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Previous studies have combined analytical models of stochastic neural
responses with signal detection theory (SDT) to predict psychophysical
performance limits; however, these studies have typically been limited
to simple models and simple psychophysical tasks. A companion article
in this issue (“Evaluating Auditory Performance Limits: I”) describes an
extension of the SDT approach to allow the use of computational models
that provide more accurate descriptions of neural responses. This article
describes an extension to more complex psychophysical tasks. A general
method is presented for evaluating psychophysical performance limits
for discrimination tasks in which one stimulus parameter is randomly
varied. Psychophysical experiments often randomly vary a single param-
eter in order to restrict the cues that are available to the subject. The
method is demonstrated for the auditory task of random-level frequency
discrimination using a computational auditory nerve (AN) model. Per-
formance limits based on AN discharge times (all-information) are com-
pared to performance limits based only on discharge counts (rate place).
Both decision models are successful in predicting that random-level vari-
ation has no effect on performance in quiet, which is the typical result
in psychophysical tasks with random-level variation. The distribution
of information across the AN population provides insight into how dif-
ferent types of AN information can be used to avoid the in�uence of
random-level variation. The rate-place model relies on comparisons be-
tween �bers above and below the tone frequency (i.e., the population
response), while the all-information model does not require such across-
�ber comparisons. Frequency discrimination with random-level variation
in the presence of high-frequency noise is also simulated. No effect is
predicted for all-information, consistent with the small effect in human

Neural Computation 13, 2317–2339 (2001) c° 2001 Massachusetts Institute of Technology



2318 M. G. Heinz, H. S. Colburn, and L. H. Carney

performance; however, a large effect is predicted for rate-place in noise
with random-level variation.

1 Introduction

The use of signal detection theory (SDT) combined with stochastic models
of neural responses has provided much insight into neural encoding of sen-
sory stimuli (e.g., Fitzhugh, 1958; Siebert, 1965, 1968, 1970; Colburn, 1969,
1973, 1977a, 1977b, 1981; Goldstein & Srulovicz, 1977; Delgutte, 1987; Erell,
1988; see Delgutte, 1996, and Parker & Newsome, 1998, for reviews). These
studies evaluated psychophysical performance limits based on the stochas-
tic behavior of neural responses. However, the application of this approach
has been limited to simple psychophysical tasks due to the use of simple
analytical models and by the restricted use of SDT with these models to
deterministic stimuli. Computational neural models can describe more ac-
curate physiological responses to a much wider range of stimuli than analyt-
ical models. Previous methods that have combined SDT and computational
auditory models to predict psychophysical performance have either not in-
cluded physiological (internal) noise (e.g., Gresham & Collins, 1998;Huettel
& Collins, 1999) or have used arbitrary internal noise that was not directly
related to physiological variability (e.g., Dau, Püschel, & Kohlrausch, 1996a,
1996b; Dau, Kollmeier, & Kohlrausch, 1997a, 1997b). Our companion arti-
cle in this issue (”Evaluating Auditory Performance Limits: II”) describes
a general method that extends previous studies that have quanti�ed the
effects of physiological noise on psychophysical performance using analyt-
ical auditory nerve (AN) models (e.g., Siebert, 1968, 1970; Colburn, 1969,
1973) to incorporate the use of computational models; however, the SDT
analysis in the companion article was limited to deterministic discrimina-
tion experiments. This study extends the general SDT approach described
in the companion article to allow more complicated psychophysical tasks
to be evaluated, speci�cally discrimination tasks in which one parameter is
randomly varied from trial to trial.

Many psychophysical experiments have used random variation of cer-
tain stimulus parameters in order to limit the cues available to the subject.
For example, McKee, Silverman, and Nakayama (1986) observed that hu-
man visual velocity discrimination was unaffected by random variation of
either contrast or temporal frequency, and concluded that performance was
mediated by sensing velocity. In the auditory system, this method has been
used in pro�le analysis experiments to demonstrate that level discrimina-
tion of a single component within a tone complex or detection of a tone in
noise is not affected by the randomization of overall level, and thus these
tasks can be performed without relying on an absolute energy cue (Green,
Kidd, & Picardi, 1983; Kidd, Mason, Brantley, & Owen, 1989; see Green,
1988 for a review). While psychophysical performance in the presence of
overall-level randomization is typically unchanged, performance based on



Auditory Performance Limits with Random Level 2319

single neurons would likely be severely degraded. Therefore, it is important
to evaluate quantitatively how physiological responses can account for be-
havior in these types of psychophysical tasks. Durlach,Braida, and Ito (1986)
described a quantitative model for pro�le analysis tasks based on across-
frequency-level comparisons, which included the effects of both external
(stimulus) variations and internal processing noise. However, the internal
noise used in their model was not directly related to the known physiologi-
cal noise that exists in AN �bers, and thus was somewhat arbitrary. Huettel
and Collins (1999) evaluated the information loss in physiological auditory
models that resulted from randomization of phase in a tone detection in
noise experiment; however, their analysis did not include internal noise.
Our study here extends the analysis in the companion article, which quan-
ti�ed performance limits for deterministic discrimination tasks based on
Poisson neural discharges, to include the effect of random stimulus varia-
tion in a single parameter on psychophysical performance limits. In order to
demonstrate this method, predictions for a random-level frequencydiscrim-
ination task are evaluated using the same computational AN model used
in the companion study. Predictions are made for both rate-place (based on
discharge counts) and all-information (based on discharge times) encod-
ing schemes, as was done in the companion study of pure-tone frequency
and level discrimination. It is often stated that listeners use rate-place infor-
mation to encode frequency at high frequencies, (e.g., Wever, 1949; Moore,
1973, 1989; Dye & Hafter, 1980; Wake�eld & Nelson, 1985; Javel & Mott,
1988; Pickles, 1988; Moore & Glasberg, 1989), because AN phase locking
rapidly degrades above 2 to 3 kHz (Johnson, 1980; Joris, Carney, Smith, &
Yin, 1994; or see Figure 1c in the companion article). This analysis illustrates
quantitatively the relation between random-level frequency discrimination
and �xed-level frequency and level discrimination in terms of average-rate
and temporal information.

