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Power-Law Dynamics in an Auditory-Nerve Model Can
Account for Neural Adaptation to Sound-Level Statistics
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Neurons in the auditory system respond to recent stimulus-level history by adapting their response functions according to the statistics
of the stimulus, partially alleviating the so-called “dynamic-range problem.” However, the mechanism and source of this adaptation
along the auditory pathway remain unknown. Inclusion of power-law dynamics in a phenomenological model of the inner hair cell
(IHC)–auditory nerve (AN) synapse successfully explained neural adaptation to sound-level statistics, including the time course of
adaptation of the mean firing rate and changes in the dynamic range observed in AN responses. A direct comparison between model
responses to a dynamic stimulus and to an “inversely gated” static background suggested that AN dynamic-range adaptation largely
results from the adaptation produced by the response history. These results support the hypothesis that the potential mechanism
underlying the dynamic-range adaptation observed at the level of the auditory nerve is located peripheral to the spike generation
mechanism and central to the IHC receptor potential.

Introduction
Although rate-level functions of individual auditory neurons
show a restricted dynamic range (20 – 40 dB) (Sachs and Abbas,
1974), the human auditory system encodes sound levels with
remarkable accuracy over a wide range of sound intensities (100 –
120 dB) (Viemeister, 1988). The natural acoustic environment is
made up mostly of transients rather than constant stimuli. Thus,
to encode efficiently using only firing rates, a neural system must
change its coding strategy as the level distribution of stimuli
changes. Recently, studies in the auditory midbrain (Dean et al.,
2005, 2008) and cortex (Watkins and Barbour, 2008) as well as in
the peripheral auditory system (Wen et al., 2009) have shown that
neurons respond to recent stimulus history by adapting their
rate-level functions according to the statistics of the stimulus
level, substantially improving the precision of the neural popula-
tion code near the region of most commonly occurring sound
levels. As a result, the effective dynamic range of neurons is ex-
tended. However, the origin and mechanisms underlying adap-
tation of the dynamic range remain unknown.

To examine the detailed dynamics of dynamic-range adapta-
tion, Dean et al. (2008) studied the responses of guinea pig infe-
rior colliculus (IC) neurons using a paradigm in which the
stimulus switched repeatedly between two distributions of sound
levels differing in mean level. They observed that a prominent
component of adaptation occurs rapidly with a time course of
several hundred milliseconds; adaptation to an increase in mean

level occurs more rapidly than to a decrease in mean level. The
same paradigm in the auditory nerve (AN) of cats showed a sim-
ilar time course of adaptation (B. Wen, personal communica-
tion). In general, the magnitude of adaptation is weaker in
AN fiber responses than in the IC. However, both studies
reported that the adaptation in rate-level functions occurs
within �1 s, which clearly has implications for real-world
listening conditions.

At the level of the AN, the source of adaptation in discharge
rate is believed to be associated mainly with the inner hair cell
(IHC)–AN synapse (Furukawa et al., 1978; Moser and Beutner,
2000; Goutman and Glowatzki, 2007). To capture multiple time
courses of adaptation observed at the level of the AN, Zilany et al.
(2009) recently developed a phenomenological AN model with
an IHC–AN synapse section that has both exponential and
power-law adaptation (PLA) functions. Although the source of
power-law adaptation is not known, it was included in the syn-
apse section of the model for simplicity. This PLA AN model
accurately predicts AN responses to a wide variety of stimuli
(both simple and complex) spanning the dynamic range of hear-
ing. The PLA AN model also captures those phenomena (e.g.,
rapid onset adaptation and slow recovery after the stimulus off-
set, responses to forward masking paradigms, adaptation to in-
crements and decrements in the amplitude of an ongoing
stimulus) that have direct implications for dynamic-range adap-
tation. In this study, the PLA AN model was used to test the
hypothesis that power-law-like adaptation in the periphery could
successfully account for the amount and dynamics of the
dynamic-range adaptation observed in the AN.

Materials and Methods
In this study, the responses of model AN fibers were simulated to dy-
namic stimuli with sound-level statistics that varied with time. The sim-
ulated responses were then compared to physiological data obtained
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using the same stimulus paradigms [IC: Dean et al. (2008); AN: Wen et al.
(2009)].

Stimuli. Briefly, a 5 min duration continuous tone or white Gaussian
noise (bandwidth �25 kHz) had levels that were set every 50 ms to a new
value randomly chosen from a defined distribution (as in Fig. 1A). The
range of sound levels was 0 – 80 dB sound pressure level (SPL) for tones
and 20 –100 dB SPL for noise, in steps of 2 dB. The distribution of sound
levels had a high probability region (HPR) of 12 dB, from which the levels
were drawn with an overall probability of 0.8, and the remaining levels
were selected with an overall probability of 0.2. An example sequence of
sound levels is shown in Figure 1 B for the distribution in Figure 1 A.
Rate-level functions were computed from the corresponding responses
of the model AN fiber, and were fitted with the five-parameter model of
Sachs and Abbas (1974) and Winslow and Sachs (1988). According to
this model, the average discharge rate r (spikes/s) of an AN fiber is ex-
pressed as a function of sound pressure, P (in pascals):

r�P� � Rmin � �Rmax � Rmin� �
PN

�1�1 � P2/�2�
N/3 � PN

where Rmin and Rmax represent the minimum and maximum firing rates,
respectively, N is an exponent of sound pressure denoting the steepness
of the growth in firing rate, and �1 and �2 are parameters describing the
rate function’s position along the level axis.

