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Abstract

Sorting action potentials (spikes) from tetrode recordings can be time consuming, labor intensive, and inconsistent, depending on

the methods used and the experience of the operator. The techniques presented here were designed to address these issues. A feature

related to the slope of the spike during repolarization is computed. A small subsample of the features obtained from the tetrode

(ca. 10,000–20,000 events) is clustered using a modified version of k-means that uses Mahalanobis distance and a scaling factor

related to the cluster size. The cluster-size-based scaling improves the clustering by increasing the separability of close clusters,

especially when they are of disparate size. The full data set is then classified from the statistics of the clusters. The technique yields

consistent results for a chosen number of clusters. A MATLAB implementation is able to classify more than 5000 spikes per second

on a modern workstation.
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1. Introduction

The study of neural processing often involves recording

action potentials generated by neurons in response to sen-

sory stimuli. Subsequent analysis generally requires deter-

mining how many neurons contributed to the observed set of

spikes, which spikes were produced by each neuron, and which

spikes were spurious, a process known as spike sorting (Abeles

and Goldstein Jr, 1977; Lewicki, 1994; Fee et al., 1996a;

Quian Quiroga et al., 2004; Delescluse and Pouzat, 2006, re-

viewed by Lewicki, 1998). The task of spike sorting involves

capturing spike waveforms, computing features of each wave-

form (statistics such as peak amplitude), and classifying the

spikes by grouping spikes with similar features.

It can be difficult to find features that separate the spikes pro-

duced by different neurons. One technique is to record from

four closely spaced wires using a tetrode rather than a single

electrode (Gray et al., 1995). The detection of a spike on any

of the four wires triggers the apparatus to record a “snapshot”

of all four wires simultaneously and is called an event. Because

of their physical separation, the four wires receive slightly dif-

ferent signals, which can help differentiate spikes from multiple

neurons. It is important to note that these signals are quite small

(on the order of tens of microvolts) and distorted by the pres-

ence of background electrical activity.

The set of N features computed from an event is called a fea-
ture vector and can be interpreted as a point in N-dimensional

space. If the spikes from different neurons have different

shapes, and the features are suitably chosen, then the feature

vectors will occupy discernible regions, or clusters, of that

space. The purpose of clustering is to examine the feature vec-

tors, determine the number of clusters, k (presumably related

to the number of underlying contributing neurons), and classify

each event into one of the k clusters (Wheeler and Heetderks,

1982; Schmidt, 1984).

The features may consist of easily computable statistics, such

as peak amplitude, or they could simply be all the samples from

the waveforms on all four wires. In the latter case, because N
is large, it is common to employ a dimensionality-reducing al-

gorithm, such as principal components analysis (PCA) (Glaser

and Marks, 1968; Abeles and Goldstein Jr, 1977), independent

components analysis (ICA) (Takahashi et al., 2003), or wavelet

decomposition (Quian Quiroga et al., 2004). A frequent choice

is to keep the first two or three principal components. PCA

performs an orthonormal transformation (distance-preserving

rotation) of the set of feature vectors in such a way that the

first component of the result has the most variance, with subse-

quent components successively less. PCA is frequently helpful,

but components with large variance are not necessarily compo-
nents with large separability. In other words, the information

that allows the separation of feature vector clusters might end

up in a component deemed insignificant because it has low vari-

ance (Fig. 1).

So as not to risk this potential loss of separability informa-

tion, it is desirable to choose features that result in feature vec-

tors of low enough dimensionality that they do not require di-

mensionality reduction. One such choice begins with comput-

ing the cross-correlation of each spike waveform with a fixed

pattern. This operation measures the similarity of the spike

waveform to the pattern at each point along the waveform. Se-

lection of the largest value of the cross-correlation gives the

best match to the pattern and can be used as a feature. Because
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Figure 1: The distinction between variance and separability is

illustrated by synthetic data that have been constructed so that

the directions of maximum variance and maximum separabil-

ity are orthogonal. If PCA were applied and the component

with the lowest variance discarded, the two clusters would com-

pletely overlap and be impossible to distinguish. This simple

example is illustrated in two dimensions, but the principle ap-

plies to data of any dimensionality.

there are four waveforms per event, such a scheme will yield

a feature vector of only four coefficients. Spikes from different

neurons will tend to have different shapes and match the pattern

to varying degrees. The problem then becomes the choice of an

appropriate pattern.

It is known from signal detection theory that when trying to

detect the presence of a signal corrupted by additive Gaussian

noise, the optimal pattern is the signal itself (Turin, 1960). That

pattern is impractical because the chosen pattern must work

with a variety of spike shapes, not known a priori, but it is of-

ten sufficient to use a pattern that matches consistent character-

istics of all spike shapes. One shape characteristic shared by

all spikes is the rapid negative transition during repolarization,

which can be detected with the pattern

p =
[
1 . . . 1 0 −1 . . . −1

]
, (1)

where the numbers of ones and negative ones are equal and

depend on the number of samples spanned by a spike. The best

match to this pattern is indicated by the maximum value of the

cross-correlation of the spike waveform and the pattern, and

this value is recorded as the feature for that waveform.

