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A novel signal-processing strategy is proposed to enhance 

speech for listeners with hearing loss. The strategy focuses on 
improving vowel perception based on a recent hypothesis for 
vowel coding in the auditory system. Traditionally, studies of 
neural vowel encoding have focused on the representation of 
formants (peaks in vowel spectra) in the discharge patterns of the 
population of auditory-nerve (AN) fibers. A recent hypothesis 
focuses instead on vowel encoding in the auditory midbrain, and 
suggests a robust representation of formants. AN fiber discharge 
rates are characterized by pitch-related fluctuations having 
frequency-dependent modulation depths. Fibers tuned to 
frequencies near formants exhibit weaker pitch-related 
fluctuations than those tuned to frequencies between formants. 
Many auditory midbrain neurons show tuning to amplitude 
modulation frequency in addition to audio frequency. According 
to the auditory midbrain vowel encoding hypothesis, the 
response-map of a population of midbrain neurons tuned to 
modulations near voice-pitch exhibits minima near formant 
frequencies, due to the lack of strong pitch-related fluctuations at 
their inputs. This representation is robust over the range of noise 
conditions in which speech intelligibility is also robust for 
normal-hearing listeners. Based on this hypothesis, a vowel-
enhancement strategy has been proposed that aims to restore 
vowel-encoding at the level of the auditory midbrain. The signal-
processing consists of pitch tracking, formant-tracking and 
formant enhancement. The novel formant-tracking method 
proposed here estimates the first two formant frequencies by 
modeling characteristics of the auditory periphery, such as 
saturated discharge-rates of AN fibers and modulation tuning 
properties of auditory midbrain neurons. The formant 
enhancement stage aims to restore the representation of formants 
at the level of the midbrain by increasing the dominance of a 
single harmonic near each formant and saturating that frequency 
channel. A MATLAB implementation of the system with low 
computational complexity was developed. Objective tests of the 
formant-tracking subsystem on vowels suggest that the method 
generalizes well over a wide range of speakers and vowels.  
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formant detection, formant tracking, formant estimation, 
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I. INTRODUCTION 
peech sounds are commonly classified into two major 
categories: vowels and consonants. Vowels are typically 

associated with higher energy and stronger periodicity. The 
relative importance of vowels and consonants in speech 
perception has been the topic of multiple studies. In studies 
using spoken sentences in the absence of background noise, 
vowels have been shown to play a more important role in 
word recognition than consonants [1-3]. In the presence of 
noise, vowels carry more speech information, possibly 
because formant cues are robust even in noise [4]. 

Formant frequencies correspond to peaks in the short-time 
energy spectra of voiced sounds, arising due to the resonances 
of the vocal tract. Formants are one of the major cues in vowel 
perception [5-7], along with other factors such as spectral 
shape [8, 9] and formant ratio [10, 11]. Multi-dimensional 
analysis of the perceptual vowel space has ascertained that the 
two dimensions that account for the most variance in the 
perceptual space correspond to the first two formant 
frequencies [12-14]. Investigations into the auditory 
neurophysiological bases of vowel perception [15] provide 
insight into how formant cues are encoded in the lower 
auditory system. Understanding vowel-encoding in the healthy 
and impaired auditory systems can help hearing-aid 
researchers identify specific problems. 

Traditionally, vowel-encoding studies have focused on 
representations of formant cues in the output discharge-rates 
of auditory-nerve (AN) fibers [e.g., 16]. An AN fiber can be 
approximated as a band pass filter (Fig. 1(a)) tuned to a 
characteristic frequency (CF). Young and Sachs [16] and 
Delgutte and Kiang [17] showed that for conversational sound 
levels, discharge-rates of a population of AN fibers plotted as 
a function of CF are maximum at the formant frequencies of 
vowel stimuli. AN fiber responses synchronize to the fine 
structure of stimuli in the narrow band of frequencies around 
their CFs and also synchronize to envelope fluctuations. 
Voiced sounds have periodic spectra associated with a 
fundamental frequency (also known as voice pitch, or F0). 
Voiced sounds result in fiber discharge-rates that fluctuate at a 
frequency close to F0 [17], and the strengths of these 
fluctuations vary across the population of fibers. The 
discharge-rates of fibers tuned close to a formant exhibit weak 
fluctuations at F0 due to dominance of the harmonic closest to  
the spectral peak, referred to as synchrony capture (Fig. 1b, 
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left panel). AN fibers tuned to frequencies intermediate to 
formants respond with strong fluctuations in their discharge-
rates (Fig. 1b, right panel) due to “beats” between neighboring 
harmonics. Studies of vowel-encoding have traditionally 
focused on the synchrony of AN fiber discharge-rates to fine 
structure and on formant representation in the pattern of 
discharge-rates of a population of AN fibers. However, most 
proposed neural encoding strategies do not yet fully account 
for the robust nature of speech perception across a wide range 
of sound levels and in noise. 

Studebaker, et al. [18] showed that speech recognition 
scores increase with sound pressure levels (SPL) above 
audibility thresholds and are highest at about 80 dB SPL, 
beyond which scores decrease. However, neural coding of 
formants based on the discharge-rates of a population of AN 
fibers deteriorates with increasing input sound levels [16]. 
Everyday communication exposes listeners to a large dynamic 
range of speech and noise levels, and thus it is important to 
understand the underlying cues that make neural coding robust 
in these conditions. 