To quantify the amount of dynamic-range adaptation, responses were
simulated for four (noise) or five (tone) different distributions with non-
overlapping HPRs. For comparison, baseline rate-level functions were
also constructed; noise or tone bursts (50 ms duration) in this case were
separated by a 300 ms silent period, and the levels were chosen randomly
from a uniform distribution (10 repetitions of each level). The range of
sound levels was matched to the span of levels used for the dynamic tone
or noise stimulus (Fig. 1C).

To facilitate the study of the detailed dynam-
ics of adaptation, the stimulus was abruptly
switched between two different distributions of
sound levels differing in mean level (75 vs 51
dB SPL). The sound levels were chosen from
one distribution for 5 s before switching to the
other, which produced a switching period of
10 s. The sequence of sound levels for two cy-
cles is shown in Figure 1 D. Rate-level functions
corresponding to each individual distribution
were computed, and the time courses of adap-
tation of the mean firing rate and also of the
dynamic range were examined.

Model of the auditory periphery. The
auditory-periphery model used in this study to
simulate the responses to the above stimuli was
developed by Zilany et al. (2009). Figure 2
shows a schematic diagram of the PLA AN
model. Each section of the model, motivated
by relevant physiological studies (mostly from
cats), provides a phenomenological descrip-
tion of the major functional components of the
auditory periphery, from the middle ear to the
AN fiber.

The input to the middle ear is the instanta-
neous pressure waveform of the stimulus (in
pascals), sampled at 100 kHz. The middle-ear
filter is followed by three parallel filter paths:
the C1 and C2 filters in the signal path and the
broad-band filter in the control path. The feed-
forward control path regulates the gain and
bandwidth of the C1 filter (analogous to basilar
membrane filtering) to account for several
level-dependent properties in the cochlea
(Zhang et al., 2001; Bruce et al., 2003). Based
on the Kiang’s two-factor cancellation hypoth-
esis (Kiang, 1990), the output of the C2 filter is
phase-shifted by 180°; this signal then provides

the input to the C2 transduction function. The combined response of the
two transduction functions following the C1 and C2 filters provides the
input to a seventh-order IHC low-pass filter (Zilany and Bruce, 2006,
2007). The IHC output drives the model for the IHC–AN synapse, and
finally the discharge times are produced by a renewal process that in-
cludes refractory effects (Carney, 1993). This model captures most of the
AN nonlinearities (e.g., nonlinear tuning, two-tone suppression, shift in
the best frequency with level, C1/C2 transition at high levels, adaptation)
reported in the literature. The model responses were validated against
measured AN responses to stimulus paradigms with a wide range of
frequencies and intensities spanning the dynamic range of hearing.

One of the important AN nonlinearities relevant to the present study is
the adaptation in the discharge rate of an AN fiber. Adaptation to sus-
tained tones in mammalian AN fibers involves at least three timescales:
rapid adaptation on the scale of milliseconds, short-term adaptation on
the scale of several tens of milliseconds (Westerman and Smith, 1984),
and slow adaptation on the scale of seconds (Kiang, 1965). In addition,
after the stimulus offset, the time constant of recovery of the spontaneous
rate (SR) is scaled according to the duration and level of the stimulus
(Kiang, 1965). Similarly, in forward masking paradigms, the time con-
stant of recovery of the probe responses depends on the duration and
level of the masker stimulus (Young and Sachs, 1973; Harris and Dallos,
1979).

In general, the responses of a model with exponential adaptation to a
unit step function settle to a steady-state value with a fixed time constant,
regardless of the stimulus timescale, and the time course of recovery to SR
after the stimulus offset is governed by the same time constant (Zhang
and Carney, 2005). Thus, pure exponential adaptation cannot fully ac-
count for the observed timescales described above, particularly those
dependent on the level and duration of the stimulus. On the other hand,
power-law adaptation, which is characterized by an adaptation of re-
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Figure 1. Stimulus paradigm. A, An example probability distribution of sound levels for the dynamic stimuli with HPR mean at
48 dB SPL. The distribution spans an 80 dB range in steps of 2 dB and contains a 12-dB-wide HPR (from 42 to 54 dB SPL) in which
levels occur with an overall probability of 0.8. B, Sound level as a function of time drawn from the distribution shown in A. The
sequence is shown only for 20 s. Sound levels were varied every 50 ms with no silent interval between consecutive levels of the
stimulus. C, Variation of sound levels with time for the baseline paradigm. Here sound levels were drawn from a uniform distribu-
tion, and there was a 300 ms silent period between consecutive stimuli. D, Sequence of sound levels drawn from a switching
stimulus. Sound levels were chosen from one distribution for 5 s before switching to the other one, giving a switching period of 10 s.
The two distributions had HPR means at 75 and 51 dB SPL. Two cycles of the sequence are shown.
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sponse that follows a fractional power of time or frequency rather than an
exponential decay (Chapman and Smith, 1963), does not have a fixed
time constant. In fact, if a conventional time constant is forced on the
data, the value depends on the duration of the responses being fit (Drew
and Abbott, 2006). To illustrate a general model of power-law adapta-
tion, suppose a stimulus s(t) generates a response r(t) that feeds back into
an integrator I(t). The integrator suppresses the response such that the
adapted output, r(t) � max[0, s(t) � I(t)], and

I�t� � ��
0

t r�t��

t � t� � �
dt� � �r�t� * f�t�,

where f�t� � 1/�t � ��

where � is a dimensionless constant, and � is a parameter with units of
time (Drew and Abbott, 2006). The suppressive effects on the responses,
I(t), is affected by past responses in a cumulative fashion, in which past
responses are “forgotten” over a time course determined by the power
law; this time course is intermediate between perfect (never forgotten)
and exponential processes that are forgotten over a fixed time course
(Drew and Abbott, 2006).