After the feature vectors have been computed, it is necessary

to estimate the number of neurons, k, contributing to the record,

and sort the feature vectors into the k clusters. Many researchers

have sought a way to do this completely automatically, so that

the clustering operation can run unsupervised (Cheeseman and

Stutz, 1996), while others have opted for manual sorting. The

method described here is a hybrid approach, in which the clus-

tering is done automatically in order to reduce the effects of

human bias, but constrained to group the feature vectors into

a number of clusters estimated manually from scatter plots of

feature vectors. The clustering algorithm is a modified ver-

sion of k-means (Lloyd, 1982) that uses k-means++ (Arthur

and Vassilvitskii, 2007) to choose initial cluster locations and

scaled Mahalanobis (1936) distance as the distance measure.

The scaling reduces the tendency of a large cluster to subsume

a nearby small cluster. Overall, the performance of this algo-

rithm is similar to that of computing a Gaussian mixture model

(GMM) with expectation-maximization (i.e., Bayesian cluster-

ing as mentioned in Lewicki (1998)) when the Gaussian distri-

butions do not overlap significantly. However, for some cluster

configurations, the proposed algorithm outperforms GMM.

Cluster quality is evaluated three ways: 1) by visual inspec-

tion of feature vector scatter plots, 2) by computation of a clus-

ter separation metric, Lratio (Schmitzer-Torbert et al., 2005),

and 3) by examination of spike interval histograms (Hill et al.,

2011). Because the clustering algorithm is not deterministic

(the initialization step has a random component), it can be ad-

vantageous to recluster when the clustering is poor. The inter-

activity and speed of the algorithm facilitate rapid reclustering

and multiple trials with different values of k. The automation

provides greater clustering consistency than can be achieved by

human operators, for given values of k.

2. Methods

Data were collected with a Neuralynx Cheetah system con-

nected to four tetrodes, each independently processed. The al-

gorithm presented here was developed using recordings made

in the inferior colliculus of awake rabbit, employing general

methods described previously for single-unit recordings (Nel-

son and Carney, 2007) except that tetrodes were used. During

recording sessions, animals were seated in a plastic chair inside

a sound-attenuated booth. The head was fixed to allow delivery

of sound stimuli to each ear via custom earmolds. All methods

were approved by the University of Rochester Committee on

Animal Research and complied with NIH guidelines.

The algorithm is also illustrated using a data set recorded

from a different midbrain region, the nucleus of the brachium

of the inferior colliculus of awake marmoset, provided by S.

Slee at Johns Hopkins University. These recordings were made

with Thomas Recording tetrodes in a fixed-head preparation to

allow controlled delivery of acoustic stimuli. Because all of

the data of interest were in fixed-head recordings, motion arti-

facts associated with freely moving animals were not a concern

here. Although awake animals in a head-fixed preparation oc-

casionally shrug or fidget, the artifacts associated with these

movements can typically be eliminated as outlier waveforms.

Positive- or negative-going voltage transitions of sufficient

amplitude on any one of the four tetrode wires triggered

events that were “snapshots” of the waveforms recorded by

those wires, each consisting of 32 samples at a rate of

32,051 samples/sec. The processing described here is equally

valid for spikes of opposite polarity simply by inverting the de-

tection pattern. The waveforms were collected in a file for later

analysis.

The events from a single two-hour recording session can

number up to several hundred thousand. One goal was to make

the evaluation of an experiment take no more than a few min-

utes so that adjustments to the experimental procedure, such as

the position of the tetrode, could be made in “real time.” To
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achieve the desired speed, rather than clustering all the events,

a subset is selected and used to train the clustering algorithm

by collecting information that characterizes the clusters. Occa-

sionally, it was noticed that the characteristic spike shape of a

neuron changed slightly and gradually during the experiment,

but not so much that the spikes become confused with those of

another neuron. Consequently, in order to capture the full range

of shapes, the training set must include events distributed across

the whole experiment. It is also necessary to use events that are

contiguous so that interval histograms can be computed. To

satisfy both requirements, the full set of events is broken into

blocks of contiguous events, and the blocks are uniformly dis-

tributed throughout the experiment. If the training set has M
events, it is appropriate to form approximately

√
M blocks of

approximately
√

M events each. The exact numbers are not

important; in practice M might be chosen to be 10,000–20,000.

From the features computed for the training set, the number

of clusters, k, is estimated visually, and the statistical proper-

ties (mean and covariance matrix) of each cluster are computed.

The cluster means and covariance matrices are used to classify

the full set of events.

To summarize, the processing procedure is as follows:

1) record events, 2) train clustering algorithm: 2a) choose sub-

set of events, 2b) compute feature vectors, 2c) choose k by vi-

sual inspection of feature vector plots, 2d) cluster, 2e) repeat

2c–2d as necessary to achieve an acceptable result, 3) compute

feature vectors for all events, and 4) classify all events into k
clusters. Each of these steps is described in more detail below.