A recent vowel-coding hypothesis [15] focuses on neural 
coding of vowels at the level of the auditory midbrain. Many 
midbrain neurons are not only tuned to the energy within a 
narrow range around their best audio frequency or best 
frequency (BF), but are also tuned to the frequency of 

amplitude modulations [19-21]. That is, a midbrain neuron 
responds maximally to energy near its BF if the energy 
modulation rate is close to the neuron’s best modulation 
frequency (BMF) (Fig. 3). Many modulation-tuned midbrain 
neurons in a wide range of species have BMFs between 10 and 
300 Hz [reviewed in 22], which includes the range of voice 
pitch. According to the midbrain vowel-coding hypothesis, in 
addition to energy, the pitch-dependent strength of 
fluctuations in AN discharge-rates is significant in shaping 
midbrain neural responses. Also, as a consequence, a midbrain 
neuron with a BMF close to F0, exhibits lowered response 
rates if its BF is close to a formant and exhibits elevated 
response rates if its BF is between formants (Fig. 1c). The 
midbrain vowel-coding hypothesis is robust over a wide range 
of sound levels and tapers off for sound levels above 80 dB 
SPL. This neural coding strategy deteriorates for noise 
interference at signal-to-noise ratios consistent with listeners 
with normal hearing. 
One of the underlying aims of any auditory neural encoding 
theory is to guide future hearing-aid research towards 
improving cues most important for normal hearing. It is thus 
also important to understand how a vowel-encoding scheme 
would account for the decrease in vowel discrimination in 
listeners with hearing loss. Sensorineural hearing loss is 
characterized in part by elevated thresholds and reduced 

 
Fig. 1. (a) The simplified spectrum of a two-formant vowel is shown. Thick 
vertical lines are the harmonics of the fundamental frequency (F0). Spectral 
peaks at frequencies F1 and F2 are the formants for this vowel. Bandpass 
characteristics of a healthy auditory periphery are superimposed using gray, 
red and green lines. The bandwidths have been exaggerated for clarity. (b) 
The left panel shows the nearly-sustained discharge rates of an Auditory 
Nerve (AN) fiber with a characteristic frequency (CF) near F1 (in red). The 
right panel shows the discharge rates of an AN fiber with a CF between F1 
and F2 (in green). The discharge rates in both panels fluctuate at the pitch 
period, but the left panel is more sustained due to the presence of a dominant 
harmonic at the input. The AN responses were simulated using the Zilany et 
al. (2009) AN model. (c) Schematic of the response of a population of 
auditory midbrain neurons tuned to modulations at F0. The response shows 
dips in the response of neurons having a best frequency near the formants. 
 

 
Fig 2. (a) Superimposed over the same two-formant vowel as Fig. 1, the 
bandpass characteristics of a highly impaired auditory periphery are shown. 
Note the broader bandwidths as compared to those in Fig. 1 due to hearing 
impairment. (b) The left panel shows the loss of the saturated characteristics 
of discharge rates of the AN fiber with a CF near F1 (in red) in an impaired 
auditory periphery, due to elevated thresholds. The right panel shows the 
discharge rates of an AN fiber with a CF between F1 and F2 (in green). The 
envelopes of both discharge rates are similar in depth. The AN responses 
were simulated using the Zilany et al. (2009) AN model. (c) A schematic of 
the response of a population of auditory midbrain neurons tuned to 
modulations at F0 in the impaired auditory system. The response no longer 
shows large dips in the response of neurons having best frequency near 
formants, indicating deterioration in vowel-coding. There is an overall loss of 
contrast between the response of neurons tuned near formants and those 
tuned between formants. 
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frequency selectivity in the peripheral auditory system. To 
elicit fiber responses comparable to an un-impaired auditory 
periphery, higher input sound pressure levels are required. In 
addition, fibers respond to energy over a broader range of 
frequencies centered on their CF (Fig. 2a). A fiber with 
broader tuning and more linear response properties responds 
with stronger fluctuations in its discharge-rates, even when its 
CF is close to a formant, because the dominance of the 
harmonic closest to the spectral peak diminishes (Fig. 2b). 
Therefore, further up the auditory pathway, according to the 
midbrain vowel-coding hypothesis, midbrain neurons tuned 
near formant frequencies would show responses similar to 
neurons tuned between formants due to the strongly 
modulated envelope at their inputs. In other words, hearing 
loss results in a loss of contrast between the rate fluctuations 
of these neurons. Recall that, in an unimpaired auditory 
system, a midbrain neuron tuned to voice pitch exhibits a low 
response if its BF is near a formant. Consequently, without 
these “dips” in the midbrain neural response map, this 
encoding scheme predicts a reduction of formant information 
for listeners with hearing loss. Therefore, signal-processing 
strategies aimed at the restoration of formant information at 
the level of the auditory midbrain, can potentially lead to 
improvement in vowel discrimination in listeners with hearing 
loss. 
The signal-processing strategy described here is based on the 
midbrain vowel-coding hypothesis. The strategy aims to 
improve vowel discrimination in listeners with hearing loss by 
restoring cues that are important for formant encoding at the 
level of the auditory midbrain. The signal-processing system 
tracks time-varying formants in voiced segments of the input 
and increases the dominance of a single harmonic near each 
formant in order to decrease F0-related fluctuations in that 
frequency channel. 

II.  METHODS 
This section describes the stages of the vowel-enhancement 
system. The general schematic of the vowel-enhancement 
system is shown in Fig. 4. The system consists of a speech 
analysis stage and a formant enhancement stage. The speech 
analysis stage performs various pre-processing tasks and 

estimates the fundamental frequency (F0) and the first two 
formants (F1 and F2) of the speech frame. The formant 
enhancement stage then amplifies the harmonic closest to each 
formant estimate, thereby increasing its dominance. 

A. Signal Analysis 
1) Signal Pre-processing: In the MATLAB-based 

implementation of the vowel-enhancement system, the 
incoming speech signal was divided into 32-ms long frames, 
with 50% overlap across successive frames. For the sampling 
rate of 8000 Hz, this translated into a frame length of 256 
samples. First, DC offset removal was performed on the 
current frame, followed by windowing: 

𝑠zm(𝑛) = 𝑠(𝑛) − 𝑠̅(𝑛), 𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 𝑁 − 1,𝑛 ∈ ℤ (1) 

𝑤(𝑛) = 0.5 �1 − cos
2𝜋𝑛
𝑁 − 1

� (2) 

𝑟(𝑛) =  𝑠zm(𝑛)𝑤(𝑛) (3) 

where 𝑠(𝑛) is a sequence representing the current input frame; 
𝑛 is an index that takes integer values between 0 and N-1; N is 
the frame length (in number of samples); 𝑠̅(𝑛) is the mean of 
the sequence 𝑠(𝑛) over the frame; 𝑠zm(𝑛) is the zero-mean 
sequence obtained after DC removal; and 𝑟(𝑛) is the sequence 
obtained after windowing 𝑠zm(𝑛) using a Hanning window 
𝑤(𝑛) of length N. 