Random-level variation has been used in several auditory frequency dis-
crimination experiments to test rate-place models for frequency encoding
(Henning, 1966; Verschuure & van Meeteren, 1975; Emmerich, Ellermeier,
& Butensky, 1989; Moore & Glasberg, 1989). In this task, the listener is asked
to discriminate the frequency of two tones whose levels are varied ran-
domly and independently from trial to trial. Frequency-discrimination-in-
quiet could hypotheticallybe performed by observing the average discharge
rate of a single-frequency channel tuned either above or below the tone
frequency (e.g., Zwicker, 1956, 1970; Henning, 1967). Such single-channel
rate-based models would be expected to be affected greatly by random-
level variation because changes in level could not be discriminated from
changes in frequency. Conversely, temporal models would not be expected
to be affected by random-level variation.

Several studies have observed an effect of random-level variation on fre-
quency discrimination (e.g., Henning, 1966;Emmerich et al., 1989);however,
the observed effect of random-level variation is likely to be largely due to
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pitch shifts associated with the changes in level over the broad range of level
variation used in these studies (Verschuure& vanMeeteren, 1975;Emmerich
et al., 1989). Moore and Glasberg (1989) measured frequency discrimination
as a function of frequency with a smaller range of random-level variation
and observed virtually no effect. Moore and Glasberg also measured fre-
quency discrimination in the presence of high-frequency noise thatwas used
to mask the characteristic frequencies (CF, the most sensitive frequency of
the AN �ber) above the tone frequency. This experiment was designed to
test the idea that rate-place models could avoid the effect of random-level
variation by comparing information from CFs above and below the tone
frequency. A small but signi�cant effect of adding the high-frequency noise
was observed, with a slightly larger effect when the noise was added to the
random-level condition. Despite a similar magnitude of effect at all tone
frequencies, Moore and Glasberg (1989) concluded that their results were
consistent with the “duplex theory” for frequency encoding (Wever, 1949),
that is, that rate-place information is used at high frequencies and temporal
information is used at low frequencies. The results in this study question
this conclusion by quantifying that there is insuf�cient rate-place informa-
tion in the AN model to account for human performance with random-level
variation under the assumption that the high-frequency noise masks all CFs
above the tone frequency.

In addition to the speci�c results on the auditory task of random-level
frequency discrimination, the current study is also a presentation of general
methods for using SDT and computational neural models to address quan-
titatively questions of general interest to theoretical neuroscience. These
methods are applicable to any sensory system for which there are statisti-
cal descriptions of neural responses as a function of the relevant stimulus
parameters.

2 General Methods

2.1 Computational Auditory-Nerve Model. The computational AN
model used in this study was the same model described in the compan-
ion study.1 This AN model was a simpli�ed version of a previous nonlinear
AN model (Carney, 1993) and was used in order to simplify the veri�cation
of the computational SDT methods. The major components of the AN model
are summarized below (see the companion article for a detailed description,
and Ruggero, 1992, for a review of basic AN responses).

The initial model stage was a linear fourth-order gamma-tone �lter bank,
which was used to represent the frequency selectivity of AN �bers. Model
�lter bandwidths were based on psychophysical estimates of human band-
widths from Glasberg and Moore (1990). Each bandpass �lter was followed

1 Code for the AN model used in the study is available online at http://earlab.bu.edu/.

http://earlab.bu.edu/.
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by a memoryless, asymmetric, saturating nonlinearity, which represents the
mechano-electric transduction of the inner hair cell (IHC). All AN model
�bers had a rate threshold of roughly 0 dB SPL, a spontaneous rate of 50
spikes per second, and a maximum sustained rate of roughly 200 spikes
per second. The model dynamic range for sustained rate was roughly 20–
30 dB, and the dynamic range for onset rate was much larger. The high-
spontaneous-rate (HSR), low-threshold �bers described by the AN model
represent the majority (61%) of the total AN population (Liberman, 1978).
Medium- (23%) and low-SR (16%) �bers, which have higher thresholds and
larger dynamic ranges, are not included in the model. The rolloff in phase
locking was chosen to be consistent with all species discussed in Weiss
and Rose (1988), and the cutoff frequency matched data from cat (Johnson,
1980). Neural adaptation was introduced through a simple three-stage dif-
fusion model for the IHC-AN synapse based on data from Westerman and
Smith (1988). The output of the ith AN model �ber represents the instanta-
neous discharge rate ri(t, f, L) of an individual high-spontaneous-rate, low-
threshold AN �ber in response to an arbitrary stimulus. The AN discharges
are assumed to be produced by a population of conditionally independent,
nonstationary Poisson processes with rate functions described by ri(t, f, L)
(see the companion article).

2.2 Signal Detection Theory. The application of SDT in this study is
extended from the companion study to evaluate psychophysical tasks in
which a single parameter is randomly varied. Performance limits are eval-
uated for both rate-place and all-information models and compared to data
from human listeners. Rate-place predictions are based on the assumption
that the population of AN-�ber discharge counts fKig over the duration of
the stimulus is the only information used by the listener. In contrast, the all-
information predictions are based on the assumption that the listener uses the
population of discharge times and counts fti

1, . . . , ti
Ki

g, where ti
j represents

the jth discharge from the ith AN �ber. The contribution of temporal in-
formation in the responses can be inferred by comparing the predictions of
the rate-place and all-information models. The all-information model does
not assume any speci�c forms of temporal processing, such as calculating
synchrony coef�cients or creating interval histograms, and thus provides
an absolute limit on achievable performance given the total information
available in the AN.

3 General Analytical Results: One-Parameter Discrimination with One
Unwanted Random Parameter

3.1 Overview of Basic Result. The use of SDT with stochastic models
of neural responses has never been applied to the class of psychophysical
tasks that randomly vary one parameter in order to restrict the cues that are
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available to the subject. The SDT analysis of a general one-parameter dis-
crimination experiment with one unwanted random parameter is a straight-
forward extension of the Cram Âer-Rao-bound analysis described in the com-
panion article to the multiple-parameter case, as described in section 3.2. In
this study, the analysis is described in terms of a random-level frequency-
discrimination task. A performance limit for the just-noticeable difference
in frequency for this task can be calculated as
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where EL denotes the expected value over the random-level range, (d 0
f [CFi])2

and (d 0
L[CFi])2 represent, for the ith �ber, the normalized sensitivities to

changes in frequency and level, respectively, APIL represents the a priori in-
formation about level (e.g., the random-level range), andd 0

Lf [CFi] represents
the cross-interaction between changes in level and frequency on the ith AN
�ber (see section 3.2 and the companion article). The normalized sensitivi-
ties and the cross-interaction terms in equation 3.1 can be evaluated in terms
of the time-varying discharge rate ri(t, f, L) for each AN �ber. Thus, equa-
tion 3.1 can be used with any AN model (e.g., analytical or computational)
and is applicable to any single-parameter discrimination experiment with
one randomized parameter. This analysis is also applicable to any sensory
system for which the statistics of the neural responses can be described as
a function of the stimulus parameters of interest.

