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Overview

The SGfast function is a replacement function for the spike generator SGmodel function in Carney’s AN
Model code. It is an inhomogeneous Poisson process with a fixed absolute refractory period and a two-
exponential relative refractory period, just like the aforementioned SGmodel function and the spike-generator
implementations in Zhang et al. (2001) and Carney (1993). SGfast, however, is much faster and makes much
more efficient use of the pseudo-random number generator. More specifically, (1) SGmodel uses a Bernoulli
approximation to the Poisson process in each time bin, while SGfast uses the faster time-transformation
method. This has the added benefit that it requires significantly fewer pseudo-random numbers (one per
spike versus one per time bin for SGmodel). (2) SGmodel calculates the relative refractory ratio from scratch
at each time bin. SGfast uses running approximations to the differential equations of which the exponentials
in the relative refractory equation are solutions. This greatly reduces the computational load of each step of
the simulation.

Calling syntax:
[spktimes, {nspikes}] = SGfast([dt, nrep], rate, {deadtime, refracparams})

where spktimes is a vector containing the times at which spikes occurred (sec).
nspikes is the number of spikes that occurred.
dt is the sample period of the rate function (sec). This is also used

as the width of discrete time bins in the algorithm, and spike
times will be multiples of dt.

nrep is the number of repetitions of the rate function.

rate is the rate function vector (spikes/sec).

deadtime is the dead time or absolute refractory period (sec). DEFAULT: 0.00075
refracparams is a vector [c0 s0 cl s1] containing the parameters for the relative

refractory period (dimensionless, sec, dimensionless, sec).

DEFAULT: [0.5 0.001 0.5 0.0125]

Simulation of a Poisson Process without Refractoriness

SGfast makes use of the time-transformation method of simulating an inhomogeneous Poisson process, i.e.
a Poisson process with a time-varying rate. Explanation of this method and mathematical references are
given in Jackson and Carney (2005); here we give just a brief description of the procedure. Let A(¢) be
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the non-negative, time-varying rate for the Poisson process. (Note: If any of the rate values are negative,
SGfast replaces those values with zeros.) Then the first step is to draw a sequence of independent and
identically-distributed random variables e;,¢ = 0,1,2,..., from a unit-mean exponential distribution (using
a pseudo-random number generator). Now let T; be either the starting time (i.e. i = 0) of the entire process
or the time of occurrence of the last spike (i.e. i = 1,2,3,...) produced by the simulation. Then the time of
occurrence of the next spike is the minimum time 74, > 7; for which

Tit1
/ AMu)du > e;.

T;

This procedure is then iterated to determine all of the spike times necessary.

Adding Refractoriness

Let 0 < H(7) < 1 be a refractory function, such that the time-varying rate of an inhomogeneous Poisson
process with refractoriness is given by R(t) = A(¢) [l — H(t — T;)], where T; is the time of the last spike to
occur prior to time ¢ (see, e.g. Zhang et al., 2001, and Carney, 1993). Adding this type of refractory effect
to the time-transformation procedure described above is simply accomplished by replacing the original rate
function, A(t), with the new rate function R(t). Thus, given that the last spike occurred at time 7T;, the next
spike will occur at the minimum time T4, > 7; for which

Tit1
/ Au) [l — H(u—T;)] du > e;.
T;

Once refractoriness is added to a Poisson process, the process is no longer Poisson, although it remains
a renewal process. Thus, strictly speaking, to begin the simulation and calculate the first spike time, the
integral above should not be started at time zero. Hence, SGfast draws a random interval from a homogeneous
Poisson process with rate A(0) and assumes a spike occurred this much before time zero. Then the refractory
effect at time zero of this spike is computed, and the simulation begins. In other words, if Ty is this interval
drawn from a A(0)-mean exponential distribution, then, at the beginning of the simulation, the first spike
time T} is determined from the inequality

T

/0 MOV — Hu+ T du+ [ Mu)[l = H(u+T)] du > eo.
=T, 0

Faster Computation of the Refractory Function

The refractory function used in SGmodel, Zhang et al. (2001), and Carney (1993) is an absolute refractory
period followed by a double exponential relative refractory period. This function is

H(r) = 1.0, if 7 < Ra;
o coe” (TmRa)/s0 4 e~ (T=Ra)/s1  if 7+ > R,

where R 4 is the duration of the absolute refractory period and cg, c1, sg, and s; are parameters of the relative
refractory period. Obviously, when t —T; < Ra, H(t —T;) = 1, and the rate of the process R(t — T;) is zero.
Thus, we can ignore, or “skip over”, the interval (T}, T; + R| after each spike time. But, the straightforward
way to incorporate the relative refractory portion of the function into the simulation is to calculate H(t —1T;),
where T; is the last spike time before time ¢, at each time step ¢t > T; + R4 in the simulation. This is how it
was accomplished in SGmodel and the aforementioned studies. However, this is computationally expensive.
At each of these time steps in the simulation, four subtractions, two divisions, two exponentiations, and
two multiplications must be computed, plus adding the two exponential functions together. The number of
computations can be greatly reduced by using running approximations to the differential equations of which
the exponentials are solutions. For instance, the exponential function Hy(7) = coe~ (T~ Ra)/50 ig the solution
of the differential equation

d 1
7H0(7—) = _7H0(7—)’ for 7 > RA and H()(RA) = Cg.
dr S0
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This differential equation can be approximated in discrete time by the difference equation
Hy(t + A7) — Ho(7) = —%Ho(T)AT
Hy(r 4+ At) = Hy(7) — %HO(T)
Ho(t+ A1) = (1 - s) Hy(7).

Therefore, during the simulation, at the end of an absolute refractory period, a variable, say Hy, is set equal
to cg. Then on each successive time step, Hy is multiplied by the pre-calculated constant K = 1— % to yield
the (approximate) value of the exponential at that time step. The same is done for the other exponential in
the refractory function. Thus, at each time step, only two multiplications need to be computed, plus adding

the values of the two exponentials together, in order to calculate the value of H (7).
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