2.1. Feature computation with repolarization slope (RPS)

Action potentials from different neurons tend to have differ-

ent shapes, but all have the general characteristics of the spike

shown schematically in Fig. 2.
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Figure 2: Prototypical spike waveform showing approximate

sample positions. The slope of the waveform during the re-

polarization phase was used as a feature for clustering. This

waveform is an average of multiple waveforms from a single

cluster recorded in the rabbit inferior colliculus.

As previously stated, the proposed waveform feature is com-

puted by taking the maximum value of the cross-correlation of

the waveform with a fixed pattern, p, defined in Eq. 1. Samples

of a spike waveform s(t), triggered at t = 0, are given by

s[n] =

⎧⎪⎪⎨⎪⎪⎩
s(nT ), n = 0, 1, . . . ,Ns − 1

0, otherwise
, (2)

where T is the sampling interval and Ns is the number of sam-

ples recorded per spike. For a pattern given by p [n], the feature,

r, is computed by

r = max
n

⎧⎪⎪⎨⎪⎪⎩
∞∑

m=−∞
s [n + m] p [m]

⎫⎪⎪⎬⎪⎪⎭ . (3)

Mathematically, cross-correlation is the same as convolution

when the pattern has been time-reversed, so the feature can also

be computed as

r = max
n

⎧⎪⎪⎨⎪⎪⎩
∞∑

m=−∞
s [m] q [n − m]

⎫⎪⎪⎬⎪⎪⎭ = max {s ∗ q} , (4)

where q [n] = p [−n].

Representing the cross-correlation as a convolution is con-

venient because the operation can be interpreted as passing the

spike waveform through a digital filter. Indeed, a filter whose

impulse response is equal to the time-reverse of a pattern to

be matched is called a matched filter (Turin, 1960) because the

impulse response is matched to the signal being detected. It is

interesting to note that the filter impulse response, q, is exactly

the convolution of two other sequences,

q =
[
−1 1

]
︸���︷︷���︸

Kd

∗
[
1 2 . . . n n . . . 2 1

]
︸�������������������������������������︷︷�������������������������������������︸

K f

, (5)

where Kd performs a derivative-like operation and Kf is a low-

pass filter with the frequency response shown in Fig. 3 for

n = 4. Therefore, convolution with q produces an approxi-
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Figure 3: The action of taking the derivative of a spike wave-

form tends to accentuate high-frequency noise. That noise is

attenuated by the low-pass filter Kf (see Eq. 5) which, for n = 4

and sample rate = 32.051 kHz, has the frequency response de-

picted here.

mation to the filtered derivative of each of the four waveforms
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recorded by the tetrode, and each computed feature is approxi-

mately proportional to the magnitude of the slope of the spike

in the region in which it is falling most rapidly, normally the re-

polarization region (Fig. 2). It is from this description that the

algorithm receives its name, repolarization slope (RPS).

Due to noise, the exact phase at which triggering occurs

varies, resulting in a random variation of the spike location

along the time axis. Some feature-extraction algorithms re-

quire spike alignment to remove this temporal variation, but

alignment is not necessary for this algorithm because each fea-

ture is computed from the maximum value of the whole cross-

correlation function rather than from a specific sample.

The feature vector for an event is simply the concatenation

of the four r values, one from each waveform recorded by the

tetrode. These values are further concatenated into an M×4

feature matrix, which is the set of M feature vectors for the M
events.

2.2. Feature-vector visualization and selection of number of
clusters

The next step in the spike sorting process is to visualize the

feature vectors so that the number of clusters, k, can be deter-

mined. Unfortunately, each feature vector is a four-dimensional

entity that is hard to visualize and impossible to plot. One ap-

proach to this problem is to plot the two dimensions with the

greatest variance, as obtained from PCA (Glaser and Marks,

1968; Abeles and Goldstein Jr, 1977). As stated previously,

use of PCA can be unsatisfactory. Instead, an array of scat-

ter plots is displayed, similar to those shown in Fig. 4, each of

which plots two different columns of the feature matrix against

each other. Visual inspection of the scatter plots has usually

been found to be sufficient to determine the number of clusters,

k (k = 3 in the example shown). However, because these plots

only show two dimensions at a time, it is possible for clusters to

remain hidden. That has not proved to be a problem in practice,

and it is easy to try different values of k in any case.

2.3. Cluster initialization
The standard k-means algorithm (Lloyd, 1982) chooses the

initial cluster centers to be the coordinates of k points chosen at

random from the data before proceeding with the iterative clus-

tering. This strategy can produce cluster centers that are close

together resulting in clusters that are not properly defined, so it

is standard practice to run k-means several times until a good re-

sult has been obtained. The k-means++ algorithm (Arthur and

Vassilvitskii, 2007) was devised to reduce or eliminate these

multiple runs by making a better choice for the set of initial

cluster centers. (Despite its name, k-means++ is not a cluster-

ing algorithm—it only performs the cluster initialization step.)