This general form of the relation between the performance limit and
the relevant information quantities provides insight into the in�uence of
random-level variation on the ability to perform frequency discrimina-
tion. Equation 3.1 illustrates that the neural information available about
changes in frequency in the random-level experiment is equal to the av-
erage (over level) of the information available for �xed-level frequency
discrimination, ELf

P
i(d

0
f [CFi])2g, minus the amount of information that is

lost due to the random-level variation. The numerator of the second term,
fEL(

P
i d

0
Lf [CFi])g2, represents the square of the average total correlation be-

tween the effect of changes in frequency and changes in level on the neural
observations. If changes in level in�uence the observations in the same way
as changes in frequency, then the information about changes in frequency is
reduced in the presence of random-level variation. The denominator of the
second term, ELf

P
i(d

0
L[CFi])2g C APIL, is a normalization factor that repre-

sents the total information available about changes in level. The �rst term
in the denominator is the average information about level from the AN
observations, while the second term is the a priori information available
about level from the limited random-level range. Thus, if the frequency-
level cross term (the numerator) is comparable to the level information
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(the denominator), then the random-level variation term (the subtracted
term in equation 3.1) could be comparable to the �rst term and in�uence
frequency-discrimination performance. The analysis thus illustrates the re-
lation between information for random-level frequency discrimination and
the information for �xed-level frequency and level discrimination.

3.2 Mathematical Analysis. In this section, the analysis leading to equa-
tion 3.1 is presented. In a random-level frequency discrimination exper-
iment, the observations (Poisson discharge times on M AN �bers, T D
fti

1, . . . , ti
Ki

I i D 1, . . . , Mg, where ti
j represents the jth discharge on the ith

�ber), are in�uenced by both the nonrandom, unknown frequency f and
the random level L. The form of an optimal processor in this case can be
theoretically derived using a likelihood-ratio test (LRT), in which the likeli-
hood of the observations given frequency is integrated over the uncertainty
in level for both hypotheses, D f and f C D f (van Trees, 1968). However,
the integrals over level (of the joint probability density of the condition-
ally independent AN �bers) in both the numerator and the denominator
of the likelihood ratio prohibit simpli�cation of the decision variable into a
form for which performance can be evaluated analytically. An alternative
to the LRT for evaluating psychophysical performance limits is the Cram Âer-
Rao bound from estimation theory (Siebert, 1968, 1970; see the companion
article), which provides a lower bound on the variance of any unbiased
estimator. We demonstrated in the companion article that for deterministic
discrimination experiments, where the independence of AN �bers permits
simpli�cation of the decision variable derived from the LRT, the Cram Âer-
Rao bound on performance was met with equality by the LRT processor.
Thus, the Cram Âer-Rao bound was used in the study presented here to cal-
culate performance limits because performance evaluation of the optimal
processor derived from the LRT is not easily calculated analytically for a
one-parameter discrimination task in which an unwanted parameter is ran-
domly varied. It is possible to evaluate the performance of the LRT proces-
sor using numerical simulations (e.g., Gresham & Collins, 1998; Huettel &
Collins, 1999); however, in the case here for which performance based on
the total population of 30,000 AN �bers is desired, such simulations would
be arduous given the across-�ber correlations created by the random stim-
ulus variability.

The Cram Âer-Rao bound for estimating a vector of random parameters
(N D 2 in this case) can be used in this case (Cram Âer, 1951; see van Trees,
1968, pp. 84–85). In general, the information available to an observer to
estimate a random parameter is the sum of the a priori information based
on the known distribution of the parameter and the information available
from the data. In order to treat the frequency parameter as nonrandom but
unknown, the a priori information is set to zero. The Cram Âer-Rao bound
provides a lower bound on the variance of any unbiased estimate of f , in
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the presence of randomized level L, and is given by
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where EL, T indicates the expectation over both the random-level L and the
random observations T , and p(L) is the probability density used to spec-
ify the random-level distribution and determines the a priori information
for level. Equation 3.2 can be written in a more useful form using iterated
expectations:
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The probability density of the observed Poisson discharge times on all �bers
is the product of the densities for individual �bers, assuming each �ber is
conditionally independent given L (see Parzen, 1962; Snyder & Miller, 1991;
Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997). Conditional
independence results from the assumption that each AN �ber has an in-
dependent discharge-generating mechanism and that correlation between
AN �bers results only from a common stimulus drive (see the companion
article). The conditional expectations with respect to T are of a form that
has been previously evaluated for Poisson observations (Siebert, 1970; see
the companion article).

A lower bound on the just noticeable difference (JND) D fJND is equal
to the minimum standard deviation of any estimator based on the obser-
vations, where threshold is de�ned as 75% correct in a two-interval, two-
alternative forced-choice task (Green & Swets, 1966; Siebert, 1968, 1970).
This threshold de�nition corresponds to d0 D 1, where d0 D D fJND/s Of . Thus,
a performance limit on the JND based on the population of AN �bers is
given by
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where the conditional expectations in equation 3.3 were evaluated by us-
ing the Poisson probability densities, as described in the companion article.
Equation 3.4 describes a performance limit for discriminating frequency
in the presence of random-level variation based on the AN population re-
sponse in terms of the time-varying discharge rates ri(t, f, L). Following the
notation used in the companion article,

(d 0
f [CFi])2 DD

Z T

0

1
ri(t, f, L)

µ
@ri(t, f, L)

@f
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dt, (3.5)
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The quantities (d 0
f [CFi])2 and (d0

