigms, methods of analysis, and
technologies, creating a complex literature that is often
difficult to synthesize. Thus, our goal here is not so much
to exhaustively review that literature, but to highlight
some promising lines of inquiry based on it. This chapter
focuses first on the anatomy (primarily in monkeys).
Second, we review functional activation of cortico-basal
ganglia reward circuitry to explore points of convergence
between primate anatomy studies and human functional
MRI studies. Clearly, imaging methods to date do not have
the resolution capabilities afforded by animal-tracing
studies. Therefore, the anatomical specificity obtained
through animal work is not currently possible using
functional MRI. However, in each section, we link these
studies when possible.

Reward and the Basal Ganglia

The reward circuit, now considered to be embedded within
the cortico-basal ganglia network, is a central component
for developing and monitoring motivated behaviors.
Historically, however, the basal ganglia were best known
for their relevance to motor functions, based both on the
neuropathology of movement disorders and the idea that
basal ganglia pathways return primarily to motor cortex
(Nauta and Mehler, 1966). Our concept of basal ganglia
function has dramatically changed in the last 30 years, from
a purely motor or sensory-motor function to a more
complex set of functions that mediate the full range of
goal-directed behaviors, including emotions, motivation,
and cognition. The change resulted from several lines of
inquiry, but at the center was the demonstration that frontal
cortical information passing through the basal ganglia
returns to all of the frontal cortex, not only to motor
cortex. This idea first arose in the late 1970s with the
development of Heimer’s classic concept of the VS and VP.
The discovery added a separate functional loop, the limbic
loop, within the basal ganglia (Heimer, 1978). Subsequently,
the anatomical demonstration of this circuit (Haber et al,
1985; Heimer et al, 1982; Young III et al, 1984) provided the
evidence for other functional loops (Alexander et al, 1990).
The idea of separate cortical loops in the basal ganglia was
expanded in primates to include several parallel and
segregated circuits based on the finding that each general
functional area of cortex (limbic, associative, and
sensorimotor) is represented in specific regions in each
basal ganglia structure (Alexander et al, 1990; Parent and
Hazrati, 1995).
The concept of parallel and segregated functional path-

ways through the basal ganglia has dominated the field for
the past 20 years. However, adaptive behaviors require a
combination of reward evaluation, associative learning, and
the ability to develop appropriate action plans and inhibit
inappropriate choices on the basis of earlier experience.
Thus, integration of different aspects of reward processing
and interaction of reward circuits and brain regions
involved in cognition and motor control are essential.
Indeed, the idea of a motivation-to-movement interface
through basal ganglia circuits was developed soon after the
discovery of the limbic component to the basal ganglia
(Heimer et al, 1982; Mogenson et al, 1980; Nauta, 1986). A
relatively recent explosion of studies in rodents, monkeys,
and humans supports the hypothesis of integration between
functional circuits. Together, this literature shows the
complexity of the cortico-basal ganglia network and the
place of the reward circuit within it. Overall, there appears
to be a dual organization that permits both parallel and
integrative processing. Thus, the ventral cortico-basal
ganglia network, while at the heart of reward processing,
does not work in isolation (Belin and Everitt, 2008; Bevan
et al, 1997; Brown et al, 1998; Draganski et al, 2008; Haber
et al, 2000, 2006; Joel and Weiner, 1994; Kasanetz et al,
2008; Kolomiets et al, 2001; McFarland and Haber, 2002;
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Figure 1. Schematic illustrating key structures and pathways of the
reward circuit. Red arrow¼ input from the vmPFC; dark orange
arrow¼ input from the OFC; light orange arrow¼ input from the dACC;
yellow arrow¼ input form the dPFC; brown arrows other main connec-
tions of the reward circuit. Amy¼ amygdala; dACC¼dorsal anterior
cingulate cortex; dPFC¼dorsal prefrontal cortex; Hipp¼hippocampus;
LHb¼ lateral habenula; hypo¼hypothalamus; OFC¼ orbital frontal
cortex; PPT¼pedunculopontine nucleus; S¼ shell, SNc¼ substantia
nigra, pars compacta; STN¼ subthalamic nucleus.; Thal¼ thalamus;
VP¼ ventral pallidum; VTA¼ ventral tegmental area; vmPFC¼ ventral
medial prefrontal cortex.
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Mena-Segovia et al, 2005; Percheron and Filion, 1991).
Indeed, within each station of the circuit, there are path-
ways that allow communication between different parts of
the reward circuit and between the reward circuit and
the associative circuit. In this chapter, we first describe the
anatomical organization of each of the main structures and
points of interaction between circuits before discussing
their role in reward, as indicated from human imaging
studies.

PREFRONTAL CORTEX

Organization of Prefrontal Cortex

Although cells throughout cortex fire in response to
rewarding stimuli, the main cortical areas associated with
reward are the anterior cingulate cortex and OFC. These are
complex and heterogeneous regions, each of which is
further divided into specific cortical areas: the anterior
cingulate cortex includes areas 24, 25, and 32; the orbital
cortex is divided into areas 11, 12, 13, and 14 (Barbas, 1992;
Carmichael and Price, 1994; Fuster, 2001; Walker, 1940).
Several homologies have been developed primarily based on
cytoarchitectonics between monkey human prefrontal
cortical areas (Brodmann, 1909; Fuster, 2001; Ongur and
Price, 2000; Petrides and Pandya, 1994). Determining
these homologies is a complex and difficult task due to
the enormous expansion of prefrontal cortex through
evolution. Nonetheless, there is reasonable agreement about
which cortical areas can be considered homologous.
However, cortical labeling in humans and monkeys can
differ. Particularly relevant for this chapter is area 11 in the
monkey, which is part of the OFC and does not reach
the midline, whereas in the human PFC, area 11 does.
In contrast, area 14 of the OFC lies on the ventral surface
at the midline in monkeys, but may not be a designated
area in some human maps. Area 32 occupies a somewhat
different position in monkey and human maps. Since
imaging studies cannot distinguish between these cortical
divisions, they are, therefore, more broadly defined. These
prefrontal regions include (1) a caudal, sensory region,
which includes parts of both the OFC and insula cortex;
(2) a rostral OFC, which includes parts of areas 11, 13, and
12; (3) a ventral, medial PFC (vmPFC), which includes
primarily areas 11, 10, and 32 in humans and areas 25, 14,
and subgenual area 32 in monkeys; and (4) the dorsal ACC
(dACC), area 24. The vmPFC contains a subregion, the
medial PFC (mPFC) that is limited to areas 10/32, and does
not include medial OFC, area 11 (Knutson et al, 2003).
Although some authors include the dACC in a general
category of mPFC, others distinguish the dACC from
subgenual medial areas (Averbeck and Seo, 2008; Botvinick
et al, 1999b; Glascher et al, 2009; Haber et al, 2006; Knutson
et al, 2003; Passingham et al, 2002; Petrides et al, 2002). For
a more detailed anatomical discussion of these cortical
regions, see Price and Drevets in this volume.

Reward Processing in the Human Prefrontal
Cortex

Initial metabolic PET and FMRI studies show that various
types of rewards can recruit prefrontal cortical activity. These
findings generally suggest that exposure to both primary
rewards (eg, pleasant tastes, sounds, and sights) and
secondary rewards (eg, monetary gains) increases activity in
regions of frontal cortex in general and the vmPFC in
particular (Aharon et al, 2001; Anderson et al, 2003; Blood
and Zatorre, 2001; Breiter et al, 1997; Elliott et al, 2000b;
Knutson et al, 2000; Kunig et al, 2000; Martin-Solch et al,
2001; O’Doherty et al, 2001; Rogers et al, 1999; Rolls et al,
2003; Small et al, 2001; Thut et al, 1997). Importantly, many of
these studies control for confounds (eg, perceptual salience,
arousal, motor demands), by contrasting neural responses to
rewarding stimuli against those punishing stimuli of similar
magnitude. Although all of these studies implicate the vmPFC
in reward processing, some also implicate activation in dACC
and dorsal prefrontal cortices (dPFC).
The region most often associated with reward in monkey

physiology studies is the OFC (Padoa-Schioppa and Assad,
2006; Roesch and Olson, 2004; Rolls, 2000; Tremblay and
Schultz, 2000; Wallis and Miller, 2003). Consistent with
these studies and human lesion findings (Bechara et al,
1994), several neuroimaging studies suggest that sensory
and abstract rewards can recruit the OFC. A meta-analysis
of these findings uncovered two trends (Kringelbach and
Rolls, 2004). First, sensory rewards (eg, juice) tend to
activate more posterior OFC regions, whereas more abstract
rewards (eg, money) tend to activate more anterior OFC
regions. Second, rewards tend to activate medial regions of
the OFC (eg, near the gyrus rectus), whereas punishments
tend instead to activate more lateral regions of the OFC.
Punishments, however, often inhibit ongoing motor re-
sponses, which also increases lateral OFC activation
(O’Doherty et al, 2003a). More recent evidence suggests
that activation in distinct but overlapping lateral OFC
regions responds to punishment (more caudal and lateral,
closer to the insula) vs motor inhibition (more rostrome-
dial) (Elliott et al, 2000a). Together, these findings implicate
the vmPFC in processing of diverse and abstract rewards
compared with lateral OFC regions.
The improved temporal resolution of event-related FMRI