The algorithm consists of the following steps: a) choose one

point at random as the first cluster center, b) for each point to

be clustered, x, compute the Euclidean distance, De(x), to the

nearest existing cluster center, c) add one point at random as

a new cluster center using a weighted probability where point

x is chosen with probability proportional to D2
e(x), and d) re-

peat b and c until k centers have been chosen. In practice, this

technique usually selects cluster centers that are well separated.

2.4. Iterative cluster determination and Mahalanobis distance

The iterative clustering of any variant of k-means consists

of just two steps: 1) assign each point to the nearest cluster,

and 2) recompute the cluster descriptive statistics (e.g., mean).

These steps are repeated until the assignments do not change

from one iteration to the next.

In order to assign each point to the nearest cluster, it is nec-

essary to define some notion of distance. Ordinary Euclidean

distance does not work well when the clusters are elongated and

close to each other, as they often are in this application. Mahal-

anobis (1936) distance is a statistical metric used to determine

how well a point, x, fits in a whole distribution of points, C,

taking into account the shape, size and orientation of the distri-

bution, and is defined by

D(x) =

√
(x − μC)Σ−1

C (x − μC)T , (6)

where C is described by its mean, μC , and covariance matrix,

ΣC . The distance is unitless because it is a relative measure. An

example is illustrated in Fig. 5.

To use Mahalanobis distance in the determination of the near-

est cluster, ΣC must be nonsingular. Immediately after initial-

ization, each cluster contains only one point, and all covariance

matrices are identically zero and singular. Intuitively, the in-

ability to compute Mahalanobis distance from a cluster of one

point makes sense, because it is impossible to infer anything

about the size or shape of such a cluster. Consequently, when-

ever a cluster has only one point, as will always occur in the first

iteration, some method other than Mahalanobis distance must

be used to compute point-cluster distances. Euclidean distance

was chosen as the alternate method, because it does not require

a covariance matrix.

To illustrate the difference between the Euclidean and Mahal-

anobis distance measures, Fig. 6 shows equal distance contours

from two clusters.

2.5. Scaling by cluster size, k-means with Scaled Mahalanobis
Distance (KSMD)

With the strategy presented so far, the clustering algorithm

often failed to find small clusters located close to large ones,

included too many points from a small cluster in a nearby large

cluster, produced cluster regions with holes (one cluster com-

pletely surrounding another cluster), or produced disjoint clus-

ter regions. It was hypothesized that these shortcomings could

be eliminated or reduced if the Mahalanobis distance mea-

sures were scaled by a factor related to the size of the cluster

(Quian Quiroga et al., 2004; Harris et al., 2000; Shoham et al.,

2003). The idea is that the scaled distance of a point from a

large cluster should have a larger numerical value than a point

with the same Mahalanobis distance from a small cluster, en-

couraging the point to belong to the smaller cluster.

Intuitively, the scale factor should be based on a linear mea-

sure of cluster size rather than volume, which was confirmed

empirically. Consequently, the cluster size is expressed as the

length of a side of the N-dimensional hypercube with the same

volume as the cluster, i.e., the N th root of the volume. Strictly
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 1,2  1,3  1,4  2,3  2,4  3,4

Figure 4: Scatter plots of features computed from spikes recorded in the rabbit inferior colliculus. The features computed from the

four wires of a tetrode yield a single four-dimensional point for each spike. For plotting, it is necessary to project each 4-D point

into two dimensions and this is done most easily by plotting the point coordinates two at a time, resulting in the six plots shown

here. Labels indicate the pair of coordinates plotted, e.g., in panel “1,2”, the horizontal axis represents the repolarization slope of

the spike on wire 1 and the vertical axis that of the spike on wire 2. Visual inspection of these plots suggests that this recording

contains spikes from three neurons.
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Figure 5: Illustration of contours of equal Mahalanobis distance

from a distribution in two dimensions for D = 1, 2, . . . , 8 using

synthetic data in arbitrary units (AU) (see Eq. 6). Note how

the contours follow the shape of the distribution rather than ap-

pearing as concentric circles surrounding the mean as would

be obtained with contours of equal Euclidean distance from the

distribution center.

speaking, a cluster is a distribution, not a polytope, and does

not have a volume, but for this application the volume, V , can

be defined as the product of the widths of the cluster along the

N orthogonal axes of the cluster,

V =
N∏

i=1

√
λi , (7)

where λi is the ith eigenvalue of the covariance matrix of the

cluster members. These λi are exactly equal to the variances of

the distribution in the axial directions if the cluster were lined

up with the coordinate axes via PCA. As mentioned, the side

length, �, is obtained simply by taking the N th root of the vol-

ume,

� =
N
√

V . (8)

Finally, the scale factor for cluster Cj was chosen to be

wj = �
α
j , (9)

where the exponential parameter, α, has been introduced to con-

trol the scaling effect. The nominal value of α = 1 generally

succeeds in minimizing the shortcomings present without the

scaling. Setting α to a value much above 1 can introduce un-

wanted artifacts (Fig. 7). Values of α between 0 and 1 were not

tried, but might prove useful. Setting α = 0 is equivalent to

having no scaling.