L[CFi])2 represent the information available
on the ith �ber about frequency f and level L, respectively, and are shown
in the companion article to represent normalized sensitivities, de�ned as
the sensitivity d0 per unit f or L (also see Durlach & Braida, 1969; Braida &
Durlach, 1988). Similarly, the cross-interaction term is de�ned as
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Lf [CFi]

DD
Z T

0

1
ri(t, f, L)

µ
@ri(t, f, L)

@L
@ri(t, f, L)

@f

¶
dt, (3.7)

and represents the correlation between changes in level and changes in
frequency on the ith �ber. Based on this notation, equation 3.4 is equivalent
to equation 3.1, where APIL represents the a priori information available
about level (e.g., from the range of levels used in the random variation of
level).2

4 Computational Methods: Use of Auditory Nerve Models

All predictions in this study were made using the computational AN model
in the identical manner used in the companion article. Brie�y, predictions
are based on the total population of high-spontaneous-rate (HSR) AN �bers,
which are simulated using 60 model CFs ranging from 100 Hz to 10 kHz.
The model CFs are uniformly spaced in location according to a human
cochlear map (Greenwood, 1990). In order to account for the total number

2 A gaussian distribution was used to calculate APIL due to the analytical dif�culty
for a uniform distribution that results from the unde�ned derivative with respect to L
for levels at the edges of a uniform distribution. The a priori information for level was
calculated to be APIL D 2p /R2 for a gaussian distribution with a variance of R2 /2p , where
R represents the random-level range in dB. A gaussian distribution with variance R2 /2p

has the same equivalent-rectangular width as a uniform distribution with random-level
range R.
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of AN �bers in the HSR population, predictions are based on a population
of 12,200 total HSR �bers, where each of the 60 model responses represents
roughly 200 conditionally independent AN �bers. Tone frequencies were
always chosen to be equal to one of the 60 model CFs. Stimulus duration
was de�ned as the duration between half-amplitude points on the stimulus
envelope. All rise/fall ramps were generated from raised cosine functions.
The temporal window in the all-information analysis included the model
response beginning at stimulus onset and ending 25 ms after stimulus off-
set, in order to allow for the response delay and the transient onset and
offset responses associated with AN �bers over the range of CFs and stim-
ulus parameters used in this study. Predictions for the rate-place encoding
scheme were based on the average discharge rate across the entire temporal
analysis window (i.e., including the extra 25 ms after the nominal offset of
the stimulus).

5 Computational Results

5.1 Random-Level Frequency Discrimination in Quiet. Predictions of
performance limits for the random-level frequency discrimination taskwere
calculated using equation 3.1 for the same values of frequency, level, and
duration we used in the companion article. A random-level range was uni-
formly distributed and centered around the nominal level for each con-
dition. For all conditions, there was no effect of random-level variation
for the rate-place or all-information schemes for either a 6 dB or a 20 dB
random-level range (neither shown).3 This result is consistent with human
performance measured by Moore and Glasberg (1989), in which no effect
of random-level variation was observed with a 6 dB range. Conversely,
Emmerich et al. (1989) observed a factor of three degradation in human per-
formance when measured with a 20 dB random-level range; however, they
showed that much of this effect was due to the confounding role of level-
dependent shifts in pitch (Verschuure & van Meeteren, 1975), which are not
likely to be produced by the simpli�ed AN model used in this study. The
results for both rate-place and all-information models thus support the idea
that there is no effect of random-level variation on frequency discrimination
when a small enough random-level range is used to avoid the in�uence of
level-dependent-pitch effects (Moore & Glasberg, 1989).

In order to illustrate how each encoding scheme can discriminate fre-
quency accurately in the presence of random-level variation, the distribu-

3 The effect of random-level variation was evaluated by comparing random-level per-
formance (given by equation 3.1) to average (across level) �xed-level performance (de-
termined by the �rst term in equation 3.1, ELf

P
i
(d0

f [CFi])2g). This comparison avoids
any potential effect of variation in performance across the levels within the random-level
range, which could result in a difference between �xed-level performance and average
�xed-level performance that was not truly an effect of random-level variation.
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Figure 1: Information responsible for performance limits for a random-level
frequency discrimination task for f D 970 Hz (indicated by arrows), L D 40
dB SPL, T D 200 ms (20 ms rise/fall), and a 6 dB random-level range. The
left and right columns illustrate information from the all-information and rate-
place encoding schemes, respectively. The top panel represents the average level
information ELf(d 0

L[CF])2g available for each AN model �ber. The middle panel
shows the average cross-interaction between level and frequency for each AN
�ber, EL(d 0

Lf [CF]). In the bottom panel, the average information available for
�xed-level frequency discrimination, ELf(d 0

f [CF])2g, is shown by the solid line.
The dashed line illustrates the information for estimating frequency based on
individual AN �bers that is lost due to the random-level variation (the second
term in equation 3.1). The amount of lost information (a positive quantity) is
plotted so that CFs that have negative correlation between changes in level and
changes in frequency have a negative value (for illustrative purposes only).

tion of information quantities in equation 3.1 across the population of AN
�bers is shown in Figure 1. The �rst row shows the average information
about level available for each CF, ELf(d0

L[CF])2g. The second row shows the
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average cross-interaction term as a function of CF, EL(d 0
Lf [CF]). The average

�xed-level information about frequency for each AN �ber, ELf(d 0
f [CF])2g,

is shown by the solid line in the bottom row. The dashed line in the bot-
tom row illustrates the average frequency information that is lost due to
the random-level variation based on estimating frequency from single AN
�bers (i.e., the second term in equation 3.1 evaluated for single CFs, and
with APIL D 0). The amount of lost information is plotted so that CFs that
have a negative correlation between changes in level and frequency have a
negative value. This is solely for illustrative purposes, as the second term
in equation 3.1 is always positive because it is the ratio of a squared value
and a positive information quantity.

