
GOAL:  Quantitatively compare the deconvolved responses using three 
different regressors to help guide decisions on what approach to choose 
when deriving ABRs from natural speech and other natural sounds.
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Introduction
• Much remains unknown about how the brain encodes speech subcortically.
• Auditory brainstem responses (ABR) are used to characterize subcortical 

activity in human beings, but traditionally rely on transient stimuli.
• We have developed deconvolution methods to investigate natural speech 

encoding at subcortical level using different features as regressors [1,2,3]

Methods

Results

Summary
◆ Both the ANM and glottal pulse regressor (the latter only for peaky speech) 

provided comparable high-quality ABRs and quick acquisition and 
substantially outperformed the HWR regressor of Maddox and Lee [1].

◆ The glottal pulse regressor has the disadvantage of being applicable only to 
re-synthesized peaky speech, but the advantage of providing ABRs in 
meaningful physical units (i.e., microvolts).

◆ The ANM regressor has the advantage of being applicable to both natural 
and peaky speech, and in principle other natural sounds such as music.

◆ Because regressors have different magnitude spectra, we developed the 
phase-only regressor to more fairly compare the quality of waveforms 
deconvolved using different regressors.
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Three regressors
● Halfwave-Rectified stimulus waveforms (HWR) (Maddox & Lee, 2018) 

Stimulus with two conditions
● Original speech source: 40 excerpts of 64 s-long English audiobooks (male 

narrator) [4]
● Conditions

1) Unaltered original speech
2) “Peaky” speech [2]: re-synthesized from the original stimuli by aligning 

the phase of the harmonics at glottal pulses and making the speech impulse-like 
but maintaining the intelligibility. (Fig.3)
Deconvolution
● Encoding Model

○ Equation
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where 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 denotes the derived impulse response (ABR), 𝑋 the FFT of the stimulus with the non-linearity applied 
(i.e., regressor), 𝑌 the FFT of EEG signal, * the complex conjugate, ℱ!" the inverse FFT, 𝑏# the averaging weight of the 
𝑛th trial proportional to the inverse of the trial variance, 𝑁 the total number of trials, 𝑛 the index of 𝑛th trial.

Subject Data from Polonenko & Maddox [4]

● 22 adults (aged 18-40) with normal hearing thresholds. Spectral Coherence Analysis
● Compare the power of the 3 regressors in predicting EEG across frequency band
● Less sensitive to spectrum of predicted response

𝐶,- 𝑓 =
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Where 𝐶$% 𝑓 denotes the coherence between signal 𝑥 and 𝑦 at frequency band 𝑓, 𝐸[ ] the expected value across slices, * the 
complex conjugation.𝑋𝑖 the Fourier transform for 𝑥 slice 𝑖, and 𝑌𝑖 the Fourier transform for 𝑦 slice 𝑖.  

● Our analysis computes the coherence of the predicted EEG (x) by the ABR kernels 
generated by the 3 regressors (averaged across 22 subjects) and the true EEG 
signal (y)
○ Predicted EEG is computed by convolving the averaged ABR kernel with the regressors for 

each stimulus

● Auditory Nerve Model firing rate (ANM) (Shan et al., 2022) 
○ Generated from Zilany et al (2014) [5, 6], which models the detailed transformation from 

acoustic signals to the AN representation of the stimulus (show in fig.4)
○ The response will take the peripheral nonlinear effects of the acoustical differences into 

account
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Fig.4. ANM regressor generation
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Fig.1.Encoding Model. 
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Fig.2. Half-wave rectified stimulus generation
● Glottal pulse train (Pulse) (Polonenko & Maddox, 2021) 

Fig.3. Glottal pulse train, figure adapted from 
Polonenko & Maddox (2021)

Re-synthesized “Peaky” speech
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Comparison of Signal-to-Noise Ratio (SNRs)
Fig.5. Deconvolution derived ABR wave forms from regressor HWR (A), Pulse train (B), and ANM (C). 
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Fig.9. Coherence in frequency range [0, 400] Hz using a window 
size of 0.1s. At most frequency range, the ANM regressor is 
best and then the pulse regressor  for “peaky” speech.

Fig.6. The SNRs computed from [0, 15] ms time range. The color-
coded bars are the corrected SNR of pooled responses, and the 
think black lines are the SNRs from each subject.

Using Phase-only Regressors
• To fairly compare time-domain response waveforms in a way that does not depend on the 

regressor magnitude spectrum, we performed deconvolution using a phase-only regressor.
• The equation to make phase-only regressor is as follows:

• Where 𝑋(𝑓) is the FFT of the regressor and 𝑋(𝑓) is the magnitude of the regressor in 
frequency domain, and 𝑋(𝑓)6789:;<=>- is the phase-only regressor we will use in the 
following deconvolution

Comparison of SNRs of phase-only responses
Fig.11. The SNRs computed from [0, 15] ms time range 
for the ABR derived from phase-only regressors. The 
color-coded bars are the corrected SNR of pooled 
responses, and the think black lines are the SNRs from 
each subject. 

Fig.7. The cumulative proportion of subjects that has ABR SNR >= 0 
dB versus recording time needed.
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Deconvolution Derived Waveforms from Phase-only Regressors

Regressors Have Different Spectra
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Fig.8. Averaged power density spectrum with welch estimate for HWR (A), Pulse train (B), and ANM (C). They have different spectra. 

Fig.10B. The waveforms derived from phase-only regressors 
and were high-passed at 150 Hz.

Fig.10A. The waveforms derived from phase-only regressors. 
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Ø Among the broadband regressors, ANM performed the best for the waveforms, the 
SNR and the acquisition time. But the differences of the regressors’ power spectra 
may lead to different spectra of the responses.