2.6. Cluster evaluation
An important part of clustering is evaluation of the resulting

clusters (Hill et al., 2011; Joshua et al., 2007). Whether be-

cause the wrong number of clusters was chosen or because the

random component in the initialization step caused the cluster-

ing algorithm to perform poorly, sometimes it is necessary to

recluster. There are several ways to perform this evaluation: vi-

sual inspection of the feature vector scatter plot, computation of

a cluster separation metric, inspection of waveform histograms,

and examination of interval histograms. Each approach will be

described below and illustrated in the Results section.

2.6.1. Visual evaluation of feature vectors
The visual evaluation involves making a paired scatter plot

in which the points from each cluster are plotted in a differ-

ent color. A simple visual inspection by the user can indicate

whether the clustering was successful. Poor clustering is often

obvious, as in Fig. 8c. Sometimes, even when the number of

clusters is easy to estimate, the clustering algorithm is unable to

cluster the points as desired, a failure that is easily determined

by visual observation of the scatter plots.

2.6.2. Cluster separation metric
A quantitative cluster separation metric called Lratio

(Schmitzer-Torbert et al., 2005) is defined by

L(C) =
∑
xi�C

1 − Fχ2
N

(
D2

C(xi)
)

(10)

Lratio(C) =
L(C)

nC
, (11)

where Fχ2
N

is the cumulative distribution function of the χ2 dis-

tribution with N degrees of freedom (N is the dimensionality of

the feature space), DC(xi) is the Mahalanobis distance of point

xi from cluster C, and nC is the number of points in C. L rep-

resents a measure of the isolation of C so that a cluster with
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Figure 6: The gray concentric curves depict equal distance contours using the two distance measures, Euclidean (left) and Mahal-

anobis (right), similar to those in Fig. 5. The solid black lines depict the loci of points that are equidistant from the two clusters

within each plot and are used as boundaries between the two cluster regions. Notice that the boundary based on the Mahalanobis

distances results in fewer classification errors. The data are synthetic with arbitrary units (AU).

a significant gap surrounding it will have a small value. Lratio

normalizes L(C) by the number of points in C so that if an ac-

ceptability criterion is established, a dense cluster will be able

to tolerate more contamination than a sparse one. The values

are mostly useful for differentiating between multiple cluster-

ings of the same data and not intended to be used to rate differ-

ent data sets. Because each Lratio ≥ 0 and small values indicate

good cluster separation, the sum,

LΣ =
k∑

j=1

Lratio(C j), (12)

will only be small if each Lratio is small and thus serves as an

overall figure of merit for the clustering.

2.6.3. Interval histograms
After a neuron has fired it cannot fire again during its refrac-

tory period (Hodgkin and Huxley, 1952), which typically has

a duration of about 1 ms for neurons that have relatively high

discharge rates (auditory nerve: Gray, 1967; inferior colliculus:

Yagodnitsyn and Shik, 1974). This characteristic can be used to

test if the spikes in a given cluster could actually have been pro-

duced by a single neuron. The distribution of first-order spike

interval times (the length of time between a spike and the next

spike from the same neuron) is examined to see what fraction

of spike intervals are less than the refractory period. If the frac-

tion is zero, then it is possible that all the spikes in that cluster

were produced by a single neuron. In practice, some cluster

contamination is acceptable (spikes incorrectly assigned to that

cluster), perhaps 0.5%.

Conversely, it is expected that many intervals from a spike

in one cluster to the subsequent spike in another cluster will

be less than the refractory period. Therefore, examination of

cross-cluster spike intervals can indicate whether spikes from a

single neuron have been assigned to more than one cluster, as

happens in over-clustering.

2.6.4. Waveform histograms
After clustering, a natural way to evaluate whether all the

spikes in a cluster have similar shapes is to plot them on a sin-

gle graph. A single graph works well if there are few enough

waveforms that most of them remain visible despite the clut-

ter, but it does not accurately convey the waveform distribution

when many waveforms are obscured. Instead, the waveform

histogram has been defined that is simply a sequence of his-

tograms of the waveform amplitudes at each time sample for

a given cluster. To display the waveform histogram, an im-

age is constructed by displaying each bin of each histogram

as a single pixel—the number of pixels in the vertical direc-

tion is the number of bins and the number of pixels in the hor-

izontal direction is the number of samples per waveform. The

gray level of each pixel is proportional to the corresponding

histogram value, leading to a fuzzy-looking spike waveform.