The curves in the bottom panel of Figure 1 illustrate how both encod-
ing schemes overcome the in�uence of random-level variation. In the all-
information scheme, each �ber possesses signi�cantly more information for
estimating frequency than is lost due to the random-level variation (com-
pare the solid and dashed lines in Figure 1, bottom left). However, the situ-
ation with single-�ber rate-place information is very different. The average
amount of rate-place information on a single �ber that is lost due to random-
level variation is equal to the average amount of information available for
estimating frequency with �xed level (compare the solid and dashed lines in
Figure 1, bottom right). However, when the population response is consid-
ered, there is no effect of random-level variation for the rate-place scheme
due to the opposite polarity of the cross-interaction term above and below
the frequency of the tone (see the middle panel of Figure 1). The lack of an
effect for the rate-place population response can be seen (see equation 3.1)
to result from the summation of the cross-interaction term d 0

Lf [CF] over all
CFs prior to squaring the total interaction. The rate-place cross-interaction
pro�le is an odd function around the frequency of the tone (see Figure 1,
middle panel), and thus the positive interaction above the frequency of the
tone cancels the negative interaction below the frequency of the tone so
that the overall effect of random-level variation is negligible. The shape of
the rate-place cross-interaction pro�le results directly from the frequency
tuning associated with AN �bers and quanti�es the signi�cance of the fun-
damental relation between frequency and level discrimination discussed by
Siebert (1968).

In summary, single AN �bers in the all-information scheme can per-
form random-level frequency discrimination equally as well as �xed-level
frequency discrimination. In contrast, it is not possible to discriminate fre-
quency in the presence of random-level variation based on rate-place infor-
mation from a single AN �ber. However, a rate-place model that compared
information in CFs above and below the frequency of the tone could make
use of the opposite interaction to separate the effect of changes in level from
the effect of changes in frequency, and thereby discriminate frequency in
the presence of random-level variation.
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5.2 Random-Level Frequency Discrimination in Noise. Moore and
Glasberg (1989) measured human frequency discrimination performance
in four conditions in order to test the duplex theory of frequency coding,
that is, that rate-place information is used at high frequencies while tempo-
ral information is used at low frequencies. They reported performance as a
function of frequency for four conditions:

1. Fixed-level frequency discrimination in quiet

2. Random-level frequency discrimination in quiet

3. Fixed-level frequencydiscriminationwith a high-frequencynoisemasker
that spanned from 1.1 f to 1.4 f

4. Random-level frequency discrimination in the presence of the high-
frequency noise

Moore and Glasberg suggested that if the high-frequency noise were as-
sumed to mask completely all CFs above the frequency of the tone, then
the performance of a rate-place model should be signi�cantly affected by
randomizing the level of the tone in the presence of the noise.

The random-level frequency discrimination analysis in this study was
used to simulate all four conditions from Moore and Glasberg (1989). The
�rst two conditions have been described above, while the conditions that
included the high-frequency noise were simulated by considering the infor-
mation from CFs only below the frequency of the tone. While this simulated
effect of the noise masker is extreme (e.g., given the effects of suppression;
Sachs & Kiang, 1968; Delgutte, 1990; Ruggero, Robles, & Rich, 1992), this
simulation directly mimics the assumption that was made by Moore and
Glasberg (1989) and has been often used to interpret psychophysical experi-
ments with noise maskers (e.g., Viemeister, 1983). Thus, performance limits
predicted with this simulation are based on information in model CFs below
and equal to the tone frequency, which are the only source of information
under the assumption used by Moore and Glasberg (1989) to interpret their
psychophysical experiment.

The group mean results from Moore and Glasberg (1989) are shown in
Figure 2a, the all-information predictions in Figure 2b, and the rate-place
predictions in Figure 2c. Psychophysical performance is plotted in terms
of the normalized JND in frequency D f

f , where higher JNDs correspond
to worse performance. (Comparisons between human performance and
predicted performance limits are made in terms of both absolute values
and trends, as discussed in section 2.2 in the companion article.) If the
performance limits are uniformly better than human performance (i.e., par-
allel to human performance across the entire range of stimulus parameters),
then it can be hypothesized that AN information is used in a (uniformly)
inef�cient manner. On the other hand, if the performance limits exceed hu-
man performance in a nonuniform way, and there is no realistic processor
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Figure 2: Comparison between human performance and predicted performance
limits for the random-level frequency-discrimination conditions reported by
Moore and Glasberg (1989). The Weber fraction D f/ f is plotted as a function of
frequency in each panel. (a) Human performance. (b) All-information predic-
tions. (c) Rate-place predictions. Condition 1 (open circles):�xed-level frequency
discrimination in quiet. Condition 2 (�lled squares): random-level frequency
discrimination in quiet. Condition 3 (�lled upward triangles): �xed-level fre-
quency discrimination in the presence of high-frequency noise. Condition 4
(�lled downward triangles): random-level frequency discrimination in high-
frequency noise. Human data are for L D 70 dB SPL, T=200 ms (10 ms rise/fall),
6-dB random-level range, and overall noise level of 75 dB SPL (Moore & Glas-
berg, 1989). Model predictions are for L D 40 dB SPL, T D 200 ms (20 ms
rise/fall), and 6 dB random-level range.

that would be nonuniformly inef�cient in the required manner, then a fairly
strong hypothesis can be made that the information provided in the AN is
suf�cient but not likely to account solely for human performance. Finally, if
human performance is superior to the performance limits, then this result
states that there is insuf�cient information represented by the model of the
peripheral transformations to account for human performance.

In general, predicted rate-place performance limits (see Figure 2c) are
closer to the absolute values of human performance (see Figure 2a), but
do not match the trends in human performance as a function of frequency,
particularly at high frequencies. In contrast, predicted all-information per-
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Table 1: Average Ratio Between Thresholds in Conditions 2–4 Relative to Con-
dition 1 (Frequency Discrimination in Quiet).

Human Model

Condition Moore and Glasberg All- Rate-
(1989) Information Place

Random level (condition 2) 1.15a 1.00 1.00
In noise (condition 3) 1.37 1.41 1.26
Random level in noise (condition 4) 1.65 1.40 9.68

Notes: Conditions are de�ned in the text and the caption to Figure 2.
a Not statistically signi�cant.

formance limits (see Figure 2b) match the trends in human performance
versus frequency, but are signi�cantly better than the absolute values of
human performance.

