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A method for calculating psychophysical performance limits based on
stochastic neural responses is introduced and compared to previous ana-
lytical methods for evaluating auditory discrimination of tone frequency
and level. The method uses signal detection theory and a computational
model for a population of auditory nerve (AN) �ber responses. The use
of computational models allows predictions to be made over a wider
parameter range and with more complete descriptions of AN responses
than in analytical models. Performance based on AN discharge times (all-
information) is compared to performance based only on discharge counts
(rate-place). After the method is veri�ed over the range of parameters for
which previous analytical models are applicable, the parameter space is
then extended. For example, a computational model of AN activity that
extends to high frequencies is used to explore the common belief that
rate-place information is responsible for frequency encoding at high fre-
quencies due to the rolloff in AN phase locking above 2 kHz. This rolloff
is thought to eliminate temporal information at high frequencies. Con-
trary to this belief, results of this analysis show that rate-place predictions
for frequency discrimination are inconsistent with human performance
in the dependence on frequency for high frequencies and that there is
signi�cant temporal information in the AN up to at least 10 kHz. In fact,
the all-information predictions match the functional dependence of hu-
man performance on frequency, although optimal performance is much
better than human performance. The use of computational AN models
in this study provides new constraints on hypotheses of neural encoding
of frequency in the auditory system; however, the method is limited to
simple tasks with deterministic stimuli. A companion article in this issue
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(“Evaluating Auditory Performance Limits: II”) describes an extension
of this approach to more complex tasks that include random variation of
one parameter, for example, random-level variation, which is often used
in psychophysics to test neural encoding hypotheses.

1 Introduction

One of the challenges in understanding sensory perception is to test, quan-
titatively, hypotheses for the physiological basis of psychophysical perfor-
mance. The random nature of neural responses (i.e., that two presentations
of an identical stimulus produce different discharge patterns) imposes lim-
itations on performance. The fundamental requirement for relating neural
encoding to psychophysical performance is a statistical description of neu-
ral discharge patterns in response to the relevant stimuli. In general, if the
statistics of the response change signi�cantly as a stimulus parameter is
varied, then accurate discrimination of that parameter is possible.

Attempts to relate neural responses to psychophysical performance often
involve the question of whether a small set of individual neurons can statis-
tically account for performance, but can also involve studies of encoding by
an entire population of neurons (see Parker & Newsome, 1998). Implicit in
any hypothesis focused on a small set of neurons is the assumption that the
brain ignores statistically signi�cant information in other neurons within
the population. To avoid this assumption, the total amount of information
in a neural population can be quanti�ed. The amount of total information,
and the trends in information as stimulus parameters are varied, can be
used to test hypotheses of neural encoding and suggest neural information-
processing mechanisms. These studies, which require modeling approaches
due to the inability to record from all neurons within a population, have
typically been limited to simple psychophysical tasks with simple stimuli
that can be studied with analytical models. This article describes a general
method based ondetectionand estimation theory that allows computational
models for stochastic neural responses to be used in studies that relate phys-
iological properties to psychophysical performance. Computational models
allow one to calculate the response pattern of neural activity for an arbitrary
stimulus, whereas analytical models are typically functional descriptions of
activity to a well-de�ned class of stimuli. A companion article in this issue
(“Evaluating Auditory Performance Levels: II”) describes a further gener-
alization of this approach to include more complex psychophysical tasks in
which one stimulus parameter is randomly varied in order to limit the cues
available to a subject.

1.1 Relating Physiology to Psychophysics in the Auditory System.
The study reported here uses the auditory system as an example of the appli-
cation of signal detection theory (SDT) with computational neural models
to quantify the total information in a neural population; however, the gen-
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eral types of questions that this method is able to address quantitatively
are relevant to neural encoding in any sensory system. The auditory nerve
(AN) is an obligatory pathway between the cochlea (inner ear) and the
central nervous system (Ryugo, 1992), and thus contains all of the informa-
tion about an auditory stimulus that a listener can process. Siebert (1965,
1968, 1970) was the �rst to evaluate limits on psychophysical performance
in auditory discrimination tasks by combining methods from SDT with
models of peripheral auditory signal processing.1 (See Delgutte, 1996, for a
review of Siebert’s approach and many subsequent studies.) While Siebert
(1965, 1968, 1970) applied his approach to the auditory system, the general
questions addressed with his method are fundamental to theoretical neuro-
science, such as whether physiological noise inherent in neural encoding can
account for human performance limits and whether temporal information
in neural responses is used to encode sensory stimuli (Abbott & Sejnowski,
1999). In addressing these questions, Siebert (1965, 1968, 1970) used simple
analytical models that included only those AN response properties consid-
ered to be of primary importance: bandpass frequency tuning, saturating
rate-level curves, phase locking to tonal stimuli, a population of 30,000 AN
�bers with logarithmic characteristic frequency (CF, the frequency of best
response) spacing, and nonstationary Poisson statistics of AN discharges
(for reviews, see Kiang, Watanabe, Thomas, & Clark, 1965; Ruggero, 1992;
and Delgutte, 1996). These studies were limited to simple psychophysical
tasks, such as pure-tone level and frequency discrimination, because of their
relatively simple interpretations and the limits of the analytical AN models.
Valuable insight into the encoding of frequency and level in the periph-
eral auditory system was garnered from these previous studies; however,
fundamental questions are still debated, such as the frequency ranges over
which average rate and temporal information are used to encode frequency
and how a system in which the majority of AN �bers have a small dynamic
range can encode sound level over a broad dynamic range.