2) F0 Estimation: Voiced regions of speech (e.g., vowels) 
are associated with a pitch and a set of formants. The F0 
estimation stage identifies the current frame as being either 
voiced or unvoiced, and estimates F0. Many F0 detection 
algorithms employ methods such as autocorrelation, average 
magnitude difference function, zero-crossing rates, etc., to 
estimate the principal period of a speech frame [reviewed in 
23]. In the work presented here, a MATLAB implementation 
of an autocorrelation-based pitch extraction algorithm was 
used from the Speech and Audio Processing Toolbox [24]. 

Typical autocorrelation-based pitch extraction algorithms 
compute a running autocorrelation function (ACF) for each 
frame within a range of time delays. The frame’s periodicity is 
indicated by the peaks in 𝑐𝑟𝑟(𝛿) and the time delays (𝛿) 
corresponding to these peaks indicate the possible pitch 
periods (Fig. 5). The range of possible pitch periods was 
limited to 2.5 ms - 14.3 ms, corresponding to a plausible voice 
pitch range from 70 Hz to 400 Hz [25]. Another modification 

 
Fig. 3. Schematic of average-rate characteristics of a modulation-tuned 
auditory midbrain neuron. This figure shows the response to narrowband 
stimuli having energy close to the neuron's best audio frequency - or best 
frequency (BF) but modulated at different modulation frequencies. The 
modulation frequency at which the auditory midbrain neuron's response is 
maximum is its best modulation frequency (BMF). 

 
Fig. 4. Schematic of the vowel enhancement system. The system is divided 
into a Speech Analysis stage and a Formant Enhancement stage. The sub-
stages of the Speech Analysis stage are also shown. Solid arrows indicate 
flow of the speech signal and dashed arrows indicate flow of calculated 
parameters such as pitch and formants. 
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was made to the ACF calculation in order to reduce the 
tapering off of the function due to decreasing overlap lengths 
at large values of 𝛿. This tapering effect was reduced by using 
a variation of the ACF in which the sum is divided by the 
length of overlap (𝑁 − 𝛿):  

𝑐𝑟𝑟(𝛿) =  � � 𝑟(𝑛) 𝑟(𝑛 + 𝛿)
𝑁−1−𝛿

𝑛=0

� (𝑁 − 𝛿)�  (4) 

where 𝑐𝑟𝑟(𝛿) is the autocorrelation sequence of the current 
frame 𝑟(𝑛); 𝛿 is the lag or delay (in samples); and N is the 
frame length (in samples). 

The distinction between frames of interest (voiced frames) 
and silent or unvoiced frames was based on a clarity metric 
[26]. If for a particular frame, 𝑐𝑟𝑟(𝛿) was found to be 
maximum at 𝛿p, then clarity of that frame was defined as the 

ratio 𝑐𝑟𝑟�𝛿p�
𝑐𝑟𝑟(0)

. High clarity indicates frames with voiced speech 
whereas low clarity indicates frames with unvoiced speech or 
silence. A frame’s F0 estimate (F0est) was set to 0 if its clarity 
was below a threshold. In the formant-tracking stage, frames 
with F0est equal to zero are considered to be unvoiced frames. 
A suitable threshold value for clarity for speech sentences in 
quiet was empirically found to be 0.50. 

3) Formant Tracking: In this stage, the first two formants 
are estimated for the current voiced frame. Formant-tracking is 
not performed for frames with clarity below threshold. This 
stage replicates salient aspects of physiological auditory 
processing, such as the bandpass filtering of the auditory 
periphery, saturated discharge-rates of AN fibers, and the 
tuning of midbrain neurons to F0-related modulations. Sub-
stages within the formant-tracking stage (Fig. 6) are described 
next. 

a) Auditory filtering: The speech frame, 𝑟(𝑛), is 
decomposed into multiple bandpass channels, 𝑥(𝑓,𝑛), by an 

auditory filterbank comprising a set of bandpass filters with 
center frequencies based on the equivalent rectangular 
bandwidth (ERB) scale [27]. An auditory filterbank reflects 
properties of the basilar membrane such as the logarithmic 
physical mapping of frequencies, and frequency-dependent 
bandwidths. These filterbanks consist of approximately 
logarithmically-spaced filters with bandwidths increasing with 
center frequency. The center frequencies of the 44-channel 
filterbank used here ranged from 70 Hz to 3700 Hz. The lower 
limit of this frequency range was chosen to match the lower 
limit of the plausible range of human voice pitch [25]. 

b) Saturating non-linearity: Each filter channel of the 
current frame is scaled on a sample-by-sample basis using a 
saturating nonlinearity. The nonlinearity serves to replicate the 
level-dependent discharge-rate saturation characteristics of 
AN fibers. Saturation is critical for the enhancement algorithm 
as it influences the degree of amplitude modulation within the 
channel. The sigmoid curve used was a Boltzmann function of 
the form: 

𝑥𝑛𝑙(𝑓,𝑛) =  
𝐴1 − 𝐴2

1 + 𝑒𝑥(𝑓,𝑛)𝛾(𝑓) + 𝐴2 (5) 

where 𝑥𝑛𝑙(𝑓,𝑛) is the output of the nonlinearity for the 
bandpass-filtered channel 𝑥(𝑓,𝑛) with center frequency 𝑓; 𝐴1 
and 𝐴2 are the lower and upper limits of the nonlinearity and 
were fixed at -1 and 1 respectively; 𝛾(𝑓) is the slope of the 
sigmoid curve and depends on the center frequency of the 
current channel. 𝛾(𝑓) was determined using a frequency-
dependent source spectrum threshold function based on a 
well-known model of speech production, described next. 