The effects of the different conditions used by Moore and Glasberg (1989)
on human performance were relatively small, especially compared with the
factor-of-�ve degradation in performance between 2 and 6.5 kHz in all four
conditions (see Figure 2a). Moore and Glasberg reported that there was
no statistically signi�cant interaction between condition and frequency, as
indicated by the roughly parallel shifts of the curves for the different con-
ditions in Figure 2a. Table 1 shows the average factor across frequency by
which thresholds for each condition became worse relative to frequency
discrimination in quiet (condition 1) for human and model performance.
Moore and Glasberg reported that there was not a statistically signi�cant
difference between frequency discrimination in quiet and with a random
level (between conditions 1 and 2). Human thresholds became worse by
an average factor of 1.37 (statistically signi�cant) for the in-noise condi-
tion, while the most signi�cant effect was seen for the random-level in
noise condition in which performance became worse by an average factor
of 1.65.

Both all-information (see Figure 2b) and rate-place predictions (see Fig-
ure 2c) in quiet were unaffected by random-level variation, as described
above. The simulated effect of adding the high-frequency noise for the �xed-
level task resulted in similar increases in predicted thresholds for both the
rate-place and all-information encoding schemes (see Figures 2b and 2c).
The increase is consistent with the removal of roughly one half of the avail-
able information (see the solid curve in thebottom panels of Figure 1) and the
resultant increase in threshold by a factor of

p
2, and is similar to the size of

the observed effect in the human data. The only relative difference between
the rate-place and all-information predictions was for the random-level
in-noise condition. All-information thresholds were worse than condition 1
by a factor of 1.40; there was no effect of imposing random-level variation
in the presence of high-frequency noise (conditions 3 and 4 were identical;
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see Figure 2b and Table 1). In contrast, the rate-place thresholds increased
by a factor of 9.68 compared to frequency discrimination in quiet (see Fig-
ure 2c and Table 1). The large, predicted increase in rate-place thresholds
for the random-level in-noise condition compared to the noise-alone con-
dition is due to the inability of the rate-place model to compare CFs above
and below the tone frequency (see Figure 1). This large effect is inconsis-
tent with the small effect observed in human performance at all frequen-
cies.

6 Discussion

This study describes an extension of SDT analysis of stochastic neural mod-
els to psychophysical tasks in which one stimulus parameter is randomly
varied in order to restrict the cues available to the subject. Frequency-
discrimination performance limits based on either the population of dis-
charge counts (rate-place) or discharge times (all-information) of high-spon-
taneous-rate, low-threshold AN �bers were unaffected by random-level
variation, consistent with human performance. The distributions of fre-
quency and level information across the AN population demonstrated how
both rate-place and all-information encoding schemes avoid the effect of
random-level variation in quiet. Predictions were also made for random-
level frequency discrimination in the presence of high-frequency noise,
based on the simpli�ed assumption that the noise masker acts to eliminate
all information above the frequency of the tone.

When the simple model of the effect of noise masking is used, the pre-
dictions for the random-level frequency discrimination in noise experiment
(see Figure 2) are inconsistent with human data if rate-place coding of fre-
quency is assumed. The predicted effect in rate-place performance of adding
random-level variation in the presence of high-frequency noise (see Fig-
ure 2c) is much larger than the small effect observed in human performance
(see Figure 2a); Moore and Glasberg (1989). In fact, there is insuf�cient
rate-place information in the total AN model population to account for
human performance in the random-level-in-noise condition. The cause of
the large reduction in information in the random-level-in-noise condition is
the inability of the rate-place model to compare CFs above and below the
tone frequency. Medium- and low-spontaneous-rate (SR) AN �bers, which
have higher thresholds and broader dynamic ranges than the high-SR, low-
threshold �bers included in our AN model, would not be expected to alter
signi�cantly the fundamental relation between frequency and level discrim-
ination that underlies the behavior of the rate-place predictions. Neither an
increase in the total number of AN �bers nor an alteration of the innerva-
tion density across CF would reduce the large discrepancy (factor of 9.68)
between rate-place JNDs for the in-quiet and random-level-in-noise condi-
tions. The implications of less easily quanti�ed alterations to the AN model
for the assumed effect of the masking noise are discussed below.
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The inconsistency between the effect of random-level variation with a
noise masker for the rate-place model and human performance occurs for
all frequencies. This �nding, combined with the �nding by Moore and Glas-
berg (1989) that there was no statistically signi�cant interaction between the
effects of conditions 1 through 4 (see Figure 2) and frequency suggests that
a single encoding scheme is responsible for performance at all frequencies,
rather than the duplex theory often invoked to explain frequency encoding
(e.g., Wever, 1949; Moore, 1973; Dye & Hafter, 1980; Wake�eld & Nelson,
1985; Moore & Glasberg, 1989). As we discussed in the companion arti-
cle, rate-place performance in quiet is closer to human performance than
all-information performance in terms of absolute performance level. How-
ever, the trends in rate-place performance versus frequency are inconsistent
with human performance at high frequencies, converse to the duplex theory.
This strong discrepancy between the trends in rate-place and human perfor-
mance is shown in this study to exist for all four frequency-discrimination
conditions describedby Moore and Glasberg (1989). In contrast to rate-place,
all-information performance limits match the trends in human performance
across all frequencies and all four conditions. Notably, and contrary to gen-
eral beliefs (e.g., Moore, 1973, 1989; Dye & Hafter, 1980; Wake�eld & Nelson,
1985; Javel & Mott, 1988; Pickles, 1988; Moore & Glasberg, 1989), there is
signi�cant temporal information in the AN at high frequencies for all four
conditions in this study. Also, this study shows that all-information perfor-
mance limits are unaffected by random-level variation in quiet and in the
presence of high-frequency noise (see Figure 2), consistent with the small
effects on human performance.