1.2 Auditory Encoding of Frequency. The physiological mechanism of
auditory frequency encoding has been a disputed issue since (at least) the
1940s, when spectral (place) cues (von Helmholtz, 1863) were challenged
by temporal cues (Schouten, 1940; Wever, 1949). The task of pure-tone fre-
quency discrimination has been widely used to test rate-place and tempo-
ral hypotheses for frequency encoding by measuring the just-noticeable-
difference (JND) in frequency between two tones (see Moore, 1989, and
Houtsma, 1995, for reviews of human performance; also see Figure 4). Rate-
place schemes are based on the frequency selectivity (or tuning) of AN
�bers (Kiang et al., 1965; Patuzzi & Robertson, 1988). Two tones of differing

1 Fitzhugh (1958) previously used this approach to investigate visual psychophysical
performance based on the random nature of optic nerve responses.
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frequency excite different AN �bers, and thus the listener can discriminate
these tones by detecting differences in thesets of AN�bers thatare activated.
Temporal schemes are based on the ability of AN �bers to phase-lock in re-
sponse to tones, that is, AN discharges tend to occur at a particular phase of
the tone (Kiang et al., 1965; Johnson, 1980; Joris, Carney, Smith, & Yin, 1994).

It is generally believed that average-rate information must be used at
high frequencies (at least above 4–5 kHz; Wever, 1949; Moore, 1973, 1989;
Dye & Hafter, 1980; Wake�eld & Nelson, 1985; Javel & Mott, 1988; Pick-
les, 1988; Moore & Glasberg, 1989), because of the rolloff in phase locking
above 2–3 kHz (Johnson, 1980; Joris et al., 1994; or see Figure 1c). For low
frequencies, there is continuing debate as to whether rate-place or temporal
information is used to encode frequency (Pickles, 1988; Javel & Mott, 1988;
Moore, 1989; Cariani & Delgutte, 1996a, 1996b; Kaernbach & Demany, 1998).
The assumption that there is no temporal information above 4–5 kHz has
been used to interpret numerous psychophysical experiments and develop
theories for theencodingof sound(Moore, 1973;Viemeister, 1983).However,
no study has accurately quanti�ed the total amount of temporal informa-
tion in the AN at high frequencies or compared the trends in rate-place and
temporal information versus frequency at high frequencies using the same
AN model. Siebert (1970) used an analytical AN model and SDT to evalu-
ate the ability of temporal and rate-place information to account for human
frequency discrimination. His model included a nonstationary Poisson pro-
cess with a time-varying discharge rate that described the AN �bers’ phase
locking to low-frequency tonal stimuli; however, the model did not include
rolloff in phase locking above 2–3 kHz, and thus Siebert’s predictions were
limited to low frequencies. Siebert (1970) found that temporal information
signi�cantly outperformed rate-place information at low frequencies, but
that optimal performance based on rate-place is more similar to levels of hu-
man performance. Goldstein and Srulovicz (1977) found that when a simple
description of the rolloff in phase locking at high frequencies was included
in Siebert’s (1970) AN model, predicted performance based on temporal
information (in terms of D f/ f ) became worse as frequency increased above
1 kHz, similar to human performance (Moore, 1973). However, the descrip-
tion of the lowpass rolloff in phase locking used by Goldstein and Srulovicz
(1977) had a cutoff frequency that was too low (600 Hz rather than 2500 Hz)
and a slope that was too shallow (40 dB/dec rather than 100 dB/dec) when
compared to more recent data from cat (see Figure 1c and Johnson, 1980;
Weiss & Rose, 1988). In addition, Goldstein and Srulovicz (1977) quanti�ed
performance based on only a small set of AN �bers with CF equal to the
tone frequency, and thus it is not possible from their predictions to know
whether there is signi�cant temporal information at high frequencies or to
calculate performance bounds.