Mathematically, the long tail of the power-law kernel, f(t), provides a
longer memory for past responses than does exponential adaptation. In
the case of exponential adaptation,

I�t� �
1

�a
� �

0

t

r�t��exp�t� � t

�ex
�dt�,

the equivalent of � (in power-law adaptation) has units of frequency
(1/�a, where �a is the time constant in seconds); thus, the transition
between transient and sustained responses in exponential processes is
fixed in time (Drew and Abbott, 2006). In contrast, the dimensionless
constant � in power-law dynamics controls the amount of adaptation,
and there is no well defined transition between transient and sustained
responses. In fact, power-law dynamics can be approximated by a com-
bination of a large number of exponential processes with a range of time
constants (Thorson and Biederman-Thorson, 1974). Adaptation often
shows power-law-like dynamics over longer timescales, implying the co-
existence of multiple timescales in a single adaptive process (La Camera
et al., 2006). Thus, power-law dynamics possess the properties that can
potentially account for adaptation timescales that depend on the level
and duration of the stimulus.

Although many biological systems exhibit power-law rather than ex-
ponential dependence on time, in some cases power-law adaptation
alone underestimates the amount of adaptation at short-times (Drew
and Abbott, 2006), and the model requires additional exponential adap-
tation components with small time constants to fully explain the behav-
ior over short timescales. To include all of the timescales observed at the
level of the AN, the IHC–AN synapse model has power-law adaptation
following short-term exponential adaptation.

Westerman and Smith’s (1988) three-store diffusion model was used
to implement exponential adaptation in the synapse model. The onset
response of the model AN fiber is thus governed by exponential adapta-
tion with two time constants (rapid and short-term: 2 and 60 ms, respec-
tively). The other parameters of the three-store diffusion model were set
to produce spontaneous activity in the absence of a stimulus and rate
saturation at moderate to high stimulus levels (Zhang et al., 2001). Two
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Figure 2. Schematic diagram of the model for the auditory periphery [Zilany et al. (2009), their Fig. 2, reprinted with permission]. A, The input to the model is an instantaneous pressure waveform
of the stimulus and the output is a series of AN spike times. Middle-ear filtering is followed by a signal-path (C1) filter and a parallel-path (C2) filter. The gain and bandwidth of the C1 filter are
controlled by a feedforward control-path output. The IHC output drives the synapse model and the spike generator. OHC, Outer hair cell; LP, low-pass filter; NL, static nonlinearity; INV, inverting
nonlinearity. COHC and CIHC are scaling constants that specify OHC and IHC status, respectively. In this study, all model responses were for the healthy cochlea (i.e., COHC � 1, CIHC � 1). B, IHC–AN
synapse model: exponential adaptation [3-store diffusion model by Westerman and Smith (1988)] followed by parallel power-law adaptation (slow and fast) models. Fractional Gaussian noise is
added to the slow power-law adaptation path to produce the desired distribution of SRs with only three true SR fibers (low, medium, and high). For details about the model components, see Zilany
et al. (2009).
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parallel power-law functions (slow and fast) follow the exponential ad-
aptation in the synapse model (Fig. 2). The parameters of the slow power-
law function were chosen to improve the long-term dynamics of the
model AN fiber responses (e.g., recovery after the offset of a tone, re-
sponses to long duration tones, etc.) without significantly affecting the
onset dynamics set by the exponential adaptation.

Several studies have demonstrated that the process of AN short-term
adaptation is “additive” in nature (Smith and Zwislocki, 1975; Smith,
1977); that is, the change in firing rate (using a window of �10 ms or
longer) in response to an increment/decrement in stimulus level does not
greatly depend on the time between onset and the subsequent increment/
decrement. Smith et al. (1985) further showed that this property of “ad-
ditivity” also holds if the incremental responses were analyzed with a very
small window length of �1–2 ms centered on the increment in the re-
sponse. Generally, models with exponential adaptation exhibit “additiv-
ity” only for window lengths of �10 ms or longer [Zilany et al. (2009),
their Fig. 9]. Consequently, the slow power-law function, which closely
follows the onset dynamics set by exponential adaptation, fails to account
for incremental “additivity” over small timescales. A second power-law
function with faster adaptation was therefore introduced in the AN
model (Zilany et al., 2009); this function adapts quickly, is very respon-
sive to increments in amplitude of an ongoing stimulus, and remains
mostly unresponsive over the remaining duration of the stimulus. Thus
the change in discharge rate in response to an increment remains almost
the same regardless of the delay between stimulus onset and the incre-
ment [Zilany et al. (2009), their Fig. 9], therefore demonstrating “addi-
tivity” in the model responses.

In general, it is the slow power-law function that is mainly responsible
for the overall adaptation in the responses of the model AN fibers and
thus contributed most to the responses simulated in the present study.
The fast power-law component contributed very little to the overall re-
sponses of the model AN fiber, except in the increment/decrement par-
adigm described above. The complete AN model developed in the
previous study, with both power-law components, was used without
change in the simulations presented here, except where noted (e.g., to
compare responses for a model with power-law and exponential adapta-
tion to one with only exponential adaptation).