According to the Source-Filter Model of Speech 
Production [5], speech sounds are the result of a source of 
sound energy (e.g., the larynx) and a vocal tract filter. The 
filter’s transfer function is shaped by resonances of the vocal 
tract. In the case of voiced sounds (Fig. 7a), the magnitude 
spectrum of the sound source (known as source spectrum) 
contains peaks at F0 and at its harmonics, with a downward 
slope between 8 and 16 dB/octave [5, 28]. This monotonically 
decreasing source spectrum is then shaped by the transfer 
function of the vocal tract filter (Fig. 7b), resulting in the 
spectral peaks known as formants. Note that F0 is attenuated 
(Fig. 7(c)) by the vocal tract filter and is usually several dB 
less than the level at F1. 

For a frame with index c, the slope of the nonlinearity 
(𝛾𝑐(𝑓)) was calculated such that its output had an overall flat 
envelope for channels near formants, similar to the output 
discharge-rates of AN fibers tuned near formants. The source 
spectrum threshold function (𝑆𝑐(𝑓)) is a nonlinear function of 
frequency and decreases monotonically, similar to the peaks of 
the source spectrum in the source-filter model. 𝑆𝑐(𝑓) was 
defined as: 
 

𝑆𝑐(𝑓) =
10

−𝑚∙𝑙𝑜𝑔2(𝑓 𝐹0⁄ ) − 𝑘
20

𝑥𝑟𝑚𝑠(𝐹0)
 (6) 

where 𝑓 is the center frequency of an auditory filter channel, 
and c is the index of the current frame; 𝐹0 is the voice pitch of 

 
Fig. 5. Autocorrelation functions (ACF) of two 32 ms segments are shown. 
The horizontal axis represents the lag or time delay (δ) and the vertical axis 
represents the value of the ACF (𝑐𝑟𝑟(𝛿)). The region of interest (between 2.5 
ms and 14.3 ms) of the ACF is denoted by a thick curve. This region 
corresponds to the plausible range of voice pitch (70 Hz to 400 Hz). The 
highest peak from this region is considered the candidate pitch period. (a) 
ACF of a 32 ms segment of the vowel portion of the word 'had' is shown. The 
time lag corresponding to the maximum value of the ACF (δp) is the pitch 
period of this vowel (about 6.625 ms). It corresponds to a pitch (F0) of about 
150.9 Hz. (b) ACF of a 32 ms segment of the leading consonant h of the word 
'had' is shown. Note the differences in periodicity and scale of the vertical 
axis in its ACF as compared to that of the voiced segment. 
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the current frame; 𝑥𝑟𝑚𝑠(𝐹0) is the RMS value of the filter 
output whose center frequency is closest to F0est (denoted as 
F0 Channel Select in Fig. 6); 𝑚 is the source spectrum slope 
(in dB/octave); and 𝑘 (in dB) is a factor employed to partially 
offset the attenuation at F0 due to the vocal-tract filter. 
Suitable values of  𝑚 and 𝑘 were empirically determined (-9 
dB/octave and 6 dB respectively) such that the RMS values of 
channels near formants remain above the source spectrum 
threshold value (Fig. 7(c)), and thus result in those channels 
being saturated to a higher degree by the sigmoid function 
than channels away from formants (Fig. 8). 

The frequency-dependent slope 𝛾𝑐(𝑓) of the nonlinearity 
was obtained using the following equation: 

𝛾𝑐(𝑓) = 𝑙 ∙ 𝑆𝑐(𝑓) (7) 

where 𝑙 is a constant that controls the influence of 𝑆𝑐(𝑓) on 
the saturating nonlinearity. Decreasing 𝑙 results in more 
aggressive saturation. In the current implementation, the value 
of 𝑙 was set to 1. 

c) Envelope extraction: In this stage, the envelope of each 
channel was obtained by removing the fine structure of the 
output of the nonlinearity (𝑥𝑛𝑙(𝑓,𝑛)) with a full-wave 
rectification followed by low-pass filtering with a cutoff 

frequency of 400 Hz with a 50th order FIR filter. The signal 
𝑒𝑛𝑙(𝑓,𝑛) was then obtained by performing DC offset removal 
on the envelope of the signal. This was done in order to 
remove the influence of overall energy differences between 
channel envelopes before calculation of the pitch-related 
channel strengths in the next stage. 

d) Modulation filtering: Next, modulation filtering was 
performed to simulate the modulation-tuning of auditory 
midbrain neurons. Each channel envelope was passed through 
a narrow bandpass filter centered at F0 to extract the signal 
components having frequency near F0. Then, in order to 
quantify the relative strengths of F0-related modulations 
across all channels, a measure 𝑀𝑟𝑚𝑠(𝑓) was obtained by 
calculating the RMS of each channel envelope’s F0 
component. 𝑀𝑟𝑚𝑠(𝑓) is thus a sequence indexed on the center 
frequency of each channel of the auditory filterbank.  Due to 
the higher degree of saturation near formants, frequencies 
corresponding to the minima of 𝑀𝑟𝑚𝑠(𝑓) were closest to the 
actual formants. 

e) F1/F2 determination: Next, 𝑀𝑟𝑚𝑠(𝑓) was smoothed 
using a 5-point symmetric, exponentially weighted smoothing 
kernel prior to locating its local minima. Center frequencies 
corresponding to the minima were selected as candidate 
formants and sorted in ascending order of frequency. In 
addition to saturation of channel outputs, minima in 𝑀𝑟𝑚𝑠(𝑓)  