Another signi�cant result from Siebert (1970) was that optimal perfor-
mance based on all information improved much too quickly as a function
of duration compared to human performance, at least for long durations.
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Siebert concluded that human listeners are severely limited in their ability
to use temporal information in AN discharges and that there is suf�cient
rate-place information to account for human performance if this informa-
tion were used ef�ciently. Goldstein and Srulovicz (1977) demonstrated that
a restricted temporal scheme based on only the intervals between adjacent
discharges (�rst-order intervals) corrected the duration dependence at long
durations, and they concluded that temporal schemes should not be ruled
out. However, both of these analytical models are based on steady-state re-
sponses and thereforeare limited to long-durationstimuli due to the absence
of onset and offset responses as well as neural adaptation.2 This limitation
is signi�cant because the slope of the dependence of human frequency-
discrimination performance on duration has been shown to differ for long-
and short-duration stimuli (Moore, 1973; Freyman & Nelson, 1986).

1.3 Auditory Encoding of Level. The encoding of level in the auditory
system is an interesting problem given the discrepancy between the wide
dynamic range of human hearing (at least 120 dB; Viemeister and Bacon,
1988) and the limited dynamic range of the majority of AN �bers (less than
30 dB; May & Sachs, 1992) (see Viemeister, 1988a, 1988b, for reviews of this
“dynamic-range problem”). For many types of stimuli, the JND in level is
essentially constant across a wide range of levels. The observation of con-
stant performance across level (i.e., constant JND indecibels or, equivalently,
that the smallest detectable change in intensity is proportional to intensity)
is referred to as Weber’s law. Weber ’s law is observed for broadband noise
(Miller, 1947) and for narrow-band signals in the presence of band-reject
noise (Viemeister, 1974, 1983;Carlyon & Moore, 1984). However, for narrow-
band signals in quiet where spread of excitation across the population of
AN �bers is possible, performance improves slightly as a function of level,
an effect referred to as the “near-miss” to Weber ’s law (McGill & Goldberg,
1968; Rabinowitz, Lim, Braida, & Durlach, 1976; Jesteadt, Wier, & Green,
1977; Florentine, Buus, & Mason, 1987). Siebert (1965, 1968) demonstrated
that a rate-place encoding scheme based on a population of AN �bers with
low thresholds and a limited dynamic range (i.e., the majority of AN �bers;
Liberman, 1978) can produce Weber’s law for pure-tone level discrimina-
tion through spread of excitation. However, Siebert’s (1965, 1968) model did
not predict the near-miss to Weber’s law for pure tones and would not be
expected to predict Weber’s law for broadband noise or narrowband stimuli
in band-reject noise. Other studies have implicated the role of a small popu-
lation of AN �bers that have higher thresholds and broader dynamic ranges
(Liberman, 1978) in producing Weber’s law for conditions in which spread

2 An analytical model that included transient responses was used by Duifhuis (1973) to
evaluate the consequences of peripheral �ltering on nonsimultaneous masking; however,
his model did not include neural adaptation.
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of excitation is assumed to be restricted (Colburn, 1981; Delgutte, 1987;
Viemeister, 1988a, 1988b; Winslow & Sachs, 1988; Winter & Palmer, 1991).
However, when models have been used to quantify the total information
available in a restricted CF region (i.e., assuming no spread of excitation)
with physiologically realistic distributions of threshold and dynamic range,
performance degrades as level increases above 40 dB SPL (Colburn, 1981;
Delgutte, 1987), inconsistent with Weber’s law and with trends in human
performance. In addition, no model has accurately quanti�ed the effect of
noise maskers on the spread of rate or temporal information across the pop-
ulation of AN �bers; instead simple assumptions for the in�uence of the
noise maskers have been used.