Although individualized sets of model parameters might be required
to predict individual AN fiber responses accurately, the goal of this study
was to determine a single parameter set that qualitatively addressed a
wide range of response properties of AN fibers (Zilany et al., 2009). The
selection of parameters of the power-law functions was challenging and
complicated by the fact that, in contrast to exponential adaptation, the
power-law has no well separated transient or sustained responses. How-
ever, two particular datasets were used to set the parameters of the slow
power-law function; both of them required adaptation with longer mem-
ory, and thus had relevance to the power-law dynamics. The first one was
the offset responses to a pure-tone stimulus across several sound levels
(Kiang, 1965), and the other was the responses to a probe in a forward-
masking stimulus paradigm (Harris and Dallos, 1979). Once the param-
eters for the slow power-law component were set, the parameters of the
fast power-law function were then chosen by qualitatively matching the
model responses with the physiological data for the increment/decre-
ment paradigm (Smith et al., 1985). The responses of the model fibers to
all of the above stimulus paradigms were compared to their physiological
counterparts in Zilany et al. (2009).

Fractional Gaussian noise (fGn) added to the slow power-law adapta-
tion path results in the desired distribution of SRs; although only three
spontaneous rates are specified in the model (low, medium, and high),
the variation in rate over time resulting from the fGn yields the appro-
priate distribution of SRs (Jackson and Carney, 2005). In this study, the
same fixed set of model parameters that were used to capture a wide range
of AN responses to various stimulus paradigms (Zilany et al., 2009) were
used, and the responses were simulated for single AN fibers with charac-
teristic frequencies (CFs) and spontaneous rates selected to match those
in the physiological studies used for comparison. The PLA AN model is
described in more detail in Zilany et al. (2009). Model code is available at
the following website: www.bme.rochester.edu/carney.

Results
In this section, simulated responses of model AN fibers are pre-
sented for the stimulus paradigms described above. In addition,
model responses to several simple stimuli are shown to demon-
strate the dynamics of adaptation, particularly during the period
after the stimulus offset.

Dynamics of recovery of spontaneous activity: effects of
duration and level
At the offset of a tone pip, the AN discharge rate may drop below
the SR, sometimes to the point where there is a cessation of firing,
followed by a recovery with a time course on the order of several
tens of milliseconds (Smith, 1977; Harris and Dallos, 1979). The
magnitude of reduction in rate and the exact nature of recovery
depend on the intensity and duration of the preceding stimulus
(Yates et al., 1985), previous response history, and the fiber’s SR
(Relkin and Doucet, 1991). In general, low-spontaneous-rate
(LSR) fibers show a longer recovery from prior stimulation than
high-spontaneous-rate (HSR) fibers (Relkin and Doucet, 1991).

To illustrate the dependence of the dynamics of recovery after
stimulus offset on stimulus parameters, Figure 3 shows the out-
put of the PLA AN model in response to tones with various du-
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Figure 3. Illustrations of the effects of duration and level of the signal on the recovery to
spontaneous activity. A, Model synapse output in response to the tone at CF (10 kHz) with
durations varying from 50 ms to 1 s, but with a fixed interstimulus interval of 200 ms. The
stimulus level was 12 dB above threshold. Dotted line represents the SR of the fiber. The time
course of recovery is scaled according to the duration of the stimulus. B, Response of the synapse
model to a tone at CF with levels varying from 30 to 80 dB SPL in steps of 10 dB. The CF of the fiber
was 550 Hz, and it had a medium SR. The duration of the tone was 50 ms with an interstimulus
interval of 400 ms. Only the recovery part of the response (i.e., 50 to 450 ms) is shown. Dotted
line indicates the SR of the fiber. Again, the time course of recovery is scaled according to the
level of the stimulus.
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rations and levels. To avoid fluctuations in the output and to
emphasize the relevant response details for these simulations,
fractional Gaussian noise was not included in the model for this
illustration. Note that for the purpose of illustration, the output
of the synapse is shown here, rather than the output of the dis-
charge generator; however, for all other figures, the output of the
discharge generator is illustrated. Figure 3A shows the responses
of the model to the tone stimulus (tone at CF � 10 kHz, 12 dB
above threshold) with different durations, but with a fixed inter-
stimulus interval of 200 ms. Note that the next repetition of the
signal was always delivered after the interstimulus interval of 200
ms, regardless of the recovery from adaptation during the preced-
ing silent period. The rationale behind using a fixed interstimulus
interval was to examine whether signal duration had any effect on
the relatively steady-state part of the PLA model responses, in
addition to the expected effect on the dynamics of recovery dur-
ing the interstimulus interval period. The signal durations were
50, 100, 200, 500, and 1000 ms. Responses to 10 repetitions of the
stimulus were averaged. The dotted line indicates the SR of the
fiber. For signals with durations less than �200 ms, a 200 ms
silent interval was adequate for near-complete recovery to SR,
whereas longer duration signals required longer interstimulus
intervals for complete recovery from adaptation. Because power-
law adaptation has a long memory for past responses, the accu-
mulated suppressive effects are stronger for longer duration
signals. Thus, the time course of recovery after signal offset for the
PLA model varied according to the duration of the signal, al-
though there was no substantial difference in the time course of
adaptation at the onset. In contrast, the recovery to SR in the
exponential adaptation model (results not shown) occurs over a
constant time period regardless of the duration of the signal,
although the amount of adaptation during the signal may vary,
especially for stimuli shorter in duration than the exponential
time constant. Note that the relatively steady-state part of the
PLA model response was noticeably reduced in response to
longer duration signals because the responses did not fully re-
cover from adaptation during the interstimulus interval. This
effect of stimulus history on the average response rates underlies
the dynamic-range adaptation illustrated below.