 
Fig. 6. Schematic of Formant Estimation. The inputs to this stage are the speech frame 𝑟(𝑛) from signal pre-processing and F0est from the pitch estimation stage. 
𝑟(𝑛) is filtered into N bandpass channels using an auditory filterbank. 𝑥(𝑓𝑖 ,𝑛) denotes the bandpass component of 𝑟(𝑛) centered at the frequency 𝑓𝑖. The signal 
chain for one bandpass channel at an arbitrary center frequency 𝑓𝑖 is shown. Solid arrows represent flow of the speech signal, while dashed arrows represent 
flow of parameters such as pitch and formant estimates. Some, but not all, of the corresponding pathways for other channels have been shown using dotted 
arrows. For the sake of clarity, a few obvious signal paths and operations such as energy criterion and smoothing have been omitted from the schematic. 
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could also be due to very low energy in a particular channel. 
In order to eliminate such spurious minima, an energy 
criterion was imposed using the RMS values of the output of 
the saturating nonlinearity of each channel. A channel having 
an RMS value below the average of those RMS values was 
rejected as a possible formant channel. From the remaining 
values in 𝑀𝑟𝑚𝑠(𝑓), the formant estimates F1est and F2est were 
obtained by choosing center frequencies corresponding to the 
first two values. The formant estimates were thus limited to 
center frequencies of auditory filters. 

B. Formant Enhancement 
This stage utilizes F0est, F1est and F2est provided by the 

speech analysis stage to boost the dominance of a single 
harmonic near F1 and F2. According to the midbrain vowel-
coding hypothesis, deterioration of formant-encoding at the 
level of auditory midbrain neurons can be attributed to 
broadened frequency selectivity properties of an impaired 
auditory periphery, resulting in a reduction in the dominance 
of the harmonic closest to formants. As a logical extension, 
artificially increasing the dominance of a harmonic was 
hypothesized to counter this phenomenon and lead to AN 
discharge characteristics more similar to those in the normal 
ear. 

As shown in Fig. 9, first, the frequencies 𝜈1 and 𝜈2 of two 
harmonics were calculated by finding the integer multiples of 
F0est closest to F1est and F2est. If any formant estimate was 

found to be equidistant from two adjacent harmonics, the 
lower harmonic was chosen. 

Next, two linear-phase narrowband finite impulse response 
(FIR) bandpass filters, centered at 𝜈1 and 𝜈2 respectively, 
having passband gains of g1 and g2, amplified the respective 
harmonics in the current speech frame, 𝑠(𝑛). In the current 
implementation, an FIR filter of order 300 was generated 
using the Kaiser Window method of FIR filter design, using a 
bandwidth of 50 Hz and a stopband attenuation of 25 dB. A 
gain g0 was then applied to the summation in order to account 
for elevated thresholds in listeners with hearing loss. 
Appropriate values of these gains would be determined 
empirically for each subject. The gains g1 and g2 would be 
fixed across time, and selected based on responses to a range 
of vowel sounds. Fig. 10 shows the spectrogram of a speech 
utterance before and after processing by the speech-
enhancement system.  

III. RESULTS 
A non real-time implementation of the system with tunable 

parameters was developed in MATLAB to test the ability of 
the vowel-coding hypothesis to guide a novel formant-tracking 
method and to enhance the discrimination of vowels in 
listeners with hearing loss. 

 The three parameters of the saturating non-linearity in the 
formant-tracking subsystem – 𝑘, 𝑙 and 𝑚 in (6) and (7), were 
deduced empirically using a speech dataset consisting of four 

 
Fig. 7. (a) The spectrum of a sound source with F0=100 Hz is shown. 
Locations of the vertical lines represent harmonic frequencies and their length 
indicates the intensity of the harmonic. The source spectrum slopes (m) 
downwards at a rate of 9 dB/octave starting from F0. (b) The gain versus 
frequency plot of a vocal-tract filter with three spectral peaks is shown. (c) 
The spectrum of the resultant sound is shown. Notice that the intensity of the 
first harmonic (F0) is several dB less than that of the first formant. The 
dashed curve is an example source spectrum threshold function 𝑆𝑐(𝑓) 
calculated for an offset (𝑘) of about 30 dB above the amplitude of F0. For 
clarity, figures and parameters are exaggerated here. 

 
Fig. 8. (a) Waveforms of two bandpass channels are shown, one centered 
near a formant (left panels) and the other centered between formants (right 
panels). (b) The corresponding outputs of the saturating nonlinearity for both 
waveforms are shown. The output of the envelope extraction step is shown as 
thick dashed lines. As shown above, the nonlinearity saturates channels near 
formants to a higher degree than channels away from formants. Thus, the 
envelope (dashed lines) is much flatter for channels near formants. 

 
Fig. 9. Schematic of the formant enhancement stage. Pitch- and formant-
estimates are used to first calculate the harmonics (ν1 & ν2) closest to the 
formants. The input speech frame is then filtered by two narrow bandpass 
filters centered at each calculated harmonic and gains g1 and g2 are applied 
respectively. A gain g0 is applied to the summed signal, which results in the 
output speech frame. ⎿·⏋ denotes rounding-off to the nearest integer. 
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vowels: /ae/ (“had”), /iy/ (“heed”), /uw/ (“who’d”) and /uh/ 
(“hud”) from one male speaker. These recordings were 
provided by Professor J. McDonough (Department of 
Linguistics, University of Rochester). Keeping these 
parameters fixed, the formant-tracking subsystem was then 
evaluated using a vowel database containing 12 English 
vowels spoken by 139 speakers consisting of 93 adults (male 
and female speakers) and 46 children (27 boys and 19 girls). 
The database consists of single-vowel samples of the form 
“hVd”, where V is an English vowel [30]. This annotated 
database contains acoustic measurements of each vowel 
sample including vowel durations, start and stop-times, and 
pitch and formant values at the middle of the vowel duration. 