(Buckner, 1998) allows tracking not only of where reward
related activation occurs, but also when it occurs. This
opens the possibility of separately examining neural
activation during reward anticipation and in response to
reward outcomes. For example, rewarding outcomes
signaled by sensory cues, including cued pleasant odors
(Gottfried et al, 2003) and attractive faces (Bray and
O’Doherty, 2007), activate vmPFC. However, a number of
studies using abstract rewards (ie, money), rather than
sensory ones to measure gain outcomes, found that
activation in the mPFC can be distinguished from the
larger vmPFC area (Kim et al, 2006; Knutson et al, 2003,
2005; Kuhnen and Knutson, 2005; Yacubian et al, 2006). As
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indicated above, this mPFC region occupies the middle
frontal gyrus of the medial wall anterior to the genu of the
corpus callosum (ie, at the confluence of Brodmann areas 10
and 32), but not the medial OFC or dACC. Specific
responses in the mPFC to gain outcomes have been
confirmed with human depth-electrode recordings in a
gambling task (Oya et al, 2005). Taken together, these
findings are consistent with the speculation that a subregion
of vmPFC, specifically the mPFC, may preferentially
respond to rewarding outcomes (Daw et al, 2006; Knutson
et al, 2003).
Regions of the mPFC also respond to contextual aspects

of reward during anticipation. For instance, in FMRI studies
of expected value, mPFC activation correlate not only with
the anticipated magnitude, but also with the anticipated
probability of rewards (Knutson et al, 2005) (Figure 2)
(Yacubian et al, 2006). mPFC activation may also weigh
benefits against costs when people consider risky invest-
ments in the context of financial risk taking (Knutson et al,
2005; Preuschoff et al, 2006) and might do so by integrating
input from the VS and insula (Bruguier et al, 2008). mPFC
activation further correlates not only with anticipated
magnitude of monetary gains, but also their immediacy in
the context of temporal discounting (Ballard and Knutson,
2009; Kable and Glimcher, 2007; McClure et al, 2004a).
Finally, mPFC activation correlates with the additional value
of a product’s price in the context of purchasing, consistent
with the economic notion of ‘consumer surplus’ (Knutson
et al, 2007; Plassmann et al, 2007). Interestingly, mPFC

activation clearly tracks value rather than number, as its
activation decreases in response to (undesirable) high
prices in the context of buying, but increases in response
to (desirable) high prices in the context of selling
(De Martino et al, 2009; Knutson et al, 2008). Together,
these findings suggest that mPFC activation may integrate
value across different stimulus dimensions or different
stimuli (Blair et al, 2006). This integrative account is
consistent with responsiveness to reward outcomes, as these
outcomes invoke a shift in the representation of reward
probability after magnitude has been established. Although
value integration can occur later, or even in the absence of
choice, it can also occur before choice (Glascher et al, 2009;
Knutson et al, 2007), thus carrying the potential to inform
upcoming decisions.
The dACC and dPFC also play important roles in

reward processing, though not in ways that translate
directly to valuation. The dACC is a unique part of frontal
cortex. It contains a representation of diverse frontal lobe
functions, including motivation, cognition, and motor
control. This diversity is consistent with widespread
connections with other affective, cognitive, and motor
cortical areas. Despite this complexity, the overall function
of the dACC seems to involve monitoring these functions
in potential conflict situations (Botvinick et al, 1999a;
Paus, 2001; Vogt et al, 2005; Walton et al, 2003). Conflict
monitoring should prove important when comparing
similarly valued options. In addition to the dACC and
vmPFC, the dPFC (particularly areas 9 and 46) are engaged
when working memory is required for monitoring incen-
tive-based behavioral responses. Both lesion and neuroima-
ging findings implicate the dPFC in working memory
(Fletcher and Henson, 2001), and this capacity should
prove most critical when multiple options must be held
in mind for evaluation, comparison, and selection. Thus,
the dACC and dPFC may work together in a complementary
manner to compare valued options, choose among
them, and channel that choice into a course of action
that promotes acquiring the most valuable option
(MacDonald et al, 2000; Ridderinkhof et al, 2004). Indeed,
this line of reasoning is consistent with the observation
that consideration of highly valued options elicits
increased dorsolateral prefrontal cortical activation in
purchasing scenarios (Knutson et al, 2007; Plassmann
et al, 2007). On the other hand, consideration of options
that conflict on different dimensions (eg, high preference,
but high price) increases dACC activation in investing
and purchasing scenarios (without necessarily predicting
choice) (Knutson et al, 2007; Kuhnen and Knutson,
2005).

VENTRAL STRIATUM

Organization of the VS

The concept of the VS was originally developed by Heimer
in 1978 in the classic paper in which he describes the
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Figure 2. Expected value of monetary rewards activates the ventral
cortico-basal ganglia circuit. Panels indicate activation significantly
correlated with expected value in the mPFC (anterior¼45), NAcc
(anterior¼ 12), and VTA (anterior¼"15). Although the midbrain and VS
are sensitive to anticipated reward magnitude, the MFPC is also sensitive
to anticipated reward probability (not shown here; adapted from Knutson
et al, 2005).
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relationship between the NAcc and the olfactory tubercle in
rats (Heimer, 1978). The link between NAcc activity and
reward had already been established as part of the self-
stimulation circuit originally described by Olds and Milner
(Olds and Milner, 1954). Since the identification of the VS,
our concept of the striatal region associated with reward has
evolved to include this extended region, expanding the
traditional boundary of the NAcc. This entire region has
been a focus for the study of reinforcement and the
transition between drug use for a reward and as a habit
(Bowman et al, 1996; Drevets et al, 2001; Jensen et al, 2003;
Kalivas et al, 2005; Lyons et al, 1996; Parkinson et al, 2000;
Schultz et al, 1992; Taha and Fields, 2006). In human and
nonhuman primates, the VS includes the NAcc and the
broad continuity between the caudate nucleus and the
putamen ventral to the rostral internal capsule, the olfactory
tubercle, and the rostrolateral portion of the anterior
perforated space adjacent to the lateral olfactory tract
(Haber and McFarland, 1999; Heimer et al, 1999).
Importantly, however, neither cytoarchitectonic nor histo-
chemistry distinctions mark a clear boundary between the
VS and the dorsal striatum, which poses a problem for
defining locations of activation in imaging and animal
studies. Perhaps, the best way, therefore, to define the VS is
by its afferent projections from cortical areas that mediate
different aspects of reward and emotional processing,
namely the vmPFC, OFC, dACC, and the medial temporal
lobe, including the amygdala. Using these projections as a
guide, the VS occupies over 20% of the striatum in
nonhuman primates (Haber et al, 2006). As a subcompo-
nent of the VS, the term NAcc is best described by a small
ventromedial sector in the rostral striatum that receives
input from specific cortical regions (see below).

Special features of the VS. Although the VS is similar to the
dorsal striatum in most respects, there are also some unique
features. Within the NAcc region of the VS, a subterritory,
called the shell, has a particularly important function in the
circuitry underlying goal-directed behaviors, behavioral sensi-
tization, and changes in affective states (Carlezon and Wise,
1996; Ito et al, 2004). Although several transmitter and receptor
distribution patterns distinguish the shell/core subterritories,
calbindin is the most consistent marker for the shell across
species (Alheid and Heimer, 1988; Ikemoto et al, 1995; Martin
et al, 1993; Meredith et al, 1996; Sato et al, 1993). The shell has
some unique connectivities that distinguish it from the rest of
the VS (indicated below). However, while animal studies have
distinguished the shell from the rest of the striatum, the spatial
resolution in imaging studies is not yet sufficient to isolate this
region in humans.
In addition to the shell compartment, several other

characteristics are unique to the VS. The dopamine
transporter (DAT) is relatively low in the VS compared to
the dorsal striatum. This pattern is consistent with the fact
that the dorsal tier dopamine neurons (which project to
the VS) express relatively low levels of mRNA for the DAT
compared to the ventral tier (which project to the dorsal

striatum) (Counihan and Penney, 1998; Haber et al, 1995b;
Harrington et al, 1996) (see section Amygdala). The VS has
numerous smaller and more densely packed neurons; the
dorsal striatum is more homogenous. The VS contains cell
islands, including the islands of Calleja, which are thought
to contain quiescent immature cells that remain in the adult
brain (Bayer, 1985; Chronister et al, 1981; Meyer et al,
1989). The VS also contains many pallidal cells and their
dendritic arbors that invade this ventral forebrain territory
(see section Ventral pallidum). Finally, and of particular
importance, is the fact that while both the dorsal and VS
receive input from the cortex, thalamus, and brainstem, the
VS alone receives a dense projection from the amygdala and
hippocampus (Friedman et al, 2002; Fudge et al, 2002;
Russchen et al, 1985).

Connections of the VS (Figure 3). Afferent projections to
the VS, like those to the dorsal striatum are derived from
three major sources: a massive, generally topographic gluta-
matergic input from cerebral cortex; a large glutamatergic
input from the thalamus; and a smaller, but critical input
from the brainstem, primarily from the midbrain dopami-
nergic cells. Although this section primarily focuses on the
connections of the VS, it gives some attention to the dorsal
striatum, especially the caudate nucleus, an area that is also
involved in reward-based learning (Cromwell and Schultz,
2003; Kennerley and Wallis, 2009; Watanabe and Hikosaka,
2005). This region receives input from the dPFC.