Figure 3B shows the responses of the synapse model to a tone
(tone at CF � 550 Hz, medium SR fiber) with levels varying from
30 to 80 dB SPL in steps of 10 dB. The duration of the tone signal
was 50 ms, and the stimulus was repeated every 450 ms (i.e., the
silent period was 400 ms). Model responses were averaged for 10
repetitions of the stimulus. To show the dynamics of recovery
after stimulus offset, responses are shown only for the 50 – 450 ms
time window. The time course of recovery after stimulus offset
was also scaled here according to the level of the stimulus, because
higher-level signals had stronger suppressive effects on the re-
sponses after the stimulus offset. Further, responses to lower-
level signals recovered quickly to SR, and thus the subsequent
response to the stimulus was not affected by previous stimulation
history. On the other hand, responses to higher-level signals did
not fully recover by the end of the interstimulus interval, and the
subsequent response was thus affected.

Figure 4A shows the poststimulus time histograms of an HSR
AN fiber with CF equal to 1.82 kHz on the left, and an LSR AN
fiber with CF equal to 10.34 kHz on the right (from Kiang, 1965).
The stimulus was a 500 ms tone followed by a 500 ms silent
period, and the histograms are shown for 120 repetitions of the
stimulus. The responses of the model (i.e., discharge generator
output) to the same stimulus paradigm are shown in Figure 4B.

In general, model responses closely resembled the physiological
data, including the observation that the time course of recovery
for the LSR fiber was longer than that of the HSR fiber. However,
in contrast to the physiological responses, the steady-state rate of
the model LSR fiber was lower than that of the model HSR fiber.
The difference in rates is due to the fact that for both model fibers,
responses were simulated to tones (at CF) for a level of 25 dB SPL,
although the threshold of the model HSR fiber is �15 dB lower
than that of the model LSR fiber.

Responses of an AN fiber to stimuli with different
sound-level statistics
Figure 5 shows the responses of a high SR AN fiber (CF at 550 Hz)
to pure tones at CF and noise stimuli for various stimulus-level
distributions with different HPR levels as well as for the baseline
level distribution. Figure 5A shows the physiological data from a
cat AN fiber to tone stimuli, B and C represent the AN model
responses to tones for a synapse model with only exponential
adaptation and with power-law functions following exponential
adaptation, respectively, and D shows the model responses to
broadband noise stimuli. Because the threshold of the model
fiber was substantially lower than that of the physiological AN
fiber, an additional stimulus-level distribution with HPR mean at
24 dB SPL was simulated. The rate-level functions in the top row
were fitted with the five-parameter model of Sachs and Abbas
(1974) and Winslow and Sachs (1988). For both physiological
data and model responses, the baseline paradigm showed the
highest firing rates at all levels, and the rate decreased as the HPR
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mean level increased. The rate decrement for the synapse model
with only exponential adaptation was asymmetric; lower sound
levels showed less decrement from the baseline firing rate com-
pared to the decrement at higher sound levels. This observation is
consistent with the fact that adaptation from the preceding sound
level mostly affects the onset response of the subsequent stimulus
(for the model with only exponential adaptation, the time con-
stant of recovery is very small compared to the duration of the
signal of 50 ms). Because the onset responses were more promi-
nent for higher levels than for levels near or below threshold,
higher-level responses showed more suppression than lower-
level responses for the model with only exponential adaptation.
Note that it was not possible to make analogous comparisons
using a model with only power-law adaptation because such a
model does not exhibit appropriately saturating rate-level curves.

Each rate-level function was normalized to the minimum and
maximum of the corresponding fitted curve, as shown in Figure 5
(middle row). The rate-level functions were shifted toward the
HPR levels of the corresponding distribution, implying an adap-
tation in the dynamic range of the neuron in addition to the
classical firing-rate adaptation phenomenon, which is character-
ized by a reduction in rate without a change in the operating
point. However, pure exponential adaptation in the synapse
model showed only classical firing-rate adaptation, with no no-

ticeable shift in the dynamic range (Fig. 5B). Thus, the adaptation
in dynamic range observed in Figure 5C mostly resulted from the
power-law adaptation in the model.

The sound level that elicits 50% of the normalized rate (L50) is
shown in the lower panels of Figure 5 as a function of mean HPR
level. For physiological data and model responses (except with
only exponential adaptation in the synapse), the dynamic range
shifted almost linearly with the mean of the HPR. The slope of
this function quantifies the strength of adaptation in the dynamic
range of the fiber. Similar to the results reported in Wen et al.
(2009), rate-level functions of the model fiber to tones exhibited
higher slope than the corresponding responses to broadband
noise stimulus. The rate of shift produced by the AN model was
smaller than the rate of shift reported in the physiological exam-
ple shown here (Wen et al., 2009); recall that the model was not
fine tuned to match the responses of any particular AN fiber. The
model, nevertheless, captured the main characteristics of the re-
sponses to the dynamic stimuli. In general, model responses were
similar across CFs and SRs (the model responses in Fig. 6 are
shown for a fiber with different CF and SR than in Fig. 5). The
model rate of shift to CF tones (0.20 dB/dB) was in the lower
range of the physiological data (which varies from 0.16 to 0.47
dB/dB), whereas the shifts in the model responses to broadband
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noise (0.19 dB/dB) were near the middle
of the range of AN data (0.05– 0.39
dB/dB).