In order to compare estimates of the formant-tracking 
subsystem to the database formant values, the vowel portion 
from each sample was extracted using the vowel start and end 
times provided by the database. This segment was then 
downsampled to 8000 Hz and was passed through the pitch 
tracking and formant-tracking subsystems. Next, F0est, F1est 
and F2est of the center-most frame were selected. The 
magnitude of the difference between each formant estimate 
and its corresponding known formant frequency from the 
database was normalized using the known F0 value. This 
measure of error gauges the deviation of the estimates in terms 
of number of harmonics, for example, values of this measure 
between 2 and -2 indicate that the formant estimate was 
correct within two harmonics. Vowel utterances for which the 
pitch tracking system wholly failed to identify the center-most 
frame as a voiced frame were not shown. Approximately 
5.42% of the vowel utterances in the database were discarded 
for this reason. 

Fig. 11 shows the performance of the formant-tracking 
subsystem on four vowels from the database that were 

matched to the vowels used to empirically determine the 
subsystem parameters. Each group of four data columns 
represents one vowel and each column within a group 
represents a particular speaker type. Each point on the scatter 
plot represents an individual vowel utterance. The vertical 
position of each point represents the normalized error or 
harmonic distance between a formant estimate and its true 
value. The shaded region represents errors within one 
harmonic of the true formant. The panels on the left (Fig. 11) 
show the full range of F1 and F2 estimation errors. The panels 
on the right zoom in on the region of the errors that lie within 
three harmonics for F1 estimation and eight harmonics for F2 
estimation. Similar to Fig. 11, Fig. 12 shows the performance 
of the subsystem on the remaining 8 vowels from the database. 

Figs. 11 and 12 show that a majority of the errors are within 
two harmonics for F1 estimates and within five harmonics for 
F2 estimates. The results indicate that the formant-tracking 
subsystem generalizes over multiple speakers and vowels 
reasonably well. 

DISCUSSION 
A novel physiologically-based signal-processing strategy 

for vowel enhancement and formant-tracking was developed. 
Targeting formants for improving speech perception has been 
proposed in previous studies, for example, the Contrast-
enhancing frequency shaping method, aimed at producing 
better representation of formants at the output of the auditory-
nerve fiber responses [31]. This method used a time-varying 
high pass filter to amplify the region of the vowel-spectrum 
above F2. Extensions of this method amplified formants above 
and including F2 without applying gains between formants. 
These methods, based on traditional vowel-encoding theories, 

 
Fig. 10. Spectrograms of a single utterance of the word “hud” (/uh/) spoken by a male speaker and the corresponding output of the speech enhancement system 
are shown in the left and right panels, respectively. The vowel onset in the utterance is at about 150 ms. The z-axis (in grayscale) represents signal power (in 
decibels) with lighter colors representing regions of higher power. F1 begins approximately at 750 Hz while F2 begins at 1500 Hz. The trajectories of the first 
two formants are evident in the spectrograms with F1 decreasing in frequency with time and F2 increasing. The spectrogram of the output of the speech 
enhancement system (right panel) shows single harmonics closest to the formant estimates enhanced by gains of 15 dB (g1) and 12 dB (g2) respectively. The 
overall gain (g0) was 0 dB. These gains were chosen for greater contrast between the two panels. The recording of this speech utterance was provided by 
Professor J. McDonough (Department of Linguistics, University of Rochester). 
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centered on energy in speech stimuli near formants and were 
guided by response characteristics of AN fibers. The midbrain 
vowel-encoding hypothesis focuses on the envelope-coding 
properties of auditory midbrain cells. In this strategy, 
narrowband filters were employed to boost single harmonics 
near the first two formants. This scheme focuses on the 
restoration of amplitude-modulation characteristics in the 
responses of auditory-nerve fibers. In particular, the strategy 
weakens pitch-related fluctuations of AN fiber discharge-rates 
for frequency channels near formants, and by extension, aims 
to restore the contrast in modulation characteristics across the 
population of frequency channels that provide the inputs to 
auditory midbrain neurons. The strategy is focused on vowel 
sounds, but the approach applies to any voiced sound, which 
includes some consonant sounds. Whether enhancement of the 
voiced sounds can compensate for the decreased intelligibility 
of consonants in a noisy background will be tested in future 
studies. 
The formant-tracking method guided by physiology presents a 
novel approach to the problem of formant estimation. In the 
past, many schemes have been proposed for formant-tracking. 
In some parametric approaches [e.g., 32, 33, 34], all-pole or 
pole-zero linear prediction models were employed to perform 
spectral fitting of short-time vowel spectra. Non-parametric 
methods based on observations of local energy maxima and 
frequency modulation near formants can also be found in the 
literature [e.g., 35, 36, 37]. A physiologically based formant-
tracking subsystem proposed by Delgutte [38] was based on 
energy-related response characteristics of auditory-nerve 
fibers and analyzed response patterns of filters of an auditory 
filterbank to estimate formant frequencies using the 

distribution of energy across channels. The formant-tracking 
method described here is unique in its physiological basis on 
observed amplitude-modulation characteristics of AN fiber 
responses and the modulation-tuning properties in auditory 
midbrain neurons. Evaluation of the formant-tracking 
subsystem as well as the vowel-enhancement system will be 
discussed next.  

A. Evaluation of Formant-tracking and Vowel Enhancement 
Strategies 

Objective evaluation experiments were carried out to test 
the formant-tracking subsystem on single vowels on a large 
number of speakers. The vowel database contains speech 
samples from 139 American English speakers speaking 12 
vowels, and was therefore used to evaluate the ability of the 
formant-tracking subsystem to generalize over different 
speakers and vowels. The results of the objective tests (Figs. 
11, 12) show that the formant-tracking strategy is likely to 
generalize well over multiple speakers. The algorithm 

 
Fig. 11. This figure shows the performance of the formant tracking subsystem 
on four vowels (/ae/, /iy/, /uw/ and /uh/) spoken by 45 adult men, 48 adult 
women, 27 boys and 19 girls. (a) Performance of F1 estimation. Each data 
point represents the estimation error for an individual utterance of a vowel. 
Each group of four columns of symbols is a set of utterances of the same 
vowel spoken by the four types of speakers. The vertical position of each 
point indicates the harmonic distance between F1est and (known) F1. The left 
panel shows the full range of estimation errors while the right panel zooms in 
on the region with errors within three harmonics. The shaded region shows 
the errors lying within one harmonic. (b) Performance of F2 estimation. The 
left panel shows the full range of estimation errors and the right panel limits 
the range to within eight harmonics. 