Cortical projections. Cortico-striatal projections form
dense, focal patches that can be visualized at low
magnification. These terminal projections are organized in
a functional topographic manner (Parent and Hazroti,
1995): the dorsolateral striatum receives cortical input
from sensory-motor areas; the central striatum receives
input from associative cortical areas; and the VS receives
input from limbic areas. Within each general functional
region (limbic, associative, and motor), terminals are also
topographically organized. Thus, inputs from the vmPFC,
OFC, and dACC terminate within subregions of the VS, and
the dPFC terminates primarily in the caudate nucleus
(Haber et al, 1995a; Selemon and Goldman-Rakic, 1985).
The focal projection field from the vmPFC is the most
limited. It is concentrated within the NAcc, including the
shell (Figures 4a and 5). The vmPFC also projects to the
medial wall of the caudate nucleus, adjacent to the ventricle.
The densest input from agranular insular cortex also
terminates in the NAcc and at the medial wall of the
caudate (Chikama et al, 1997). Less data is availa-
ble concerning the projections of area 10 to the VS,
particularly medial area 10. However, tracer injections into
dorsal and lateral area 10 project to the medial wall of the
rostral caudate (overlapping with inputs from the vmPFC)
(Ferry et al, 2000). Based on these data, one might assume
that the medial and ventral area 10 (an area included in
the mPFC in the imaging studies described above) would
terminate in the NAcc. Thus, the NAcc in primates receives
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convergent input from the olfactory and visceral-
associated insula, from the vmPFC, and most likely from
area 10.
The dorsal and lateral parts of the VS (the ventral caudate

nucleus and putamen) receive inputs from the OFC (Figures
4b and 5). These terminals also extend dorsally, along the
medial caudate nucleus, but lateral to those derived from
the vmPFC. The medial to lateral and rostral to caudal
topographic organization of the OFC terminal fields is
consistent with the positions of OFC regions in the PFC.
That is, inputs from lateral parts of the OFC (ie, area 12)
terminate lateral to those derived from more medial areas
(area 13). For the most part, fibers from the OFC terminate
lateral to the NAcc. Finally, projections from the dACC
extend from the rostral pole of the striatum to the anterior
commissure and are located in the rostral, central caudate
nucleus and central putamen (Figures 4c and 5). These
terminals primarily avoid the NAcc, terminating somewhat
lateral to those from the OFC. Taken together, the vmPFC,
OFC, and dACC project primarily to the rostral striatum,
with the vmPFC projecting most medially (to the NAcc) and
the dACC most laterally (Haber et al, 2006), with the OFC
terminal fields positioned between them. In contrast, the
dPFC projects throughout the rostrocaudal extent of the
striatum, terminating primarily in the head of the caudate
and in part of the rostral putamen (Figures 4d and 5),

but continuing into the caudal caudate nucleus. For the
anatomical details concerning prefrontal corticostriatal
projections, see Haber et al (1995a) and Selemon and
Goldman-Rakic (1985).

Intergration between cortico-striatal projections. Although
the topographic organization of cortico-striatal projections
is well documented, there is increasing evidence for regions
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Figure 4. Schematic chartings of labeled fibers after injections into
different prefrontal regions. (a) vmPFC injection site (area 25), (b) OFC
injection site (area 11), (c) dACC, (d) dPFC injection site (area 9/46). The
focal projection fields are indicated in large solid black shapes. Diffuse
projection fibers are found outside of the focal projection fields (as
illustrated in the photomicrograph in (d)).
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Figure 3. Schematic illustrating the connections of the VS. Blue
arrows¼ inputs; gray arrows¼outputs; Amy¼ amygdala; BNST¼bed
nucleus stria terminalis; dACC¼dorsal anterior cingulate cortex;
Hipp¼hippocampus; hypo¼hypothalamus; MD¼medio-dorsal nucleus
of the thalamus; OFC¼ orbital frontal cortex; PPT¼pedunculopontine
nucleus; S¼ shell; SNc¼ substantia nigra, pars compacta; STN¼
subthalamic nucleus; Thal¼ thalamus; VP¼ ventral pallidum; VS¼
ventral striatum; VTA¼ ventral tegmental area; vmPFC¼ ventral medial
prefrontal cortex.

Reward circuit: linking primate anatomy and human imaging
SN Haber and B Knutson

...............................................................................................................................................................

6

REVIEW

..............................................................................................................................................

Neuropsychopharmacology REVIEWS



of interface between terminals from different cortical areas,
suggesting functional integration. For example, early studies
showed that cortico-striatal terminals from sensory and
motor cortex converge within the striatum (Flaherty and
Graybiel, 1993). Here, axons from each area synapse onto
single fast spiking GABAergic interneurons. Interestingly,
these interneurons are more responsive to cortical input
than the medium spiny cells (Charpier et al, 1999;
Mallet et al, 2005; Ramanathan et al, 2002; Takada et al,
1998). This suggests a potentially critical role for inter-
neurons to integrate information from different cortical
areas before passing that information onto the medium
spiny projection cells.
Recent studies reveal that projections from the OFC,

vmPFC, and dACC also converge in specific regions within
the VS. Thus, focal terminal fields from the vmPFC, OFC,
and dACC show a complex interweaving and convergence,
providing an anatomical substrate for modulation between
these circuits (Haber et al, 2006) (Figure 5a and b). For
example, in certain regions, the vmPFC projection field
converges with that from the OFC. Moreover, projections
from the dACC and OFC regions do not occupy completely
separate territories in any part of the striatum, but converge
most extensively at rostral levels. In addition, projections

from dACC and OFC also converge with inputs from the
dPFC, particularly at the most rostral striatal levels. A similar
pattern of both topographic and integrative connectivity
of cortico-striatal projections has been demonstrated in
the human brain using diffusion tensor imaging (DTI).
These data show a similar overall organization of the
different cortical regions and the striatum, providing a
strong correlation between monkey anatomical-tracing
studies and human DTI studies (Draganski et al, 2008).
Taken together, a coordinated activation of dPFC, dACC,
and/or OFC terminals in these subregions could produce a
unique combinatorial activation at the specific sites for
channeling reward-based incentive drive in selecting
between different valued options. Functional imaging
studies do not, at this time, have the resolution to
specifically detect these convergence zones. Nonetheless,
the fact that these areas exist may help explain complex
activation patterns following different reward-related para-
digms described below.
In addition to focal projection fields described above,

the cortex also has a diffuse projection system to the stria-
tum. Based on intracellular tracer injections into individual
neurons, cortico-striatal axons have been shown to travel
some distance (Parent and Parent, 2006; Zheng and Wilson,

DLPFC DPFC
dACC

dACC

OFC

OFC

vmPFC

vmPFC

DPFC

dACC

OFC

vmPFC

Figure 5. Schematics showing convergence of cortical projections from different reward-related regions and dorsal prefrontal areas. (a) Medio-frontal
view of a 3D reconstruction illustrating convergence of inputs from PFC inputs. (b) 2D section through the striatum illustrating regions of convergence. (c)
Distribution of diffuse fibers from different PFC regions. (d) Diffuse fibers are superimposed onto the focal projections, showing the interface between
diffuse and focal projections. ACC¼dorsal anterior cingulate cortex; dPFC¼dorsal lateral prefrontal cortex; OFC¼ orbital prefrontal cortex;
vmPFC¼ ventral medial prefrontal cortex. red¼ inputs from vmPFC; dark orange¼ inputs from OFC; light orange¼ inputs from dACC; yellow¼ inputs
from dPFC.
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2002), invading striatal regions that receive their focal
input from other prefrontal cortex areas (Figure 4).
Collectively, the diffuse projections from each cortical area
consist of clusters of terminal fibers that are widely
distributed throughout the striatum, not only expanding
the borders of the focal terminal fields, but also extending
throughout other regions of the striatum (Haber et al,
2006). For example, the diffuse projection from the vmPFC
extends lateral and dorsal to its focal projection field.
The diffuse OFC fibers extend deep into the dorsal caudate,
central caudate, and putamen, with extensive convergence
with both focal and diffuse projections from the dACC
and the dPFC (Figure 4b). Finally, clusters of dPFC
fibers terminate throughout the rostral striatum, including
the VS. Thus, the diffuse fiber system constitutes a large
population of axons invading each focal projection field.
Under certain conditions, if collectively activated, they may
provide the recruitment strength necessary to modulate
striatal activity by broadly disseminating cortical infor-
mation. This relatively low level of modulation may pro-
vide an anatomical substrate for cross-encoding informa-
tion to influence the future firing of medium spiny neurons
(Kasanetz et al, 2008), playing an important role in
the temporal activation of different striatal regions dur-
ing learning. Taken together, the fronto-striatal network
constitutes a dual system comprising both topographi-
cally organized terminal fields and subregions that con-
tain convergent pathways derived from functionally dis-
crete cortical areas (Draganski et al, 2008; Haber et al,
2006).