To quantify the precision of level cod-
ing based on the discharge rates of a single
AN fiber, Colburn et al. (2003) used a sen-
sitivity index referred to as the “sensitivity
per decibel” (	� in dB), which is defined as
the slope of the mean firing rate divided by
the SD of rate, assuming that no substan-
tial change occurs in the SD for the small
increment in level. Figure 6 illustrates the
different stages of computation of 	� from
the responses of an AN fiber (550 Hz,
HSR) to broadband stimuli. The rate-level
functions of this fiber are shown in Figure
5D. The slopes were computed from the
fitted rate-level functions for four distri-
butions of sound levels and are shown as a
function of sound level in Figure 6A. In
general, the magnitude of peak slope de-
creased with HPR mean level, and the lo-
cation of peak was also shifted toward the
HPR levels. Figure 6B shows the SD of
rates as a function of sound level. The SDs
were smoothed using a 7-point moving
average method. Trends in the rate SDs
were similar to those for mean rate, that is,
SDs grew quickly with sound level and
then saturated at higher levels. Although
the dynamic range of rate SDs was shifted
toward the HPR levels, there was no sub-
stantial difference across sound-level dis-
tributions when plotted against mean
firing rate rather than sound levels (results
not shown). For each distribution, the
sensitivity index was computed at each level using smoothed SDs,
and the resulting 	� is shown as a function of sound level in Figure
6C. The level at which the peak of the sensitivity occurred was
shifted toward the HPR mean level. Based on the rate informa-
tion available in the responses of a single AN fiber, the neural
just-noticeable difference (JND) in level can be approximated by
the reciprocal of 	� (Colburn et al., 2003). Figure 6D shows the
minimum neural JND in level (the inverse of the peak of 	�) and
the JND at HPR mean level (the inverse of 	� at HPR mean level)
as a function of HPR mean level. The responses to two sound-
level distributions with HPR means at 48 and 60 dB SPL showed
neural JNDs (at their respective HPR mean levels) close to the
minimal JNDs, implying that these dynamic stimuli would be
optimally coded by this particular AN fiber. On the other hand,
the neural JNDs were very large at HPR means of 72 and 84 dB
SPL because, in response to these stimuli, the shift in the dynamic
range was not sufficient and also the mean firing rates were satu-
rated within the HPR. These results are consistent with compa-
rable analyses of the AN responses (Wen et al., 2009). Although
the minimal neural JNDs for both measured and model AN fibers
were large compared to psychophysical JNDs (Viemeister, 1983,
1988), it is important to note that the peripheral auditory
system is clearly a multiple-channel structure, and thus cross-
channel combination of information might be required to
relate psychophysical level discrimination to peripheral
physiology.

Responses to switching stimulus
Figure 7 shows the responses of a model AN fiber (medium SR
and CF at 10 kHz) to the switching stimulus, in which the
stimulus-level statistics were abruptly varied between two distri-
butions. The sound levels spanned from 10 to 96 dB SPL and the
two distributions of noise stimuli with HPR means at 75 and 51
dB SPL were alternated every 5 s. To study the dynamics of adap-
tation of the mean firing rate, discharge rates were averaged
across all switching periods and are shown in Figure 7A. The time
constant was determined separately from each half-period of the
switching stimulus by fitting an exponential function. After
switching, adaptation in mean firing occurred within several
hundreds of milliseconds. Also, adaptation to an increase in
mean sound level occurred more rapidly than to a decrease in
mean sound level (137 ms vs 294 ms), consistent with observa-
tions from the physiological studies (Dean et al., 2008; B. Wen,
personal communication). AN responses to a simple increment/
decrement paradigm also show similar behavior (Smith et al.,
1985).

Figure 7B shows the rate-level functions of the fiber corre-
sponding to each distribution of sound levels of the stimulus; for
comparison, the baseline rate-level function is also presented. For
consistency with the physiological studies (Dean et al., 2008),
rate-level functions of the model fiber were obtained during the
final 3 s of 75 dB and 51 dB half-periods of the switching stimulus.
To reveal how quickly dynamic-range adaptation occurred, rate-
level functions of the model fiber were also obtained for four
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consecutive 300 ms time epochs immediately after the switch for
both distributions of sound levels. These 300 ms rate-level func-
tions are shown only for the HPR levels due to the lack of a
sufficient number of repetitions for the sound levels outside the
HPR (during a 300 ms epoch, there were �50 repetitions of every
sound level from the HPR compared to only �3 repetitions out-
side the HPR). For both distributions, the dynamic-range adap-
tation occurred within �1 s after the switch. This observation has
implications for real world listening conditions; if the dynamic-
range adaptation were too slow, neural responses would not ad-
just in time to achieve the improvement in coding of the HPR
levels. In contrast to the asymmetry reported in the time course of
adaptation of the mean firing rate, there was no substantial dif-
ference in the time course of adaptation of the rate-level function
for the switches in the level distribution in the upward or down-
ward direction, consistent with physiological results (Dean et al.,
2008; B. Wen, personal communication).