 
Fig. 12. This figure shows the performance of the formant-tracking 
subsystem on eight vowels. A separate set of four vowels was used to 
determine the parameters of the formant-tracking subsystem (see Fig. 11). (a) 
and (b) show the performance of F1 and F2 estimation respectively. The top 
panels show the full range of estimation errors while the bottom panels focus 
on the errors lying within three harmonics for F1 estimation and eight 
harmonics for F2 estimation. 
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performed more poorly for F2 estimates than for F1 estimates, 
and this trend was seen across speaker types and vowels. The 
majority of F1 estimation errors are below one harmonic, 
whereas they are below five harmonics for F2 (Figs. 11, 12). 
The possible reasons for this trend and general estimation 
errors are discussed in the next sub-section. 

Comparison of results for all 12 vowels indicates that the 
formant-tracking strategy generalizes well over many vowels, 
including those not used for determination of the system 
parameters. Further fine tuning of the system parameters may 
be required in order to achieve higher accuracy for F2 
estimates. Many formant-tracking techniques in the literature 
include gender detection modules to apply different processing 
or different parameters for male and female speakers.  
However, the performance of the formant tracking subsystem 
yielded similar results for adult speakers of both genders, in 
addition to children. Objective evaluation tests for vowels 
spoken in noise would reveal the suitability of this strategy to 
real-world sounds. 

B. Sources of Errors, Issues and Improvements 
In addition to frequencies corresponding to channels close 

to formants and those with low energy, minima were also 
found in channels in the neighborhood of those close to 
formants. Many of these minima occur at channels 
corresponding to the first few harmonics of the speech sample 
and are more defined for speakers with high voice pitch 
(women and children). These contribute to most of the F1 
estimation errors and some of the F2 under-estimation errors 
where a minima at a frequency close to F1 (but higher in 
frequency) is selected as F2. Problems due to these smaller 
minima can be reduced with a more aggressive smoothing 
function and better minima-calculation techniques. 

Vowels having F1 and F2 close to each other (e.g. /aw/) are 
more prone to F1 and F2 overestimation errors due to the 
merging of F1/F2 minima due to smoothing. In these cases, F3 
is misidentified as F2. This case, combined with multiple 
minima near formants presents the tradeoff that the smoothing 
operation needs to overcome. Aggressive smoothing reduces 
overall F1/F2 estimation errors but would result in insufficient 
separation of F1/F2 minima in vowels with close F1/F2 
frequencies. Another factor for F1/F2 estimation errors is that 
in some cases, 𝑀rms(𝑓) exhibits broad and flat regions of 
minima with multiple undulations within the region. This 
causes one of those undulations to be misidentified as a 
formant.  
𝑀rms(𝑓) was smoothed before minima calculation (section 

A.3.e in Methods). Smoothing is essential for minima 
calculation because 𝑀rms(𝑓) may contain similar values at 
points adjacent to the center frequency corresponding to a 
formant. Therefore, during preliminary testing on a single 
utterance of four vowels, the formant estimate was 
erroneously calculated by the system as the center frequency 
adjacent to the one closest to the true formant. In a few cases, 
this “bias” was found to be towards higher center frequency; 
however this does not seem to be the general case as Figs. 11 
and 12 show a bias towards underestimation by the formant-

tracking subsystem. It is speculated that the role of smoothing 
may be a contributing factor for this phenomenon due to 
logarithmic spacing between each center frequency.  Instead 
of symmetric smoothing weights, asymmetric weights may be 
required to account for the unequal distance between 
successive center frequencies. Asymmetric exponential 
smoothing weights were found to improve this problem in a 
few initial test cases, but a set of weights that generalized well 
could not be found trivially. For minima calculation, simple 
derivative-based minima techniques fail to apply due to the 
small number of points (one point for each center frequency of 
the auditory filterbank) and due to unequal spacing of the 
independent variable (center frequency). Minima calculation 
in the implementation was done using a built-in MATLAB 
function (findpeaks). To reduce errors due to low harmonics 
causing minima, the strongest minima is chosen from those 
that are within a spectral distance of 1.5 times the value of 
F0est from each other. 

Formant estimation in vowels with low F1 frequencies (e.g. 
/ee/) can show large F1 over-estimation errors due to the effect 
of the slope offset factor (𝑘 in (6)) on low-frequency channels. 
When a formant is close to the pitch, the source spectrum 
threshold function is likely to remain higher than the energy at 
F1 because the difference in energy between F0 and F1 is 
lower than 𝑘. This leads to insufficient saturation of channels 
near F1 and thus, in those cases, the formant is likely to be 
ignored by the algorithm. 

The pitch extraction subsystem is crucial for the 
performance of the formant-tracking subsystem and the 
overall vowel-enhancement system. The accuracy of F0est is 
important for the saturating nonlinearity’s operation due to the 
dependence of its source spectrum threshold function (6) on 
the energy near the voice pitch. Additionally, the formant-
tracking subsystem directly uses the distribution of the 
strength of F0-related fluctuations at the output of the 
modulation filter across each channel in the formant-tracking 
subsystem, which underscores the importance for accurate F0 
estimation. A drawback of the simple variant of the 
autocorrelation function used (4) is that peaks corresponding 
to an integer multiple of the true pitch period may sometimes 
be the local maximum, resulting in F0est erroneously being 
calculated as half of the true pitch. This problem (called 
“pitch-halving”) is common in computationally simple pitch 
extraction algorithms and can be reduced by either preserving 
the tapering effect observed in basic autocorrelation function, 
or more robustly, by detecting these errors through additional 
logic in the pitch extraction algorithm [23]. 