The amygdala and hippocampal projections to the VS.
Overall, the basal nucleus and the magnocellular division of
the accessory basal nucleus are the main source of inputs to
the VS (Fudge et al, 2002; Russchen et al, 1985). The lateral
nucleus has a relatively minor input to the VS. The
amygdala has few inputs to the dorsal striatum in primates.
Although the basal and accessory basal nuclei innervate
both the NAcc and the larger regions of the VS striatum, the
densest projection appears to be within the NAcc. The shell
of the NAcc, however, is set apart from the rest of the VS by
a specific set of connections derived from the medial part of
the central nucleus (CeM), periamygdaloid cortex, and the
medial nucleus of the amygdala. In contrast to the
amygdala, the hippocampal formation projects to a more
limited region of the VS, primarily derived not only from
the subiculum, but also from the parasubiculum and part of
CA1 (Friedman et al, 2002). The main terminal field is
located in the most medial and ventral parts of the VS and is
essentially confined to the NAcc shell. Here, these inputs
overlap with those from the amygdala and from the vmPFC.
Taken together, the existence of convergent fibers from
cortex within the VS, along with hippocampal and
amygdalo-striatal projections, places the VS as a key entry
port for processing emotional and motivational information
that, in turn, drives basal ganglia action output (see Sesack
and Grace in this volume). Within the VS, the NAcc receives

the densest innervation from the amygdala, hippocampus,
and the vmPFC.

Thalamic projections to the VS. The midline and medial
intralaminar thalamic nuclei project to medial prefrontal
areas, the amygdala, and hippocampus. As such, they are
referred to as the limbic-related thalamic nuclear groups
(Akert and Hartmann-von Monakow, 1980; Yakovlev et al,
1960). These nuclei also project to the VS (Berendse and
Groenewegen, 1990; Giménez-Amaya et al, 1995). As seen
with the cortical projections, the NAcc receives the most
limited input, which is derived almost exclusively from the
midline nuclei. The medial wall of the caudate nucleus
receives projections, not only from the midline and the
medial intralaminar nuclei, but also from the central
superior lateral nucleus. In contrast, the lateral part of
the VS receives a limited projection from the midline
thalamic nuclei. Its input is mainly from the intralimi-
nar nuclei (the parafascicular nucleus and the central
superior lateral nucleus). In addition to the midline and
intralaminar thalamo-striatal projections, in primates, there
is a large input from the ‘specific’ thalamic-basal ganglia
relay nuclei, the MD, ventral anterior, and ventral lateral
nuclei (McFarland and Haber, 2001). The VS receives this
input from the medial MD nucleus and a limited projection
from the magnocellular subdivision of the ventral anterior
nucleus.

Efferent projections from the VS. The VS, like those to the
dorsal striatum, projects primarily to the pallidum and
midbrain (Haber et al, 1990a; Hedreen and DeLong, 1991;
Parent et al, 1997) (Figure 3). Specifically, fibers terminate
topographically in the subcommissural VP, the rostral pole
of the external segment, and the rostromedial portion of the
internal segment (see section Ventral pallidum). The more
central and caudal portions of the globus pallidus do not
receive this input. Fibers from the VS projecting to the
midbrain are not as confined to as specific a region as those
projecting to the pallidum. Although the densest terminal
fields are in the medial portion (VTA and medial SN),
numerous fibers also extend laterally to innervate the
entire dorsal tier of the midbrain dopaminergic neurons
(see section Midbrain Dopamine Neurons for a more
detailed discussion on the SN). Projections from the medial
part of the VS continue more caudally, terminating in the
pedunculopontine nucleus. In addition to these projec-
tions, the VS also terminates in nonbasal ganglia regions
(Haber et al, 1990a; Zahm and Heimer, 1993). The shell
sends fibers caudally and medially into the lateral
hypothalamus and, to some extent, in the periaqueductal
gray. Axons from the medial VS (including the shell) also
terminate in the bed nucleus of the stria terminalis,
indicating a direct striatal influence on the extended
amygdala (see Davis and Grillon in this volume). Finally,
axons from ventral regions of the VS terminate in the
nucleus basalis. This connection has been demonstrated at
the light microscopic level in monkeys and verified at the
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EM level in rodents (Beach et al, 1987; Chang et al, 1987;
Haber, 1987; Martinez-Murillo et al, 1988; Zaborszky and
Cullinan, 1992). A projection to the nucleus basalis in the
basal forebrain is of particular interest, since this is the
main source of cholinergic fibers to the cerebral cortex and
the amygdala. These data indicate that the VS may influence
cortex directly, without going through the pallidal and
thalamic circuit. This may provide a route through which
reward circuit has access to a wider region of frontal cortex
than via the more confined ventral cortico-basal ganglia
circuit.

Reward Processing in the Human VS

To localize striatal activation, researchers have devised
structural schemes that distinguish ventral from dorsal
striatum in the case of PET or NAcc from caudate and
putamen in the case of FMRI (Breiter et al, 1997; Drevets
et al, 2001; Mawlawi et al, 2001) (Figure 6). These schemes
are based on anatomical landmarks that define more
restricted areas than the patterns of connectivity described
above. For instance, based on the primate anatomy
reviewed above, inputs to the region labeled as VS (upper
panel) likely come from the vmPFC, amygdala, and the
hippocampus, and some, but not all, from OFC regions
(particularly the more lateral OFC areas). The region labeled
as the NAcc (lower panel) is smaller and likely receives
a more limited subset of inputs from the vmPFC and
amygdala. However, it receives most of its input from
the mPFC and hippocampus. Connectivity studies (as
indicated above) suggest that the VS encompasses a larger
region, which includes the medial caudate nucleus and
rostroventral putamen along with the NAcc. Thus, here
the term VS refers the NAcc, the ventral medial caudate,
and the rostroventral putamen. Mention of any of
these subcomponents alone implies a more specific focus
on activation in that region, but does not exclude

the possibility of activation in other ventral striatal
subcomponents.
Both metabolic and ligand-based PET studies have shown

recruitment of striatal regions during reward processing.
For instance, metabolic PET studies suggest that exposure
to both primary (ie, pleasant tastes and sounds) and
secondary rewards (ie, monetary gambles) can increase
striatal activity (Blood and Zatorre, 2001; Kunig et al, 2000;
Martin-Solch et al, 2001; Small et al, 2001). Similarly, initial
FMRI studies of reward processing have also shown that
both primary (ie, pleasant tastes, smells, sights, sounds, and
touch) and secondary (ie, monetary gain) rewards could
increase striatal activation, consistent with the notion that
striatal activation does not depend on sensory modality
(Aharon et al, 2001; Anderson et al, 2003; Delgado et al,
2000; Elliott et al, 2000b; Gottfried et al, 2002; Knutson et al,
2000; Menon and Levitin, 2005; Mobbs et al, 2003;
O’Doherty et al, 2001; Rolls et al, 2003). As with studies
of the frontal cortex, many of these studies also included
unpleasant and neutral stimuli, thus controlling for arousal
and other confounds (eg, perceptual and behavioral
demands). Owing to either reduced temporal resolution or
temporally nonspecific questions, however, these studies
did not establish when neural activation occurred during
reward processing.
Although it has similar spatial resolution and less

temporal resolution than metabolic PET (ie, on the order
of hours), ligand-based PET confers a unique advantage of
supporting inference about dopamine release in the
striatum. Relative to placebo injection, amphetamine
injection robustly increases striatal dopamine (inferred
from radioactive ligand displacement), and these increases
can correlate with positive and arousing affective experience
(eg, feelings of ‘euphoria’) (Drevets et al, 2001; Leyton et al,
2002; Martinez et al, 2003; Volkow et al, 1999). Consump-
tion of alcohol and cocaine also increase dopamine release
in the VS (Boileau et al, 2003; Cox et al, 2009). Secondary
rewards such as playing videogame and gambling may also

R A = 16

R A = 16

A = 8

Ventral

Dorsal

Caudate
Putamen

NAcc

A = 8

A = 0

A = 0

Figure 6. Anatomical schemes for parcellating the striatum based on structural landmarks. Top: Ventral and dorsal striatum (adapted from Mawlawi
et al, 2001); Bottom: nucleus NAcc, caudate, and putamen (adapted from Breiter et al, 2001).
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increase dopamine release in parts of the striatum, albeit
less consistently and robustly (Koepp et al, 1998; Pappata
et al, 2002; Zald et al, 2004).
Event-related FMRI enabled researchers to track changes

in striatal activity during different phases of reward
processing. This increased temporal specificity coincided
with an increase in the number of FMRI studies document-
ing ventral striatal activation. For instance, in the case of
primary rewards, anticipation of a pleasant (but not an
unpleasant) taste elicits ventral striatal and OFC activation,
whereas the pleasant taste itself elicits only OFC activation
(O’Doherty et al, (2002). In the case of secondary rewards,
anticipation of uncertain monetary rewards (but not
punishments) increases NAcc activation, whereas obtaining
(vs not obtaining) rewards increased MPFC activation and
kept putamen activation from decreasing (Breiter et al,
2001; Knutson et al, 2001b, 2003).
Anticipated reward can vary along many dimensions,

including magnitude, probability, uncertainty, delay, and
effort. NAcc activation in these and other imaging studies
clearly increases proportional to the magnitude of antici-
pated monetary reward (Knutson et al, 2001a; Yacubian
et al, 2006) (Figure 2). Although medial caudate and MD
thalamic activation also increases proportional to the
magnitude of anticipated reward, they additionally in-
creased proportional to the magnitude of anticipated
punishment. A recent meta-analysis of over 20 similar
FMRI studies has confirmed preferential activation of the
NAcc during anticipation of monetary gains, but not during
anticipation of losses (Knutson and Greer, 2008). Depth-
electrode recordings of epileptic patients gambling have
also shown that NAcc activity increases proportional to the
magnitude of anticipated reward (Cohen et al, 2009a). This
proportional response to anticipated reward magnitude
provided an anchor for exploring the impact of varying
other attributes of anticipated reward. An increasing
number of subsequent studies have focused on
whether other aspects of anticipated reward besides
magnitude might increase NAcc activation (eg, probability,
uncertainty, delay and effort).
Probability refers to the likelihood that an anticipated