Finally, to investigate whether the model responses had any
slow components of adaptation, the responses of the model are
plotted as a function of time (Figure 7C). Each point in the curve
represents a rate response measured over a switching period (10
s). A slow component of adaptation was evident in the model AN
responses, whereas in the IC, only 36% of the recorded neurons
showed this long-term adaptation (Dean et al., 2008). Also the
time constant of this slow adaptation was smaller in the IC than in
the AN model responses.

Dynamic-range adaptation for static versus dynamic stimuli
Smith (1977) observed a constant decrease in AN firing rate with-
out any noticeable shift in the dynamic range in response to a
brief probe tone preceded by a fixed-level adapting tone. The
stimulus paradigm included a long silent interval (�1–2 s) be-
tween each presentation of the stimulus pair to avoid any long-
term adaptation effects. However, other AN studies (Costalupes
et al., 1984; Gibson et al., 1985) that used a continuous back-

ground stimulus reported a decrease in
firing rate along with a substantial shift in
the dynamic range. This shift in the dy-
namic range was attributed to two-tone
suppression based on the observation that
in a simultaneously gated background
stimulus (with a long silent interval be-
tween presentations), the CF tone rate-
level function produced a similar shift in
the dynamic range with no substantial de-
crease in maximum firing rate (Costa-
lupes et al., 1984). However, a small but
significant shift in the dynamic range and
a decrease in firing rate were also observed
in response to an “inversely gated” back-
ground stimulus (i.e., similar to the base-
line paradigm except the silent period
was replaced by the static background).
Gibson et al. (1985) quantified the
strength of this dynamic-range adapta-
tion by the rate of shift (L50 slope, dB/dB),
and the values were largely within the
range reported for the dynamic stimuli
(Wen et al., 2009). This observation raises
a possibility that the same mechanism
may underlie the dynamic-range adapta-
tion for both dynamic stimuli and for an
“inversely gated” static background.

The stimuli used in this study had no silent periods between
successive levels of the stimulus, and the sound levels varied rap-
idly (every 50 ms). Therefore, in addition to the adaptation pro-
duced by the response history (i.e., short- and long-term
adaptations), the rapid modulation of the stimulus amplitude
could also contribute to the observed dynamic-range adaptation.
To examine the contributions of these two mechanisms, AN
model responses were simulated for an “inversely gated” static
background. This paradigm effectively removed the rapid mod-
ulation of the stimulus amplitude (50 ms vs 350 ms). For com-
parison with the rate-level functions for the dynamic stimuli, the
background levels were chosen as the mean of the HPR levels (36,
48, 60, and 72 dB SPL). Figure 8 shows the rate-level functions for
the dynamic stimuli with different HPRs (dotted line, fitted func-
tions from the top panel of Fig. 5C) and also for the stimuli with
an “inversely gated” static background of similar mean levels
(solid lines with symbols). The rate-level functions were essen-
tially the same, suggesting that the decrease in firing rate and the
shift in the sensitivity produced by dynamic stimuli resulted
mainly from the adaptation produced by previous responses (due
to the power-law adaptation).

The property of AN “additivity” refers to the fact that the
change in firing rate (over a window of �10 ms or longer) in
response to an increment/decrement in stimulus level does not
greatly depend on the time between the onset and the subse-
quent time of the change in level. This property must hold true
for the AN responses in the present study because the rate
responses were computed over a window of 50 ms. The AN
model used in this study also successfully captured this phe-
nomenon [Zilany et al. (2009), their Fig. 9]. Thus, it is unlikely
that the fluctuation of sound levels, at least for the stimulus
durations used in this study, contributed to dynamic-range
adaptation. This argument is further supported by the obser-
vation that, despite the rapid modulations of stimulus ampli-
tude, the responses of the model fiber with only exponential
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adaptation did not show any dynamic-range adaptation other
than classical firing-rate adaptation.

Discussion
In this study, AN responses to dynamic stimuli with different
HPRs were simulated in an effort to identify the potential source
and mechanisms that underlie the adaptation in dynamic range.
AN fibers, regardless of their CFs or SRs, show dynamic-range
adaptation by shifting their rate-level function toward the
most frequently occurring sound levels for both CF tone and
broadband noise stimulus. The adjustment in the dynamic
range significantly improves the coding precision of the HPR
levels of the dynamic stimulus (Dean et al., 2005; Wen et al.,
2009). Adaptation of the mean firing rate was faster compared
to the time course of adaptation of the dynamic range; how-
ever, these time courses were independent of the durations
over which sound levels (50 ms) or sound-level statistics (5 s)
varied. Inclusion of power-law-like dynamics in the phenom-
enological model of the IHC–AN synapse successfully ex-
plained much of the dynamic-range adaptation, including the
time course of adaptation.

Implications for the dynamic-range problem
Because natural stimuli vary over a wide range of timescales, it is
difficult to predict what stimulus duration or level will be en-
countered in any given situation. The best way to deal with such
variety is to let the temporal statistics of the stimuli encountered
set the dynamics of adaptation. Power-law adaptation, in which
the influence of past activity decays but is not forgotten, inher-
ently possesses this flexibility, and thus the recovery time is not
fixed but is scaled with the duration and strength of the stimulus.