The computational AN model used in this study did not include sev-
eral important aspects of AN responses that could affect the predictions for
the masking conditions. The absence of suppression (i.e., nonlinear interac-
tions between different CFs; Sachs & Kiang, 1968;Delgutte, 1990;Ruggero et
al., 1992) in our model prohibits the accurate simulation of AN responses to
complex stimuli (e.g., noise stimuli). Suppression could potentially produce
effects that contradict the assumption that the high-frequency noise acts to
mask completely all AN �bers with CF above the tone frequency. Another
potentially signi�cant limitation of the current AN model is the exclusion of
high-threshold AN �bers with low and medium spontaneous rates (Liber-
man, 1978). Low- and medium-spontaneous-rate AN �bers (16% and 23%
of the AN population, respectively) have been suggested to contribute to
level encoding at higher levels (e.g., Colburn, 1981; Delgutte, 1987; Winter
& Palmer, 1991), and therefore should be included in future AN models to
quantify the effects of masking noise. In addition, a signi�cant extension of
the SDT analysis is necessary in order accurately to evaluate psychophysi-
cal tasks with complex random stimuli, such as noise (Heinz, 2000). Future
studies using more complex AN models and SDT analyses will evaluate the
validity of common assumptions regarding the effects of masking noise on
auditory information.
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7 Conclusion

1. Signal detection theory can be used to quantify the effects of both
physiological noise and stimulus variation on psychophysical perfor-
mance limits in discrimination experiments with random variation in
one stimulus parameter.

2. Frequency-discrimination performance limits based on the popula-
tion of AN discharge counts (rate-place) or based on discharge times
on individual AN �bers are unaffected by random-level variation in
quiet.

3. There is insuf�cient rate-place information in this AN model to ac-
count for human performance in a random-level frequency-discrimi-
nation taskwithhigh-frequencynoisebased on a common psychophys-
ical assumption for the effects of noise maskers.

4. All-information performance limits with high-frequency noise are un-
affected by random-level variation, consistent with human perfor-
mance.

The primary goal of this study was to demonstrate a method for relat-
ing stochastic neural responses to behavior in psychophysical tasks that
include random variation of one stimulus parameter. This method was
demonstrated for the auditory task of random-level frequency discrimi-
nation but is applicable to any psychophysical discrimination experiment
in which one parameter is randomly varied. The analysis presented applies
to any sensory system for which there are models that describe the statistical
properties of neural responses to the relevant stimuli. Equation 3.1 is valid
for any neural model, while some of the analysis in section 3.2 is speci�c
for neural responses that are well described statistically by conditionally
independent, nonstationary Poisson processes. Thus, the study describes
a general modeling approach for quantitatively relating physiological re-
sponses to behavior in complex psychophysical tasks that are often used to
test neural encoding hypotheses.
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Dau, T., Püschel, D., & Kohlrausch, A. (1996b). A quantitative model of the
“effective” signal processing in the auditory system II. Simulations and mea-
surements. J. Acoust. Soc. Am., 99, 3623–3631.

Delgutte, B. (1987). Peripheral auditory processing of speech information:
Implications from a physiological study of intensity discrimination. In
M. E. H. Schouten (Ed.), The psychophysics of speech perception (pp. 333–353).
Dordrecht: Nijhoff.

http://www.aip.org/epaps/howorder.html
http://www.aip.org/epaps/howorder.html
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2993L.401[aid=1510235]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2954L.1458[aid=1510236]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2961L.525[aid=1510237]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^29102L.2906[aid=1510239]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2999L.3615[aid=1510240]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2999L.3623[aid=1510241]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^29102L.2906[aid=1510239]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2999L.3615[aid=1510240]


2336 M. G. Heinz, H. S. Colburn, and L. H. Carney

Delgutte, B. (1990). Two-tone rate suppression in auditory-nerve �bers: Depen-
dence on suppressor frequency and level. Hear. Res., 49, 225–246.

Delgutte, B. (1996). Physiological models for basic auditory percepts. In
H. L. Hawkins, T. A. McMullen, A. N. Popper, & R. R. Fay (Eds.), Auditory
computation (pp. 157–220). New York: Springer-Verlag.

Durlach, N. I., & Braida, L. D. (1969). Intensity perception I: Preliminary theory
of intensity resolution. J. Acoust. Soc. Am., 46, 372–383.

Durlach, N. I., Braida, L. D., & Ito, Y. (1986). Towards a model for discrimination
of broadband signals. J. Acoust. Soc. Am., 80, 63–72.

Dye, R. H., & Hafter, E. R. (1980). Just-noticeable differences of frequency for
masked tones. J. Acoust. Soc. Am., 67, 1746–1753.

Emmerich, D. S., Ellermeier, W., & Butensky, B. (1989). A reexamination of the
frequency discrimination of random-amplitude tones, and a test of Henning’s
modi�ed energy-detector model. J. Acoust. Soc. Am., 85, 1653–1659.

Erell, A. (1988). Rate coding model for discrimination of simple tones in the
presence of noise. J. Acoust. Soc. Am., 84, 204–214.

Fitzhugh, R. (1958). A statistical analyser for optic nerve messages. J. Gen. Phys-
iol., 41, 675–692.

Glasberg, B. R., & Moore, B. C. J. (1990). Derivation of auditory �lter shapes from
notched-noise data. Hear. Res., 47, 103–138.

Goldstein, J. L., & Srulovicz, P. (1977). Auditory-nerve spike intervals as an
adequate basis for aural spectrum analysis. In E. F. Evans & J. P. Wilson (Eds.),
Psychophysics and physiology of hearing (pp. 337–347). New York: Academic
Press.

Green, D. M. (1988). Pro�le analysis: Auditory intensity discrimination. New York:
Oxford University Press.

Green, D. M., Kidd, G., Jr., & Picardi, M. C. (1983). Successive versus simultane-
ous comparison in auditory intensity discrimination. J. Acoust. Soc. Am., 73,
639–643.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New
York: Wiley.

Greenwood, D. D. (1990). A cochlear frequency-position function for several
species—29 years later. J. Acoust. Soc. Am., 87, 2592–2605.

Gresham, L. C., & Collins, L. M. (1998). Analysis of the performance of a model-
based optimal auditory signal processor. J. Acoust. Soc. Am., 103, 2520–2529.

Heinz, M. G. (2000). Quantifying the effects of the cochlear ampli�er on temporal and
average-rate information in the auditory nerve. Unpublished doctoral disserta-
tion, Massachusetts Institute of Technology, Cambridge, MA.

Henning, G. B. (1966). Frequency discrimination of random amplitude tones. J.
Acoust. Soc. Am., 39, 336–339.

Henning, G. B. (1967). A model for auditory discrimination and detection. J.
Acoust. Soc. Am., 42, 1325–1334.