The degree of fuzziness indicates the width of the distribution:

a well-defined appearance implies a narrow distribution and a

fuzzier appearance implies a broad distribution. See results for

examples (Fig. 9). See also Hill et al. (2011).

Previously, it was stated that one of the advantages of RPS

was that it does not require the spikes to be aligned. That

is true, but the waveform histogram does require spike align-

ment for maximum utility. Spike alignment, using an approach

that aligns the peak values of the waveforms after passing them

through a low-pass filter, was included in the waveform his-

tograms shown here.
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Figure 7: The effect of the KSMD scaling parameter α on clustering performance. A data set was constructed from two known,

synthetic, arbitrarily scaled point distributions and clustered by KSMD with several values of α. The black lines represents the

boundaries between the two clusters (colored red and green). (a) With α = 0 (equivalent to no scaling), two shortcomings are

evident: 1) the red cluster region completely surrounds the green cluster (a “hole”, note point A which is on the opposite side of the

green cluster from the other red cluster points), and 2) points in the region B are clustered incorrectly with the red points. (b) α = 1,

the boundary results in acceptable classification, especially in the region between the two clusters. Also, the outlier point A is

included in the green cluster. (c) α = 1.25, performance similar to (b), however, the boundary is moved towards the red distribution.

In this case, more classification errors are apparent, but in other cases performance might be improved. (d) Large values of α may

result in disjoint clusters and many classification errors, as in this example when α = 1.5.

2.6.5. Cluster temporal stability
A final cluster evaluation is to examine the temporal stability

of the clusters. In some applications, the signal from a neu-

ron can change during a measurement session, perhaps due to a

slight shift in position of the tetrode, resulting in apparently two

(or more) clusters from a single neuron. To ensure that a single

neuron has not been manifested as multiple clusters, it is suffi-

cient to examine histograms of spike times for each cluster. If

the times of the spikes in each cluster are distributed throughout

the session it is likely that the clusters are stable.

2.7. Classification of all points

If the feature vectors used for training the final clustering are

representative of the whole set of feature vectors, then it is rea-

sonable to assume that the cluster mean and covariance matri-

ces obtained from training are accurate estimates of those that

would be obtained from the whole data set. The mean and co-

variance matrix of each cluster of the training set can be used

to cluster the full set in an efficient way. All that is required

is to compute the scaled Mahalanobis distance of each feature

vector from each training cluster and assign each feature vector

to the nearest cluster.

2.8. Implementation and clustering procedure
The algorithms described above have been implemented in

MATLAB (The MathWorks, Inc., Natick, Massachusetts), in a

convenient application with a graphical user interface.1 It is im-

portant to note that RPS and KSMD are merely two of the tools

that might be employed and a full-featured application supplies

other tools to try if RPS or KSMD were not effective on a par-

ticular data set.

Generally, the clustering procedure is as follows: 1) load the

waveforms for the training set of events, 2) compute the feature

vectors using the default method (e.g., RPS) and display the

paired scatter plots, 3) estimate the number of clusters, com-

pute them with the default clustering algorithm (e.g., KSMD

with α = 1), and update the scatter plot display with different

colors for each cluster, 4) check the results by examining the

paired scatter plots, waveform histograms, interval histograms,

and LΣ, 5) if the results are not acceptable, try a different num-

ber of clusters, feature computation, and/or clustering algorithm

until acceptable results are obtained, and 6) using the selected

algorithms and cluster statistics gathered from the training set,

cluster the whole data set.

1http://www.urmc.rochester.edu/labs/Carney-Lab/
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3. Results

RPS and KSMD have been used to sort spikes from hundreds

of recording sessions. RPS was not always effective and other

techniques were sometimes used, but in practice, RPS/KSMD

became the default methods because they worked well so often.

In order to illustrate the efficacy of RPS/KSMD, the results of

four sample experiments will be shown.

An exhaustive comparison of RPS/KSMD to other cluster-

ing techniques was not performed. However, in a study uti-

lizing 49 data sets, each was clustered using the combina-

tions of RPS/KSMD, PCA/KSMD, RPS/GMM and PCA/GMM

(the PCA cases retained four principal components) (PCA:

Glaser and Marks, 1968; Abeles and Goldstein Jr, 1977; GMM:

Lewicki, 1998). The resulting values of LΣ were compiled and

ranged from 1.86 × 10−15 to 19.1. In 30 data sets, RPS/KSMD

had the smallest LΣ and in 14 of the remaining 19 data sets,

the RPS/KSMD LΣ was no more than 1.8 times as large as the

smallest LΣ. There were 5 data sets in which RPS/KSMD was

clearly outperformed by one or more of the other techniques.

3.1. Example #1—RPS works well, PCA fails.

The first example showcases the advantages of RPS/KSMD.