1.4 Combining Computational Models with Signal Detection The-
ory. There are now computational AN models (Payton, 1988; Carney, 1993;
Giguère & Woodland, 1994a, 1994b; Patterson, Allerhand, & Giguère, 1995;
Robert & Eriksson, 1999; Zhang, Heinz, Bruce, & Carney, 2001) that can pro-
vide more accurate physiological responses over a wider range of stimulus
parameters than the analytical models already described. In addition, com-
putational models can simulate AN responses to arbitrary stimuli and thus
can be used to study a wider range of psychophysical tasks, such as those in-
volving noise maskers. This article focuses on extension of the SDT approach
to allow the use of computational models to predict psychophysical perfor-
mance limits for auditory discrimination based on information encoded in
the stochastic AN discharge patterns. Several studies have used SDT to re-
late computational auditory models to psychophysical performance (Dau,
Püschel, & Kohlrausch, 1996a, 1996b; Dau, Kollmeier, & Kohlrausch, 1997a,
1997b; Gresham & Collins, 1998; Huettel & Collins, 1999). Dau et al. (1996a,
1996b, 1997a, 1997b) developed computational models of effective auditory
processing with the goal of matching predicted and human performance
(i.e., in terms of both absolute values and trends for various stimulus pa-
rameters). Their auditory models are physiologically motivated but are not
intended to describe the processing at speci�c locations in the auditory path-
way, and therefore are not compared directly to physiological responses.
Gresham and Collins (1998) and Huettel and Collins (1999) used SDT to
evaluate information loss at different stages of several more physiologi-
cally based computational auditory models. Psychophysical performance
was limited in their analysis only by the random variability associated with
the noise stimulus (i.e., their analysis did not include any form of internal
physiological noise). These previous studies using computational auditory
models and SDT have not taken into consideration the fact that information
is encoded in the population of AN �bers in terms of neural discharges,
that is, stochastic all-or-none events that represent a severe transformation
of information from the continuous waveforms analyzed in previous stud-
ies using computational models with SDT. In contrast, Siebert (1965, 1968,
1970) and Colburn’s (1969, 1973) approach quanti�ed the effect of neural
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encoding on AN population information, but was limited to analytical AN
models. This and the companion study describe a general method that com-
bines and extends previous approaches by quantifying the information in
the discharge patterns of a speci�c neural population of AN �bers using
physiologically based computational models.

The potential of rate-place (based on AN discharge counts) and all-infor-
mation (based on AN discharge times) encoding schemes to account for
human performance is characterized for both frequency and level discrim-
ination. The adjective all-information is used to emphasize the fact that this
encoding scheme makes use of all the information in the distribution of all
discharges times across the population of AN �bers and includes average-
rate information. The contribution of temporal information in the responses
can be inferred by comparing the predictions of the rate-place and all-
information models. Note that the all-information model does not assume
any speci�c form of temporal processing, such as calculating synchrony co-
ef�cients or creating interval histograms. All-information predictions thus
provide an absolute limit on achievable performance given the total infor-
mation available in AN discharge patterns.

It is critical, before proceeding to more complex computational AN mod-
els, to verify the computational method by comparing it to previous analyti-
cal model predictions (Siebert, 1965, 1968, 1970). Thus, optimal performance
predictions were made for pure-tone frequency and level discrimination as
a function of frequency, level, and duration based on a relatively simple
computational AN model. This simple AN model does not include several
complex physiological response properties that have been hypothesized to
in�uence auditory frequency and level discrimination, and thus these lim-
itations are discussed in terms of the conclusions about auditory encoding
that can be made from this study. The general agreement between compu-
tational and analytical predictions provides con�dence that the computa-
tional method is valid. Previous studies have typically focused on either
frequency or level discrimination, have often examined only a limited pa-
rameter range, and have used different AN models. By using the same AN
model to make both rate-place and all-information predictions for both fre-
quency and level discrimination versus frequency, level, and duration, this
study provides a uni�ed description of previously suggested constraints
on rate-place and temporal models. This study also quanti�es that there is
signi�cant temporal information in the AN for frequency discrimination up
to at least 10 kHz, and that all-information performance demonstrates the
same trends versus frequency as human performance, whereas rate-place
does not. These new predictions are important to theories of frequency en-
coding in the auditory system because they contradict the generally held
belief that the rolloff in AN phase locking eliminates all temporal informa-
tion at high frequencies.

Thus, this study and the companion study demonstrate several bene-
�ts of using computational neural models to predict psychophysical per-
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formance limits and illustrate the types of general neural encoding ques-
tions that can be addressed by quantifying the total information (based on
discharge times or counts) in a speci�c neural population. In addition to
the general applicability of this quantitative approach to theoretical neuro-
science, several engineering applications could potentially bene�t from the
use of this approach to study basic auditory encoding issues. Audio coding
algorithms for speech or music are often based on auditory masking phe-
nomena that can be studied using this general approach (Heinz, 2000). In
addition, the discriminability of the original and encoded versions of an au-
dio sample could be evaluated based on AN information with this method.
Hearing aid algorithms could be developed and tested by quantifying the
effect of the algorithm on AN information in the impaired auditory system.
This method could be used to develop optimal processors for speci�c types
of auditory information, which could be useful in algorithms for speech
recognition or blind-source separation.