reward will occur, and individuals usually value rewards
with high probabilities. Probability can be related to
uncertainty, as moderate ranges of probability can imply
maximum uncertainty about an outcome (eg, 50% prob-
ability is least informative about whether a given outcome
will occur or not occur). During reward anticipation, ventral
striatal activation has been reported to track uncertainty
in some studies, but probability in other studies. For
instance, some studies find that VS activation peaks at
intermediate probability levels, consistent with maximal
uncertainty (Cooper and Knutson, 2008; Dreher et al, 2006;
Knutson et al, 2005; Preuschoff et al, 2006). Other studies,
however, have reported linear effects of anticipated reward
probability on VS activation (Abler et al, 2006; Hsu et al,
2009; Tobler et al, 2008; Yacubian et al, 2006). A large
subsequent study investigated the possibility that different

subcomponents within the VS showed greater sensitivity to
anticipated reward magnitude vs probability (Yacubian
et al, 2007). Although peak responsiveness to magnitude
occupied the NAcc and medial caudate, peak responsive-
ness to probability occupied the rostroventral putamen,
suggesting differential sensitivity to anticipated reward
magnitude vs probability in different VS subcomponents
(see also Preuschoff et al, 2006; Tobler et al, 2007).
Delay refers to the amount of time until an anticipated

reward can be obtained, and individuals usually devalue or
‘discount’ rewards with long delays. Initial FMRI studies
found evidence that VS activation increased when immedi-
ate vs delayed rewards were considered and decreased with
the delay of future rewards (Kable and Glimcher, 2007;
McClure et al, 2007; McClure et al, 2004a). A subsequent
study separately examined VS responses to information
about the magnitude and delay of future rewards and found
that while NAcc activation alone increased with the
magnitude of a future rewards, activation in frontal regions
(eg, mPFC and dPFC) instead showed sensitivity to the
delay of future rewards (Ballard and Knutson, 2009).
Effort refers to how much an individual must work to get

an anticipated reward, and individuals usually devalue
rewards that require substantial effort. Investigators have
also examined the influence of anticipated effort on VS
activation. They found that while anticipated reward
magnitude increased NAcc and medial caudate activation,
anticipated reward effort decreased activation in a partially
overlapping region of the rostroventral putamen (Croxson
et al, 2009) (see also Botvinick et al, 2009). Together, these
studies raise the possibility that while anticipated reward
magnitude consistently increases NAcc and medial caudate
activation, other aspects of anticipated value (eg, antici-
pated probability and effort) may elicit more pronounced
activation in the rostroventral putamen subcomponent of
the VS.
Within the VS, overlap between these regions may

combine distinct aspects of anticipated reward. The findings
also raise the possibility of a temporal flow of information
through the VS to the dorsal striatum. If the NAcc is
recruited early during reward prediction, it may respond to
relatively basic information about reward magnitude,
whereas other considerations may influence reward
processing as activation moves dorsolaterally through
the striatum, perhaps as a function of integration of
information from prefrontal circuits (Figure 7). Such a
dynamic flow of information might occur either through
cortico-striatal connections as described in the earlier
section or through striato-nigral-striatal connections
(described below) or both.
Other research has focused on neural responses to reward

outcomes (ie, when potential, but uncertain rewards are
obtained or lost). Several studies have associated activation
of the medial caudate portion of the VS with rewarding (vs
nonrewarding) outcomes (Delgado et al, 2003, 2000). The
medial caudate likely receives inputs from a combination of
vmPFC, OFC, dACC, and possibly dPFC. This region
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responds to relative as well as absolute reward outcomes (ie,
when an individual compares what she received to what she
might have, but did not receive) (Kuhnen and Knutson,
2005; Lohrenz et al, 2007; Nieuwenhuis et al, 2005). These

findings share similarities to an earlier literature suggesting
that ‘cognitive’ feedback can elicit caudate activation (Elliott
et al, 1997; Poldrack et al, 1999). Moreover, it establishes
that rewards can enhance this activation (Tricomi et al,
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Figure 7. Propagation of gain prediction error from rostral to dorsal striatal regions over time. Lines depict neural responses to gain ( + $5.00; black) vs
nongain ( + $0.00; gray) outcomes during trials in which subjects had earlier anticipated winning an uncertain large gain (ie, $5.00 with 66% chance of
hitting) in the monetary incentive delay task (Knutson et al, 2003). The white band indicates the onset of gain vs nongain feedback (lagged by 4 s to
account for the hemodynamic delay). Stars indicate a significant difference between activation for gain vs nongain feedback (po0.01). Note that gain
prediction error differences appear in the mPFC and NAcc immediately, but not in the dorsomedial caudate until 2 s later, and not in the putamen until 4 s
later (n¼ 40 subjects, unpublished data).

Reward circuit: linking primate anatomy and human imaging
SN Haber and B Knutson
...............................................................................................................................................................

11

REVIEW

..............................................................................................................................................

Neuropsychopharmacology REVIEWS



2006). Outcome-elicited medial caudate activation may
promote choice of the next best action, as it is most
prominent when reward feedback informs subsequent
actions (O’Doherty et al, 2004) and decreases as action
requirements become more predictable (Delgado et al,
2005). Taken together, the anatomy and imaging data
supports the idea that the medial caudate may integrate
information from reward and cognitive cortical areas in the
development of strategic action planning.
Reward outcomes can also influence VS activation.

Specifically, several studies indicate that omission (vs
delivery) of expected rewards can decrease VS activation
(Berns et al, 2001; Knutson et al, 2001b; Ramnani et al,
2004). Given that reward anticipation can increase, and
nonreward outcomes can decrease, VS activation, theorists
have proposed that VS activity tracks a reward prediction
error (or the difference between expected and obtained
rewards) (McClure et al, 2007; Montague et al, 1996; Schultz
et al, 1997). Indeed, computational modeling of brain
activity during reward learning indicates that a reward
prediction error term correlates with activity in the
rostroventral putamen (McClure et al, 2003; O’Doherty
et al, 2003b). As the NAcc and medial caudate subcompo-
nents robustly activate during reward anticipation, and the
rostroventral putamen most reliably deactivates in response
to nonreward delivery, it remains to be established whether
common or distinct subcomponents of the VS respond to
both events. One meta-analysis of monetary incentive delay
studies suggests that the NAcc and medial caudate may
respond more robustly during reward anticipation, but the
rostroventral putamen in response to reward outcomes.
However, these subcomponents may prove more difficult to
dissociate in dynamic studies that involve learning. If
different phases of reward-processing recruit distinct VS
subcomponents, further enhancements in the spatial and
temporal resolution of FMRI may help to test these
hypotheses and yield new insights.

AMYGDALA

The amygdala is a prominent limbic structure that plays a
key role in emotional coding of environmental stimuli. It
provides contextual information used for adjusting motiva-
tional level. The amygdala has an important role in reward
processing, in part through the critical interactions between
it and VS for stimulus-reward associations (Baxter and
Murray, 2002; Cador et al, 1989; Everitt et al, 1989, 1999;
Murray, 2007; Ramirez and Savage, 2007). As indicated
above, those connections terminate most densely in the
NAcc, but extend throughout much of the VS. However,
relative to VS activation, amygdalar activation appears less
frequently in neuroimaging studies of reward. Although the
amygdala has been prominently implicated in fear learning
in animal studies (LeDoux, 2000), other animal studies have
also implicated the amygdala in reward processingFparti-
cularly when previously rewarding stimuli are devalued

(Baxter and Murray, 2002). Metabolic PET studies
have reported amygdalar activation in contexts involving
potential rewards (particularly related to drug craving),
but overall have reported more reliable amygdalar activity
in contexts involving potential punishment (see Zald, 2003
for a review).
FMRI studies, too, have reported amygdalar activation in

the context of potential reward (McClure et al, 2004b).
Controlling for arousal, however, direct comparison of
amygdalar responses to rewarding vs punishing stimuli
often reveals no significant differences, leading researchers
to infer that the amygdalar signal in FMRI responds more to
stimulus arousal than value (ie, positive or negative)
(Anderson et al, 2003; Small et al, 2003). This inference is
consistent with the commonly observed rapid habituation
of amygdalar activation to emotional stimuli in FMRI
studies (Breiter et al, 1996), which stands in contrast to the
relative constancy of VS activation to reward cues over time.
For example, one study illustrated temporal dynamics of
amygdalar signal by tracking both amygdalar and NAcc
activation over time as people learned to associate cues with
rewarding or punishing odors (Gottfried et al, 2003).
Although amygdalar responses to the rewarding cue
decreased over time, NAcc responses to the rewarding cue
increased over time. Despite suggesting a less direct
function than the VS in reward processing, in line with
animal findings, FMRI studies have documented that
amygdalar activation decreases with reward devaluation
(Gottfried et al, 2003).