Application of PCA to the waveforms of all four wires, keeping

the four most significant components, failed to give an indi-

cation of the number of clusters (Fig. 8a), while RPS clearly

indicated two clusters (Fig. 8b). Clustering with k-means (us-

ing the standard Euclidean distance measure) produced a poor

result as shown in Fig. 8c and indicated by the large value of

LΣ. The combination of RPS and KSMD was able to cluster

these data properly (Fig. 8d). Note the extremely low value of

LΣ, indicating well separated clusters.

The existence of more than one cluster in this example is

also indicated by the unclustered waveform histogram (Fig. 9a).

Note the bimodal appearance of the waveform histograms near

0.3 ms, especially on wire 4. After sorting, the waveform his-

tograms in Fig. 9b were obtained. Note that the waveform his-

tograms appear sharper and unimodal, indicating a narrower

distribution of waveform amplitudes at each sample point. The

histograms of Fig. 9b indicate well separated spike waveforms

consistent with the corresponding feature vector scatter plots of

Fig 8d.

The first-order interval histograms (Fig. 10) allow tests of

cluster quality based on inter-spike intervals within and across

clusters. From the first-order interval histogram for cluster 1

(Fig. 10a), it can be seen that there were few intervals less than

the presumed refractory period of 1 ms, indicating that cluster 1

is likely a good, single-unit cluster. Note that the refractory pe-

riod of 1 ms is applicable to the inferior colliculus (Yagodnitsyn

and Shik, 1974) where discharge rates can reach a few hundred

spikes per second. The first-order interval histogram for clus-

ter 2 (Fig. 10d) shows that 1.3% of the intervals were less than

1 ms, indicating that it was likely a multi-unit recording.

Overclustering can be detected by examining cross-cluster

histograms. If two clusters are associated with different neu-

rons then intervals less than the refractory period are expected.

The two off-diagonal histograms (Figs. 10b and 10c) show a

significant number of intervals less than the refractory period,

indicating that the data have not been over-clustered. This re-

sult is consistent with other illustrations of this data set in Figs.

8 and 9.

3.2. Example #2—Cluster merging required.

Some data sets are particularly challenging for clustering

with KSMD, even when different values of α are tried. In par-

ticular, if the clusters are mismatched in density as well as size,

the algorithm will tend to group a small sparse cluster with a

nearby larger and denser one. Also, closely spaced irregularly

shaped clusters are difficult to separate.

Example #2 illustrates a case of mismatched cluster densities

and a solution to the problem. From the initial feature vector vi-

sualization (Fig. 11a), it appeared that there were two clusters,

but one contained many more points than the other. This pre-

sented a challenge for KSMD, as it was unable to cluster the

data in a way consistent with the visual evaluation.

The solution was to increase the value of k for KSMD until

the small sparse cluster visible in Fig. 11a was isolated. Then,

the remaining clusters were merged into a single large cluster,

resulting in two clusters. In this example, it was necessary to

set k = 4 in order for KSMD (with α = 1) to isolate the sparse

cluster, shown in Fig. 11b. Combining the red, green, and blue

clusters into a single cluster resulted in the clustering shown in

Fig. 11c. Note the improvement in cluster separation as indi-

cated by the large reduction in LΣ from 0.712 to 0.00675.

3.3. Example #3—Large number of clusters.

From the recordings in the rabbit inferior colliculus it was

rare to find a data set with more than two or three clusters.

This example illustrates a recording with five clusters. RPS pro-

duced the feature vectors illustrated in Fig. 12a. The clustering

was done by KSMD with α = 1. The value of LΣ for these data

is 0.324 which is somewhat large due to the close spacing of

these clusters. Remember that the LΣ metric is only suitable for

comparing multiple clusterings of the same data set and little

meaning can be attached to the absolute value.

It is useful to look at the waveform histograms for this data

set to confirm that the algorithms are functioning correctly.

From the waveform histograms shown in Fig. 12b, it is clear

that clusters 1 and 5 consist of well defined spikes. The cluster

3 pattern is similar to that of cluster 5, but the shape and am-

plitude of the spike on wire 3 is different enough that these are

probably from different neurons. The waveform distribution on

wire 1 of cluster 1 looks somewhat blurry at 0.35 ms. This blur-

riness is due to a slow variation of the wire 1 spike shape (and

the feature value) over the course of the recording. The spike

shape variation is also responsible for the somewhat irregular

shape of cluster 1 (red) in Fig. 12a.

3.4. Example #4—Nucleus of the brachium of the inferior col-
liculus of awake marmoset.

This example describes a data set recorded in a different

species by another laboratory. RPS/KSMD was used by S. Slee

of Johns Hopkins University to cluster recordings made from a
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Figure 8: Example #1 in which PCA fails and RPS succeeds. (a) Unclustered feature vectors after application of PCA to the

waveforms: multiple clusters are not apparent. (b) Unclustered feature vectors from RPS: two clusters are clearly visible. (c) Feature

vectors from RPS were improperly clustered by k-means, readily visible in the plot of wire 4 vs. wire 2. The arrow points to the

erroneous k-means cluster boundary. The value of the cluster separation metric, LΣ, is 0.089. (d) Feature vectors from RPS clustered

by KSMD with α = 1 resulted in far fewer classification errors. The value of LΣ was reduced to 1.15 × 10−5 (small values of LΣ
indicate better separation). These data were recorded in the rabbit inferior colliculus.

different auditory midbrain region, the nucleus of the brachium

of the inferior colliculus, in the awake marmoset.