Although the shifts in the AN dynamic range seem inade-
quate to provide robust coding of changes in sound levels over
a wide range, higher auditory centers can further extend the
sensitivities of the neurons (Dean et al., 2008; Watkins and
Barbour, 2008). The rate-level functions of AN fibers are
universally monotonic, whereas nonmonotonic rate-level
functions arise centrally. Neurons with monotonic and non-
monotonic rate-intensity functions may use different strate-
gies for encoding a wide range of input levels. Cortical neurons
with monotonic rate-intensity functions exhibit dynamic-

range adaptation and are thus able to encode higher sound
levels at the expense of encoding low sound levels, whereas
nonmonotonic neurons in auditory cortex (which are inten-
sity tuned) maintain fidelity for encoding relatively lower
sound levels (Watkins and Barbour, 2008). Together these
neurons can represent a wider range of sound levels spanning
the dynamic range of mammalian hearing.

In contrast to the adaptation in an individual neuron, Pouille
et al. (2009) argued that the recruitment of different sets of neu-
rons as a function of the input strength would enable the popu-
lation as a whole to represent a wider input range. They found
that the amplitude of the EPSC necessary for rodent hippocampal
pyramidal cells to reach the threshold for an action potential was
dynamic and increased with the strength of the input. This dy-
namic response property was achieved instantaneously through a
feedforward inhibitory circuit, rather than relying on the previ-
ous history of the network through a negative feedback mecha-
nism (Pouille et al., 2009).

Mechanisms for dynamic-range adaptation
Although power-law dynamics are increasingly common in de-
scriptions of sensory adaptation, their physical basis remains un-
known. There is no direct evidence to conclusively establish the
mechanism underlying AN dynamic-range adaptation; however,
a number of potential sources can be speculated on the basis of
the characteristics of adaptation. Stimulation of medial olivoco-
chlear (MOC) efferents (Guinan, 2006) and two-tone suppres-
sion (Javel, 1981; Delgutte, 1990) can shift the dynamic range of
AN fibers; however, they are discounted as being a potential
source because of their dependence on cochlear amplifier gain
(Patuzzi, 1996, Guinan, 2006), which varies across CF (Cooper
and Yates, 1994). Also, the effects of MOC efferents that directly
modulate the outer-hair-cell activity are generally weak under
anesthesia. With regard to the time course of adaptation, MOC
efferent effects increase and decay with mean time constants of
�277 and �159 ms, respectively (Backus and Guinan, 2006),
which are within the range of dynamics reported for the AN
and IC responses to a switching stimulus. However, the AN
and IC data showed the opposite trend with a significantly
faster adaptation to an increase in mean level than to a de-
crease in mean level. The lateral olivocochlear efferent, which
also modulates AN fiber activity, is a less likely mechanism
because of their sluggish dynamics (operation in the range of
minutes) (Guinan, 2006).

At the level of the AN, the source of adaptation is generally
associated with the IHC–AN synapse complex, although adapta-
tion has also been reported in the voltage responses of IHCs (Kros
and Crawford, 1990) and in the AN fiber membrane (Zhang et al.,
2007). Several studies of IHCs have found that the exocytosis of
vesicles from the ribbon synapse exhibits multiple kinetic com-
ponents (Moser and Beutner, 2000; Spassova et al., 2004;
Nouvian et al., 2006). Although the depletion of a “readily releas-
able” pool of neurotransmitters occurs on a timescale similar to
AN short-term adaptation, longer depolarization can also yield
slower kinetic components of exocytosis. Using simultaneous re-
cordings from IHCs and AN fiber terminals, Goutman and Glo-
watzki (2007) observed that during 1 s depolarizations, the time
course of transmitter release was better described by three expo-
nential transient components (with time constants of �2, �18,
and �176 ms) in addition to a sustained component. Spassova et
al. (2004) also argued that adaptation and recovery from adapta-
tion of sound-evoked chick cochlear nerve discharges follow time
courses similar to the exhaustion and recovery of the “readily
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releasable” pool. On the other hand, endocytosis (i.e., recycling of
vesicles) that ensures the subsequent supply of vesicles occurs on
a longer timescale (�7.5 s) (Moser and Beutner, 2000). The pres-
ence of multiple contributing processes (e.g., depletion of
“readily releasable” pool, replenishment from cytoplasmic pool,
endocytosis, etc.) with a diverse range of time constants is con-
sistent with the success of power-law dynamics in describing the
overall adaptation.

In addition to the presynaptic mechanisms, postsynaptic re-
ceptor desensitization can also contribute to adaptation (Raman
et al., 1994; Goutman and Glowatzki, 2007). Spike-rate adapta-
tion was also observed in AN fiber responses to stimulation by a
cochlear implant using high-rate pulse trains (Zhang et al., 2007).
Some studies suggest that the site of power-law adaptation has
been located in the conversion of the receptor potential into
action potentials (French and Torkkeli, 2008). In cockroach
tactile spine, French (1984) observed no detectable adaptation
in the receptor potential, whereas power-law adaptation exists
in the spike trains of the associated somatosensory neurons
(Chapman and Smith, 1963). Even direct electrical stimulation,
which bypasses the mechanotransduction stage, produced the
same power-law adaptation (French, 1984), suggesting that
postsynaptic membrane dynamics might underlie the ob-
served adaptation.

Most of the IHC studies and the electrical stimulation ex-
periments mentioned above recorded the responses to simple
stimuli and investigated the behavior at the onset or during the
stimulus period. However, there is an abundance of experi-
mental AN data describing adaptation to various acoustic
stimulus features, such as responses after stimulus offset,
forward-masking, and increment/decrement paradigms. Re-
cordings from different sites using these paradigms would
help to elucidate the degree of contribution by synaptic and
membrane mechanisms to the adaptation observed with
acoustic excitation.
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