Another major purpose of the pitch extraction subsystem 
was to identify voiced regions of continuous speech because 
the operations of formant-tracking and vowel-enhancement 
are carried out on only the voiced portions of speech. 
Detection of voiced speech in the current implementation is 
done on the basis of a measure called clarity – the relative 
strength of the autocorrelation function at the delay 
corresponding to the candidate pitch period to its value at zero 
delay. Frames having high values of this ratio were deemed to 
be voiced. A simple binary decision like clarity is, however, 
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unable to fully generalize on a large range of real-world 
speech. These problems were also observed during preparation 
of preliminary test datasets consisting of English sentences 
spoken in quiet. Inaccuracies in voiced segment identification 
of some sentences were found and could be corrected by 
adjusting the clarity threshold of the pitch extraction 
algorithm. For robust pitch estimation and voiced region 
detection, other more reliable methods that satisfy 
computational constraints can be used instead [39-41].  

The primary role of the saturating nonlinearity in the 
formant-tracking subsystem is to exaggerate the difference in 
depth of amplitude modulation between filter channels. Thus, 
analogous to the outputs of modulation-tuned auditory 
midbrain neurons, simple modulation filtering of channel 
outputs results in low RMS values of channels near formants. 
Objective evaluation tests have shown that the operation of the 
nonlinearity is robust over multiple speakers and vowels. The 
system’s performance is likely to degrade in the presence of 
additive noise modulated at frequencies close to voice pitch. 
In preliminary tests, the formant-tracking subsystem proved to 
be reasonably robust over other values of the source spectrum 
slope (𝑚) in addition to -9 dB/octave (6). However, it has 
shown sensitivity to the slope offset parameter (𝑘). Smaller 
values of this parameter led to a lack of contrast between 
modulation strengths across filter channel outputs, hence 
resulted in the loss of minima corresponding to formant 
frequencies. In addition, increasing the value of this parameter 
would result in an increase of F1 over-estimation errors in 
vowels with low F1 frequencies (e.g. /ee/) for reasons 
explained previously.  

The purpose of the formant enhancement stage is to 
selectively boost single harmonics closest to F1est and F2est. 
The bandwidth of the FIR filters used was set to 50 Hz, 
however the most suitable value for this parameter will be 
known through subjective evaluation experiments. For the 
same gain, a larger bandwidth is likely to be perceived as 
louder and less tone-like. However, increasing the bandwidth 
beyond values close to F0 result in audible fluctuations near 
formant frequencies due to the increased interference from 
adjacent harmonics. 

During preliminary testing, a subject with high frequency 
hearing loss was allowed to listen to a few sentences 
processed by the vowel-enhancement system in order to adjust 
the volume to a comfortable level. The subject was then 
presented with sentences at values of g1 and g2 (see section B. 
in Methods) spanning 0 dB to 21 dB and the range of 
acceptable gains was determined. For this particular subject, 
the preferred range was between 6 dB and 15 dB. The subject 
was then presented a wider range of sentences processed using 
these gain parameters. The subject described the processed 
sounds as being noticeably different compared to reference 
sentences (processed with zero gains) but acceptable and 
“sharper”, for gains of 6 dB and 9 dB. The subject also 
described some sounds as being shrill and reported the 
perception of twin-voices. This perception of a “chorus-like” 
effect is likely due to phase distortion at the skirts of the 
narrowband bandpass filters used and better filter design or an 

appropriately wide bandwidth may lead to a more natural 
perceived quality. 

During testing with sentences, low-frequency artifacts 
related to the frame length were audible, likely due to 
discontinuities at frame boundaries resulting from the formant 
enhancement stage. Further work is warranted in order to 
alleviate these problems in any frame-based implementation of 
the vowel-enhancement system. A sample-based system was 
created for generating test sentences for subjective testing. In 
this system, pitch and formant-tracking were done on a full 
sentence input using their frame-based implementations. 
However, smoothly varying values of F0est, F1est and F2est 
were obtained by interpolating between each frame’s 
estimates. Using these parameters, the coefficients of the FIR 
filters in the formant enhancement stage were updated for each 
sample. This successfully removed the low-frequency noise 
due to frame discontinuities; however occasional noise 
artifacts that can be described as descending or ascending 
pure-tones were audible. This artifact was found to arise when 
any slowly changing F0est is nearly equidistant from two 
adjacent harmonics and crosses over to the other half, making 
it closer to the harmonic adjacent to the one being currently 
boosted. Due to this crossover, the harmonic adjacent to the 
previously-dominant harmonic is now boosted, resulting in an 
abrupt and perceivable artifact. This noise was especially 
noticeable due to the “musical-noise”–like nature of this 
artifact. Two steps were taken to tackle this problem. First, 
calculation of the harmonic closest to F1est and F2est was 
modified to include history of the last harmonic calculated. 
Using this information, abrupt jumps between adjacent 
harmonics detected and the harmonic calculation was 
modified to select the harmonic closest to the harmonic 
calculated previously. Although this would lead to higher 
deviation from the true harmonic being boosted, it would still 
serve the purpose, because the gains applied to harmonics are 
likely to be high enough to make the harmonic dominate the 
AN fiber bandpass filter. This step is successful in eliminating 
most of the jumps between adjacent harmonics. The second 
step was to identify the remaining jumps between harmonics 
and activate a transitory phase in which the gain of the filter 
centered at the new harmonic was slowly increased to its full 
value while the gain of the filter centered at the old harmonic 
was slowly reduced. Exponential ramping was used to 
monotonically modify the gains. An appropriate length of the 
transitory phase was found to be 300 samples. Although this 
sample-based system is not suited for real-time use, it is likely 
to prove useful for testing the system on real-world sentences 
and serve as a useful proof-of-concept. 

IV.  CONCLUSION 
A new signal-processing strategy based on recent 

neurophysiological observations was developed with the aim 
of improving vowel discrimination in listeners with hearing 
loss. The observations also guided the design of a novel 
formant-tracking strategy which showed reasonable ability to 
generalize over multiple speakers and vowels. Objective 
evaluation of the formant-tracking strategy was carried out 
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and described. Future areas of improvements were identified. 
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