The results are shown in Fig. 13. One difference from the

previous examples is that the polarity of the spikes is inverted

due to the particular hardware configuration used. RPS must

accommodate this polarity reversal so that the slopes in the re-

polarization regions (now positive) are computed, but this is

done simply by inverting the signs of the pattern coefficients

(Eq. 1).

4. Discussion

The algorithms RPS and KSMD have been shown to be ef-

fective at sorting spikes. Combined with the approach of deter-

mining cluster characteristics from a subset of spikes, the entire

clustering procedure is fast, taking no more than a few minutes

to cluster spikes obtained from two hours of data collection (4

tetrodes with an average of 200,000 spikes per tetrode). There

are, however, some issues that would benefit from further in-

vestigation. Note that no attempt was made to detect overlap-

ping spikes from different neurons (Lewicki, 1998; Zhang et al.,

2004; Franke et al., 2010).

The scaling of the Mahalanobis distances by the size of the

cluster was motivated by the observation that sometimes a small

cluster located close to a large one would not be recognized as a

separate cluster. The technique does seem to help the clustering

algorithm work more acceptably, but it is still possible for a

small cluster to be hidden inside a larger one. If that happens,

it is a failure of the feature, RPS, to discriminate spikes from

two neurons, presumably because the slopes of the spikes in

their respective repolarization regions are nearly equal. If that

occurs, a different feature computation should be used.

Visual evaluation of k can be problematic. The technique

of plotting two dimensions at a time in pairs (reducing the in-

herently 4-D data to six 2-D views) is not guaranteed to show

all the clusters, but seemed to work acceptably. A more thor-

ough, but space-consuming approach is to plot additional views

of the data, obtained by performing intermediate orthonormal

transformations (akin to viewing 3-D data from a 45◦ angle),

though there will still be no guarantee that clusters will not be
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Figure 9: Example #1 waveform histograms for each wire (see section 2.6.4). (a) All waveforms (unclustered). The bimodal

distribution near 0.3 ms on wire 4 (see arrow) suggests the presence of more than one spike shape. (b) Waveform histograms of the

same set of waveforms after being sorted into two clusters using RPS and KSMD with α = 1. Consistent with the well separated

cluster diagrams in Fig. 8d, the spike waveforms appear properly clustered, especially evident on wire 4. Vertical scales are in

identical arbitrary units. These data were recorded in the rabbit inferior colliculus.

missed.

Additional strategies are possible to further automate the

clustering procedure. For example, a data set can be clustered

with multiple values of k and then the quality of each clustering

can be evaluated using the LΣ metric. However, this technique

can fail when presented with some of the more difficult cases,

such as Example #2 (see Fig. 11).

Another suggestion for future development of the algorithm

would be to explore additional features automatically. The al-

gorithm could then determine which set of features results in the

best separability. This technique could result in improved per-

formance with less operator interaction. Such a strategy might

be particularly useful in brain regions, such as cortex and hip-

pocampus, where spike shapes vary substantially across differ-

ent classes of neurons (Fee et al., 1996b; Buzsáki, 2004).

RPS and KSMD are two tools used for spike sorting, but

they are far from the only ones and not always the best ones.

A practical approach to spike sorting employs multiple tech-

niques with an easy way to switch between them. In fact, RPS

has been implemented along with several other techniques in-

cluding PCA, spectral techniques and wavelets. Likewise, both

KSMD and GMM algorithms have been implemented to allow

easy selection of the best clustering algorithm for a particular

data set. All the algorithms are provided in an easy-to-use pro-

gram with a graphical user interface. When the results of RPS

are unacceptable, the user is able to try another technique sim-

ply by pressing a button. On a modern workstation, operating

on 20,000 events, results are obtained in just a few seconds.
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Figure 12: Example #3, data set recorded in the inferior colliculus of awake rabbit with five clusters. (a) The features illustrated

here were computed by RPS and clustered by KSMD with α = 1. All five clusters are most readily visible in the “3,4” view.

Clusters 1–5 are colored red, green, blue, black and purple, respectively. (b) The waveform histograms confirm the presence of five

clusters.
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Figure 13: Example #4, data set recorded in the nucleus of the brachium of the inferior colliculus of awake marmoset with three

clusters. (a) The features illustrated here were computed by RPS and clustered by KSMD with α = 2. Clusters 1–3 are colored

red, green and blue, respectively. (b) The waveform histograms confirm the presence of three clusters. Compared with the previous

examples, the waveforms are inverted due to the hardware configuration used. This polarity reversal is accommodated by inverting

the polarity of the pattern used by RPS (Eq. 1).
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