Huettel, L. G., & Collins, L. M. (1999). Using computational auditory models to
predict simultaneous masking data: Model comparison. IEEE Trans. Biomed.
Eng., 46, 1432–1440.

Javel, E., & Mott, J. B. (1988). Physiological and psychophysical correlates of
temporal processing in hearing. Hear. Res., 34, 275–294.

http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2946L.372[aid=289815]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2980L.63[aid=1510243]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2967L.1746[aid=1510244]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2984L.204[aid=1510246]
http://alidoro.catchword.com/nw=1/rpsv/0378-5955^28^2947L.103[aid=1510248]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2973L.639[aid=304439]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2987L.2592[aid=1510249]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2939L.336[aid=1510251]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2942L.1325[aid=1510252]
http://alidoro.catchword.com/nw=1/rpsv/0018-9294^28^2946L.1432[aid=1510253]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2973L.639[aid=304439]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2939L.336[aid=1510251]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2942L.1325[aid=1510252]
http://alidoro.catchword.com/nw=1/rpsv/0018-9294^28^2946L.1432[aid=1510253]


Auditory Performance Limits with Random Level 2337

Johnson, D. H. (1980). The relationship between spike rate and synchrony in
responses of auditory-nerve �bers to single tones. J. Acoust. Soc. Am., 68,
1115–1122.

Joris, P. X., Carney, L. H., Smith, P. H., & Yin, T. C. T. (1994). Enhancement of
neural synchrony in the anteroventral cochlear nucleus. I. Responses to tones
at the characteristic frequency. J. Neurophysiol., 71, 1022–1036.

Kidd, G., Jr., Mason, C. R., Brantley, M. A., & Owen, G. A. (1989). Roving-level
tone-in-noise detection. J. Acoust. Soc. Am., 86, 1310–1317.

Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise
chamber. J. Acoust. Soc. Am., 63, 442–455.

McKee, S. P., Silverman, G. H., & Nakayama, K. (1986). Precise velocity discrim-
ination despite random variations in temporal frequency and contrast. Vision
Res., 26, 609–619.

Moore, B. C. J. (1973). Frequency difference limens for short-duration tones. J.
Acoust. Soc. Am., 54, 610–619.

Moore, B. C. J. (1989). An introduction to the psychology of hearing. New York:
Academic Press.

Moore, B. C. J., & Glasberg, B. R. (1989). Mechanisms underlying the frequency
discrimination of pulsed tones and the detection of frequency modulation. J.
Acoust. Soc. Am., 86, 1722–1732.

Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: Probing the
physiology of perception. Annu. Rev. Neurosci., 21, 227–277.

Parzen, E. (1962). Stochastic processes. San Francisco: Holden-Day.
Pickles, J. O. (1988). An introduction to the physiology of hearing. New York: Aca-

demic Press.
Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes:

Exploring the neural code. Cambridge, MA: MIT Press.
Ruggero, M. A. (1992). Physiology and coding of sound in the auditory nerve.

In A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuro-
physiology (pp. 34–93). New York: Springer-Verlag.

Ruggero, M. A., Robles, L., & Rich, N. C. (1992). Two-tone suppression in the
basilar membrane of the cochlea: Mechanical basis of auditory-nerve rate
suppression. J. Neurophysiol., 68, 1087–1099.

Sachs, M. B., & Kiang, N. Y. S. (1968). Two-tone inhibition in auditory-nerve
�bers. J. Acoust. Soc. Am., 43, 1120–1128.

Siebert, W. M. (1965). Some implication of the stochastic behavior of primary
auditory neurons. Kybernetik, 2, 206–215.

Siebert, W. M. (1968). Stimulus transformation in the peripheral auditory sys-
tem. In P. A. Kolers & M. Eden (Eds.), Recognizing patterns (pp. 104–133).
Cambridge, MA: MIT Press.

Siebert, W. M. (1970). Frequency discrimination in the auditory system: Place or
periodicity mechanisms? Proc. IEEE, 58, 723–730.

Snyder, D. L., & Miller, M. I. (1991). Random point processes in time and space. New
York: Springer-Verlag.

van Trees, H. L. (1968). Detection, estimation, and modulation theory: Part I. New
York: Wiley.

http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2968L.1115[aid=214983]
http://alidoro.catchword.com/nw=1/rpsv/0022-3077^28^2971L.1022[aid=218281]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2986L.1310[aid=1510255]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2963L.442[aid=1510256]
http://alidoro.catchword.com/nw=1/rpsv/0042-6989^28^2926L.609[aid=215948]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2954L.610[aid=1510257]
http://alidoro.catchword.com/nw=1/rpsv/0147-006X^28^2921L.227[aid=215730]
http://alidoro.catchword.com/nw=1/rpsv/0022-3077^28^2968L.1087[aid=1510259]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2943L.1120[aid=1510260]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2968L.1115[aid=214983]
http://alidoro.catchword.com/nw=1/rpsv/0042-6989^28^2926L.609[aid=215948]
http://alidoro.catchword.com/nw=1/rpsv/0001-4966^28^2954L.610[aid=1510257]


2338 M. G. Heinz, H. S. Colburn, and L. H. Carney

Verschuure, J., & van Meeteren, A. A. (1975). The effect of intensity on pitch.
Acustica, 32, 33–44.

Viemeister, N. F. (1983). Auditory intensity discrimination at high frequencies
in the presence of noise. Science, 221, 1206–1208.

Wake�eld, G. H., & Nelson, D. A. (1985). Extension of a temporal model of
frequency discrimination: Intensity effects in normal and hearing-impaired
listeners J. Acoust. Soc. Am., 77, 613–619.

Weiss, T. F., & Rose, C. (1988). A comparison of synchronization �lters in different
auditory receptor organs. Hear. Res., 33, 175–180.

Westerman, L. A., & Smith, R. L. (1988). A diffusion model of the transient
response of the cochlear inner hair cell synapse. J. Acoust. Soc. Am., 83, 2266–
2276.

Wever, E. G. (1949). Theory of hearing. New York: Wiley.
Winter, I. M., & Palmer, A. R. (1991). Intensity coding in low-frequency auditory-

nerve �bers of the guinea pig. J. Acoust. Soc. Am., 90, 1958–1967.
Zwicker, E. (1956). Die elementaren Grundlagen zur Bestimmung der Informa-
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