VENTRAL PALLIDUM (Figure 8)

The VP is an important component of the reward circuit in
that cells in this forebrain region respond specifically
during the learning and performance of reward-incentive
behaviors. It, like the VS, is an area of focus in the study of
addictive behaviors (Mitrovic and Napier, 2002; Smith and
Berridge, 2007; Tindell et al, 2006). The term VP was first
used to describe, in rats, the forebrain region below the
anterior commissure, extending into the anterior perforated
space that contained pallidal-like cells. This area was
included as part of the pallidum based both on histological
criteria and the fact that it received its input from the VS
(Heimer, 1978). Pallidal neurons have a distinct morphol-
ogy, which is nicely outlined using immunohistochemistry
for the peptides, enkephalin, and substance P. Staining for
these peptides was particularly useful for determining the
boundaries of the VP (DiFiglia et al, 1982; Fox et al, 1974;
Haber and Nauta, 1983; Haber and Watson, 1985; Mai et al,
1986; Reiner et al, 1999). Based on these staining patterns
and its input from the VS, the VP is now considered to
encompass not only the subcommissural regions, but
also the rostral pole of the external segment and the
medial rostral internal segment of the globus pallidus.
The VP also reaches rostrally to invade the rostral and
ventral portions of the VS. In the human brain, the VP
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extends far into the anterior perforated space, where the
structure is broken up into an interconnected lacework of
pallidal areas, interdigitating with islands of Calleja (Heimer
and Alheid, 1991). The identification of the VS and VP
simplified the structural analysis of ventral forebrain. It
demonstrated that a large part of the area referred to as
‘substantia innominata’ is actually an extension of the
reward-related striatopallidal complex (Alheid and Heimer,
1988). In addition to receiving VS input, the VP also
receives a glutamatergic input from the subthalamic nucleus
(STN) and a dopaminergic input from the midbrain
(Klitenick et al, 1992; Turner et al, 2001) (Figure 8).
The VP projects topographically to the STN and adjacent

hypothalamus (Figure 8). Axons also continue to the
midbrain, terminating medially in the substantia nigra pars
compacta (SNc), pars reticulata (SNr), and VTA (Haber
et al, 1993, 1990b; Parent et al, 1997). These fibers are less
topographically organized compared with those that project
to the STN. Here, terminals from the VP interface with those
from other basal ganglia circuits (Bevan et al, 1996). Fibers
continue caudally to innervate the pedunculopontine
nucleus. Cells of the VP that receive substance P striatal
input project to the MD thalamic nucleus (Haber et al, 1993;
Parent et al, 1999; Sidibe et al, 1997). The VP also projects
to both the internal and external segments of the dorsal
pallidum. This is a unique projection, in that the dorsal
pallidum does not seem to project ventrally. Parts of the VP
(along with the dorsal pallidum) project to the LHb, a

structure now considered to be part of the reward circuit
(Matsumoto and Hikosaka, 2007; Morissette and Boye,
2008; Ullsperger and von Cramon, 2003); Haber et al, 1993
#554; Parent, 1981 #12010 (see section below for a
discussion of the habenular nucleus). Finally, part of the
VP (as with the external segment of the pallidum) also
projects to the striatum (Spooren et al, 1996). This pallido-
striatal pathway is extensive and more widespread than
reciprocal striatopallidal projection. In summary, the
complexity of the VP circuitry coupled with its central
position in the reward circuit indicates that this structure
is likely to be activated during imaging studies. Many
neuroimaging studies that document ventral striatal
activation also document overlapping ventral pallidal
activation. However, these methods lack sufficient
spatial resolution to distinguish the VP from the VS.
Therefore, these imaging studies are not reviewed separa-
tely here.

MIDBRAIN DOPAMINE NEURONS

Organization of the Dopamine Neurons

The central function of the dopamine neurons in the reward
circuit is now well established (Schultz, 2002; Wise, 2002).
Behavioral and pharmacological studies of dopamine path-
ways have lead to the association of the mesolimbic pathway
with reward processing and nigro-striatal pathway with
motor activity. However, more recently both of these
projections have been associated with reward (Schultz,
2002). We first review the organization of the midbrain
dopamine cells, and then turn to a discussion of their
projections and associated functions.

Dopamine cell groups. The midbrain dopamine neurons
are classically divided into the SNc, the VTA, and the
retrorubral cell groups (Hokfelt et al, 1984). In human and
nonhuman primates, the SNc is further divided into three
groups: a dorsal group (a or pars dorsalis), a densocellular
region (the ! group), and the cell columns (the g group)
(Francois et al, 1985; Haber et al, 1995b; Halliday and Tork,
1986; Olszewski and Baxter, 1982; Poirier et al, 1983). The
dorsal group is composed of loosely arranged cells,
extending dorsolaterally circumventing the ventral and
lateral superior cerebellar peduncle and the red nucleus.
These neurons, which form a continuous band with the
VTA, are oriented horizontally and do not extend into the
ventral parts of the SNc or into the SNr. Calbindin, a
calcium binding protein, is an important phenotypic
marker for both the VTA and the dorsal SNc and illustrates
the continuity of these two cell groups (Haber et al, 1995b;
Lavoie and Parent, 1991; McRitchie and Halliday, 1995). In
contrast, the dendritic arbors of the ventral cell groups are
oriented ventrally and extend deep into the SNr. The
interweaving of dopamine cells and dendrites in the SNr is
particularly prominent in human and nonhuman primates.
These ventral cell groups are calbindin negative, but have
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LHb 

DP
Pu

Cd

Thal (MD)

VS

VP

PPTVTA/SN

Figure 8. Schematic illustrating the connections of the VP. Blue
arrows¼ inputs; gray arrows¼outputs; DP¼dorsal pallidum; hy-
po¼ hypothalamus; LHb¼ lateral habenula; MD¼medio-dorsal nucleus
of the thalamus; PPT¼pedunculopontine nucleus; SN¼ substantia
nigra; STN¼ subthalamic nucleus; Thal¼ thalamus; VP¼ ventral palli-
dum; VTA¼ ventral tegmental area.
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high expression levels for DAT and for the D2 receptor
mRNAs (Ciliax et al, 1995; Counihan and Penney, 1998;
Haber et al, 1995b; Hersch et al, 1997). Based on these and
other characteristics, the midbrain dopamine neurons are
divided into two tiers: a dorsal tier (the dorsal SNc and the
contiguous VTA) that is calbindin-positive, has relatively
low expression levels for DAT and the D2R mRNAs, and is
selectively spared from neurodegeneration; and a ventral
tier (the densocellular region and the cell columns) that is
calbindin-negative, has relatively high levels of neuromela-
nin and expression of DAT and the D2 receptor mRNA, and
is selectively vulnerable to neurodegeneration (Burns et al,
1983; German et al, 1992; Haber et al, 1995b; Parent and
Lavoie, 1993) (Figure 9a). Connection of the dopamine
neurons have been extensively studied for several species.
Below, we briefly review those pathways, focusing on
primate studies.

Afferent projections. Input to the midbrain dopamine
neurons comes primarily from the striatum, from both the
external segment of the globus pallidus and the VP, and
from the brainstem (Figure 9b). In addition, there are

projections to the dorsal tier from the bed nucleus of the
stria terminalis, from the sublenticular substantia innomi-
nata, and the extended amygdala (the bed nucleus of the
stria terminalis and the central amygdala nucleus). The
striatonigral projection is a massive projection to the
midbrain dopamine cells and terminates in both the VTA/
SNc and the SNr. There is medial/lateral topography and
inverse ventral/dorsal topography to these projections, such
that the dorsal striatonigral inputs are concentrated in the
ventral midbrain and the ventral striatal projects to the dorsal
midbrain. In particular, the ventral striatum terminates in
the dorsal tier, the dorsal part of the ventral tier, and in the
medial and dorsal SNr (Haber et al, 2000; Hedreen and
DeLong, 1991; Lynd-Balta and Haber, 1994a; Szabo, 1979).
Projections from the pallidum follow a similar inverse
dorsal/ventral organization as the striatonigral pro-
jection. Thus, the VP projects dorsally, primarily to the dorsal
tier and dorsal SNc (Haber et al, 1993; Parent et al, 1984).
Descending projections from the extended amgydala also

terminate in a wide medio-lateral region, but are limited
primarily to the dorsal tier cells (Fudge and Haber, 2000;
Fudge and Haber, 2001). The pedunculopontine nucleus
sends a major glutamatergic input to the dopaminergic cells
bodies (Lavoie and Parent, 1994a) and there is a seroto-
nergic innervation from the dorsal raphe nucleus (Corvaja
et al, 1993; Gervais and Rouillard, 2000; Mori et al, 1987).
Other brainstem inputs to the dopamine neurons include
those from the superior colliculus (May et al, 2009). This
input raises the interesting possibility that dopamine cells
receive a direct sensory projection. The collicular input has
been suggested to be responsible for the short latency,
burst-firing activity of the dopamine cells in response to a
salient or rewarding stimuli (Dommett et al, 2005). Finally,
in primates, there is a small and relatively limited projection
from the PFC to the midbrain DA neurons in primates.
These fibers terminate in both the VTA and SNc (Frankle
et al, 2006).

Efferent projections. The midbrain dopamine neurons
project massively to the striatum (Hedreen and DeLong,
1991; Lynd-Balta and Haber, 1994b; Selemon and Goldman-
Rakic, 1990; Szabo, 1979) (Figure 9b). As with the
descending striatonigral pathway, there is a medio-lateral
and an inverse dorsoventral topography arrangement to the
projection. Thus, the ventral SNc neurons project to the
dorsal striatum and the dorsal tier dopamine neurons
project to the VS. The shell region of the NAcc receives the
most limited midbrain input, primarily derived from the
medial VTA (Lynd-Balta and Haber, 1994c). The rest of the
VS receives input from the dorsal tier and from the medial
and dorsal part SNc. In contrast to the VS, the central
striatal area (the region innervated by the dPFC) receives
input from a wide region of the SNc. The dorsolateral
(motor-related) striatum receives the largest midbrain
projection from cells throughout the ventral tier and the
VS receives the most limited dopamine cell input. Thus, in
addition to an inverse topography, there is also a

Ventral tier
Dorsal tier

SNr

SNcVTA

VPVS

VTA/SNc

Prefrontal Cortex

Amy

Hipp

PPT
BNST
CeA

Figure 9. Schematic illustrating the organization (a) and connections (b)
of the midbrain dopamine cells. Red cells¼ connections with VS regions;
yellow cells¼ connections with dorsal caudate nucleus; blue
cells¼ connections with motor control striatal areas. BNST¼bed nucleus
stria terminalis; CeA¼ central amygdala nucleus; Amy¼ amygdala;
Hipp¼hippocampus; PPT¼Pedunculopontine nucleus; SNc¼ substan-
tia nigra, pars compacta; VP¼ ventral pallidum; VTA¼ ventral tegmental
area.
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differential ratio of dopamine projections to the different
striatal areas (Haber et al, 2000). These characteristics are
important when considering how information flows be-
tween different functional striatal regions through their
projection to the midbrain (see below).
In addition to striatal input, the dorsal tier cells also

project widely throughout the primate cortex. Tyrosine
hydroxylase-positive fibers are found not only in granular
frontal cortex, but also in agranular frontal regions, parietal
cortex, temporal cortex, and albeit sparsely, in occipital
cortex (Gaspar et al, 1992; Lidow et al, 1991). The dopamine
cells that project to these functionally diverse cortical
regions are intermingled with each other. Moreover,
individual neurons often send collateral axons to different
cortical regions. Thus, the nigrocortical projection is a more
diffuse system compared with the more topographically
organized nigro-striatal system. Dopamine fibers are
located in superficial layers in primate cortex, including a
prominent projection throughout layer I and are also found
in the deep layers in specific cortical areas (Goldman-Rakic
et al, 1999; Lewis, 1992; Williams and Goldman-Rakic,
1993). Finally, dopamine neurons, in particular the dorsal
tier, project to the wide range of midline structures,
including the hypothalamus, periaqueductal gray, the bed
nucleus of the stria terminalis, and to the amygdala and
hippocampus.

Striato-nigro-striatal network. The idea that VS can
influence the dorsal striatum through the midbrain
dopamine cells originated in rodent studies, which demon-
strated (both at the light and electron microscopy levels)
projections from the NAcc to the dorsal striatum, through
the SN (Nauta et al, 1978b; Somogyi et al, 1981). Through
this pathway, therefore, limbic regions could impact on
the motor regions of the basal ganglia (Nauta and
Domesick, 1978a). The concept of transferring information
through different functional regions of the striatum was
later expanded, taking into account the functional diversity
of the striatum in monkeys (Haber et al, 2000). In monkeys,
projections from the striatum to the midbrain and from
the midbrain to the striatum each create a loose topograp-
hic organization. The VTA and medial SN are associa-
ted with limbic regions, and the central and ventrolateral
SN are associated with the associative and motor striatal
regions, respectively. However, as indicated above, each
functional region differs in their proportional projec-
tions. The VS receives a limited midbrain input, but
projects to a large region. In contrast, the dorsolateral
striatum receives a wide input, but projects to a limited
region. In other words, the VS influences a wide range of
dopamine neurons, but is itself influenced by a relatively
limited group of dopamine cells. On the other hand,
the dorsolateral striatum influences a limited mid-
brain region, but is affected by a relatively large midbrain
region.
Thus, while the main efferent projection from the VS to

the midbrain is to the dorsal tier, this projection field

extends beyond the tight VS/dorsal tier/VS circuit. Indeed,
the VS also terminates in the ventral tier, in a position to
influence more dorsal striatal regions, particularly those
that receive input from associative cortical regions (dPFC).
This part of the ventral tier is reciprocally connected to the
central (or associative) striatum. The central striatum also
projects to a more ventral region than it receives input
from. This region, in turn, projects to the dorsolateral
(or motor) striatum. Taken together, the interface between
different striatal regions through the midbrain DA cells
is organized in an ascending spiral interconnecting
different functional regions of the striatum and creating
a feed forward organization from reward-related
regions of the striatum to cognitive and motor areas
(Figure 10).

s

Figure 10. Schematic illustrating the complex connections between the
striatum and SN. The arrows illustrate how the VS can influence the
dorsal striatum through the midbrain dopamine cells. Colors indicate
functional regions of the striatum based on cortical inputs. Midbrain
projections from the shell target both the VTA and ventromedial SNc.
Projections from the VTA to the shell form a ‘closed,’ reciprocal loop, but
also project more laterally to impact on dopamine cells that project to the
rest of the VS, forming the first part of a feed forward loop (or spiral). The
spiral continues through the striato-nigro-striatal projections through
which the VS impacts cognitive and motor striatal areas through the
midbrain dopamine cells; red¼ inputs from the vmPFC; orange¼ inputs
from the OFC and dACC; yellow¼ inputs from the dPFC; green and
blue¼ inputs from motor control areas.
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Although the short latency burst-firing activity of
dopamine that signals immediate reinforcement is likely
to be triggered from brainstem nuclei (Dommett et al,
2005), the cortico-striato-midbrain pathway is in the
position to influence dopamine cells to distinguish rewards
and modify responses to incoming salient stimuli over time.
This pathway is further reinforced through the nigro-striatal
pathway, placing the striato-nigro-striatal pathway in a
pivotal position for transferring information from the VS to
the dorsal striatum during learning and habit formation.
Indeed, cells in the dorsal striatum are progressively
recruited during different types of learning from simple
motor tasks to drug self-administration (Everitt and
Robbins, 2005; Lehericy et al, 2005; Pasupathy and Miller,
2005; Porrino et al, 2004; Volkow et al, 2006). Moreover,
when the striato-nigro-striatal circuit is interrupted, in-
formation transfer from classical to instrumental learning
does not take place (Belin and Everitt, 2008).

Reward Processing in the Human Midbrain

Event-related FMRI currently offers sufficient spatial
resolution to allow investigators to visualize changes in
the activity of specific midbrain nuclei (Duzel et al, 2009).
After electrophysiological evidence that reward prediction
and prediction errors alter the firing of midbrain dopamine
neurons in monkeys (Schultz, 2002), a growing body of
FMRI research has begun to examine midbrain activity
during reward processing in human beings. Less neuroima-
ging work research has focused on midbrain regions than
on striatal and prefrontal regions, however, because the
midbrain suffers from artifacts related to inhomogeneity
(because of its nearness to tissue boundaries), endogenous
motion (because of its proximity to the carotid artery), and
partial voluming (because of its small size). In addition,
while the VTA is difficult to visualize on structural FMRI
scans, the SN is not (because of its dark appearance), but
investigators can localize the VTA with respect to the SN
and other landmarks (including the midline of the brain).
FMRI researchers have reported increased midbrain

activation during anticipation of pleasant tastes (D’Ardenne
et al, 2008; O’Doherty et al, 2002), anticipation of monetary
gains (Knutson et al, 2005), and during exposure to visual
stimuli that evoke romantic love (Aron et al, 2005).
Interestingly, in neither the juice nor monetary reward
studies did midbrain activation appreciably decrease when
anticipated rewards failed to occur (consistent with a
reward prediction, but not necessarily a prediction error
signal). In addition, midbrain increases in activation have
been reported in response to reward-predicting cues
(Adcock et al, 2006; Wittmann et al, 2005), and this
activation, in concert with medial temporal lobe activation,
predicts subsequent enhancements in memory for asso-
ciated stimuli. In summary, FMRI research suggests that
midbrain regions near dorsal tier dopamine neurons,
including the VTA, show increased activation in response
to stimuli that predict reward. The responsiveness of these

regions to other incentive features (eg, punishment,
arousal) has received less characterization (Bunzeck and
Duzel, 2006).

COMPLETING THE CORTICO-BASAL
GANGLIA REWARD CIRCUIT

In addition to the PFC, VS, VP, and amygdala, other key
components of the circuit include the thalamus, the LHb,
the raphe nuclei, and the pedunculopontine tegmental
nuclei. Each of these structures has complex connectivities
with multiple brain regions and their direct associations
with the cortico-basal ganglia reward system have been
discussed. However, below, we add a few additional
important points with respect to their role in the reward
circuitry.

Thalamus

The medial MD nucleus projects to the frontal cortex, and is
the final link in the reward circuit. (Haber et al, 1993; Ray
and Price, 1993). These connections, however, are bidirec-
tional (Erickson and Lewis, 2004; McFarland and Haber,
2002; Zikopoulos and Barbas, 2007). Moreover, while
cortico-thalamic projections of the specific thalamic relay
nuclei follow a general rule of reciprocity, the cortical
projections to these thalamic nuclei are more extensive than
their projections back to cortex (as seen in other
thalamocortical systems) (Darian-Smith et al, 1999; McFar-
land and Haber, 2002; Sherman and Guillery, 1996).
Importantly, in addition to the reciprocal connection, there
is a nonreciprocal cortico-thalamic component. Thus, while
the MD nucleus completes the reward circuit back to cortex,
there is a nonreciprocal cortical input to the MD nucleus
that is derived from functionally distinct frontal cortical
areas. For example, the central MD has not only a reciprocal
projections with the OFC, but also a nonreciprocal input
from vmPFC. Similarly, more lateral MD areas are not only
reciprocally connected to the dPFC, but also have a
nonreciprocal input from the OFC (McFarland and Haber,
2002). Therefore, similar to the striato-nigro-striatal projec-
tion system, the thalamic relay nuclei from the basal ganglia
also seem to integrate information flow from reward and
higher cortical ‘association’ areas of the prefrontal cortex. A
recent DTI study indicates that integration between these
cortical areas in the thalamus is also likely to exist in
humans (Draganski et al, 2008).
Both PET and FMRI findings suggest that primary and

secondary rewards (vs nonrewards) can increase thalamic
activation (Aharon et al, 2001; Anderson et al, 2003; Blood
and Zatorre, 2001; Knutson et al, 2000; Martin-Solch et al,
2001; Rogers et al, 1999; Rolls et al, 2003; Small et al, 2001;
Thut et al, 1997). Moreover, a meta-analysis of over 20
event-related FMRI studies using monetary incentive delay
tasks indicated that anticipation of reward vs anticipation of
punishment did not clearly elicit differential dorsomedial
thalamic activation. On the other hand, anticipation of
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reward did clearly elicit more dorsomedial thalamic
activation than did reward outcomes (Knutson and Greer,
2008). Together, these findings are consistent with the
notion that dorsomedial thalamic activation reflects general
arousal to a greater extent than value (ie, either rewarding
or punishing).

The Lateral Habenula, Pedunculopontine
Tegmental Nucleus, and the Raphe Serotonergic
Systems

Recent studies have emphasized the potential importance of
the LHb in regulating the dopamine reward signal
(Morissette and Boye, 2008). Experiments show that
stimulation of the LHb nuclei in primates results in a
negative reward-related signal in SNc. (Matsumoto and
Hikosaka, 2007). LHb cells are inhibited by a reward-
predicting stimulus, but fire following a nonreward signal.
This stimulation of the LHb directly, or following a non-
reward signal inhibits dopamine cells (Ji and Shepard, 2007;
Matsumoto and Hikosaka, 2007). An event-related FMRI
study featuring adequate spatial and temporal resolution to
visualize habenular activity indicated that negative but not
positive feedback can activate the habenular complex,
consistent with findings from primate electrophysiology
(Ullsperger and von Cramon, 2003). Interestingly, few fibers
from the LHb directly reach the SNc in the primates,
indicating an indirect regulation of the dopamine signal.
There are several possible routes by which the LHb might
influence midbrain dopamine firing. In addition to an input
from the globus pallidus and VP, other connections include
the basal forebrain, preoptic area of hypothalamus, inter-
peduncular nucleus, pedunculopontine nucleus, raphe
nucleus, superior colliculus, pretectal area, central gray,
VTA, and reticular formation (Araki et al, 1988; Haber et al,
1993; Herkenham and Nauta, 1977; Parent et al, 1981).
The pedunculopontine tegmental nucleus is connected to

multiple basal ganglia structures and provides one of the
strongest excitatory inputs to the midbrain dopamine cells
(Blaha et al, 1996; Lavoie and Parent, 1994b). Moreover, the
cells in this brainstem area receive input from the LHb.
Anatomical and physiological studies, coupled with the
central function of dopamine for reward prediction error,
led to studies that support the hypothesis that PPT may have
a function in this reward signal (Kobayashi and Okada, 2007).
The brainstem serotonergic system may also play a role in
reinforcement behaviors by encoding expected and received
rewards (Nakamura et al, 2008). This reward signal could
arise from a number of brain regions, but perhaps the
strongest candidates include inputs derived from the OFC
and vmPFC, the amygdala, the SN, and the LHb (Peyron
et al, 1998).

SUMMARY AND CONCLUSIONS

The reward circuit comprises several cortical and sub-
cortical regions forming a complex network that mediates
different aspects of incentive-based learning, leading to

adaptive behaviors. To develop an appropriate behavioral
response to external environmental stimuli, information
about motivation and reward needs to be combined with a
strategy and an action plan for obtaining goals. For
example, to win at a card game, desire is not sufficient.
One has to understand the rules of the game, remember the
cards played, and so forth, before executing the play. In
addition, there is a complex interaction between the desire
to put cards in play and the inhibition of impulse to play
them too early. Thus, action plans developed toward
obtaining a goal require a combination of reward proces-
sing, cognitive planning, and motor control.
Reward, therefore, does not work in isolation, but its

pathways interface with circuits that mediate cognitive
function to affect motor planning. The pathways and
connections reviewed in this chapter clearly show that
there are dual cortico-basal ganglia systems permitting both
parallel and integrative processing (Figure 11). Thus, within
each of the cortico-basal ganglia structures, there are
convergence zones that can link the reward pathway with
those associated with cognitive function. Through these
interactive networks, information about reward can be
channeled through cognitive circuits to influence motor

vmPFC/OFC

Prefrontal cortex

Thalamus (MD → VA)

Pallidum/SNr

DPFC

dACCOFCvmPFC

Ventral striatumShell

DPFC

Dorsal striatum

Figure 11. Three networks of integration through cortico-basal ganglia
pathways. (1) Fibers from different prefrontal areas converge within
subregions of the striatum. (2) Through the organization of striato-nigro-
striatal (SNS) projections, the VS can influence the dorsal striatum. (3) The
nonreciprocal cortico-thalamic projection carries information from re-
ward-related regions, through cognitive, and motor controls.
dACC¼dorsal anterior cingulate cortex; dPFC¼dorsal prefrontal cortex;
OFC¼orbital frontal cortex; vmPFC¼ ventral medial prefrontal cortex.
Red¼ vmPFC pathways; dark orange¼OFC pathways; light orange¼
dACC pathways; yellow¼dPFC pathways; green¼output to motor
control areas.
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control circuits. DTI studies support the idea that
interactive networks exist also in the human brain
(Draganski et al, 2008). Moreover, fMRI studies provide
evidence for functional interactions. For example, while
reward anticipation tends to co-activate NAcc and mid-
brain, reward outcomes subsequently recruit the medial
caudate and putamen, followed by the dorsal caudate,
including the supplementary motor area. The idea that this
recruitment is likely to involve the dopamine pathways
through the striato-nigro-striatal spiral is supported by
animal behavioral studies (Belin and Everitt, 2008; Porrino
et al, 2004). Alternatively, several striatal areas may be co-
activated, as in the case for anticipation of reward, by a
convergence of different cortico-striatal projections. For
example, as indicated above, reward outcomes increased
vmPFC and putamen activation, areas that do not appear to
have a direct connection. However, within the striatum, the
vmPFC projections do converge with those from the OFC in
parts of the rostral putamen. Thus, an understanding from
animal studies of where these networks interface results in
better interpretations of neuroimaging findings in which
seemingly unconnected structures can be activated simul-
taneously. As we learn more about the complexities of
circuits, we can hypothesize how other brain regions may be
co-activated. Moreover, we are able to better predict where
co-activation should occur. This chapter brings together a
unique monkey to human translational review that empha-
sizes the importance of drawing on anatomical constructs
developed from primate anatomy to interpret and extend
findings from human imaging studies.
The circuitry reviewed in this chapter implies that

information flows from ventral to dorsolateral cortico-basal
ganglia circuits. Thus, sequentially over time, this suggests a
mechanism through which activity occurs across reward-
processing episodes during the course of learning (Tanaka
et al, 2004). Sequential activation also occurs within a single
reward-processing episode (eg, from anticipation to out-
come). Consistent with this notion, gain prediction error in
a typical cued response task occurs first in the mPFC and
NAcc, and subsequently appears in the dorsomedial caudate
and putamen parts of the VS seconds later (see Figure 7).
The ability to visualize neural activity related to expected
value raises the exciting possibility of going beyond
correlating brain activation with behavior. It may be
possible to use activation to predict behavior. For example,
evidence suggests that anticipatory activation in the NAcc
and in the mPFC can independently predict approach,
whereas anticipatory activation in the connected insular
cortex can predict avoidance in financial risk taking,
gambling, and purchasing scenarios.

FUTURE DIRECTIONS

Linking anatomical studies in animals and human imaging
is a powerful way to gain insight into brain regions
associated with different aspects of reward processing and

cognition that lead to appropriate choices. As imaging
techniques are refined, we will be able to use results from
those studies to explore in depth the underpinnings of co-
activation or temporal activation of structures that appear
unrelated. One important outcome from these linkages is
the validation of imaging results based on what is
anatomically well established. As such, neuroimaging has
now demonstrated human functional results that map
increasingly close to primate anatomy. For example, the
adoption of event-related FMRI has generated a prolifera-
tion of new results that highlight anticipatory activation in
related cortical and striatal regions. Moreover, in the case of
neural correlates of expected value, these patterns of
activation mapped more closely onto the connected mPFC,
VS, and VTA implied by anatomical studies than did earlier
functional results. An emerging set of DTI tools for
visualizing connectivity in humans promises to further
bridge the gap between primate structure and human
function (Cohen et al, 2009b; Draganski et al, 2008; Lehericy
et al, 2004).
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