2 General Methods

2.1 Computational Auditory Nerve Model. The type of computational
AN model for which this study was designed can process an arbitrary stim-
ulus and produce a time-varying discharge rate that can be used with a
nonstationary point process (e.g., Poisson) to simulate AN discharge times.
Examples of this type of model that have been compared directly to exten-
sive physiological AN response properties have been described by Payton
(1988), Carney (1993), and Robert and Eriksson (1999). A simpli�ed version
of the Carney (1993) model was used in this study to provide a better com-
parison to the analytical AN model used by Siebert (1970) and to provide a
simple comparison for future predictions with more complex AN models.3

Figure 1 shows pure-tone response properties of the computational AN
model that are important for this study (see Ruggero, 1992, for a review of
basic AN response properties). Table 1 provides details of the implementa-
tion of the model. A linear fourth-order gamma-tone �lter bank was used to
represent the frequency selectivity of AN �bers (see the population response
in Figure 1a). Model �lter bandwidths were based on estimates of human
bandwidths from the psychophysical notched-noise method for estimating
auditory �lter shapes (Glasberg & Moore, 1990; see Table 1). Psychophys-
ically measured �lters have been shown to match AN frequency tuning
when both were measured in guinea pig (Evans, Pratt, Spenner, & Cooper,
1992). The bandpass �lter was followed by a memoryless, asymmetric, satu-
rating nonlinearity (implemented as an arctan with a 3:1 asymmetry), which
represents the mechano-electric transduction of the inner hair cell (IHC; see

3 Code for the AN model used in this study is available online at http://earlab.bu.
edu/.

http://earlab.bu.edu/
http://earlab.bu.edu/
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Mountain & Hubbard, 1996, for a review). The saturating nonlinearity con-
tributes to the limited dynamic range of AN �bers (see Figure 1b). (Note
that the dynamic range is also affected by the IHC-AN synapse; see below
and Patuzzi & Robertson, 1988.) All AN model �bers had a rate threshold
of roughly 0 dB SPL, a spontaneous rate of 50 spikes per second, and a max-
imum sustained rate of roughly 200 spikes per second. The model dynamic
range for the sustained rate of these high-spontaneous-rate (HSR) �bers was
roughly 20–30 dB, while the dynamic range for onset rate was much larger
(see Figure 1b). The HSR �bers described by the AN model represent the
majority (61%) of the total AN population (Liberman, 1978). Medium- (23%)
and low-SR (16%) �bers, which have higher thresholds and larger dynamic
ranges, are not described by our model. The synchrony-level curves had a
threshold roughly 20 dB below rate threshold, a maximum at a level that
was just above rate threshold, and a slight decrease in synchrony as level
was increased further (comparable to Johnson, 1980, and Joris et al., 1994).

An important property for this study is the rolloff in phase locking as
frequency increases above 2–3 kHz (see Figure 1c; Johnson, 1980; Joris et
al., 1994). Weiss and Rose (1988) compared synchrony versus frequency in
�ve species on a log-log scale and reported that the data from all species
were well described by a lowpass �lter with roughly 100 dB per decade
rolloff (the only difference across species was the 3 dB cutoff frequency,
e.g., fc D 2.5 kHz for cat, and fc D 1.1 kHz for guinea pig). To achieve the
proper rolloff in synchrony (for all species) and cutoff frequency (for cat),
seven �rst-order lowpass �lters were used, each with a �rst-order cutoff
frequency of 4800 Hz. The resulting rolloff in phase locking had a 3 dB cutoff
frequency near 2500 Hz and » 100 dB/decade rolloff in the frequency range
4–6 kHz (see Figure 1c). The model synchrony coef�cients above 5 kHz
are a simple extrapolation of the physiological data, consistent with the
lowpass shape and slope across many species reported by Weiss and Rose
(1988). For comparison, a typical description of synchrony rolloff used in
analytical AN models is also shown (Goldstein & Srulovicz, 1977) and is
seen to underestimate the slope at high frequencies.

Neural adaptation was introduced through a simple three-stage diffu-
sion model based on data from Westerman and Smith (1988) for the IHC-AN
synapse. The continuous-time version of this adaptation model used by Car-
ney (1993) was simpli�ed by using �xed values for the immediate and local
volumes and the local and global permeabilities (Lin & Goldstein, 1995; and
see Figure 3 of Westerman & Smith, 1988). The immediate permeability was
a function of the input amplitude, where the relation was essentially linear
above the resting permeability, and exponentially decayed to zero for nega-
tive inputs (see Table 1). The model’s time constants for rapid adaptation (1.3
msat high levels) and short-term adaptation (63 ms at high levels) are consis-
tent with those reported for AN �bers (Westerman & Smith, 1988). The out-
put of the model (see Figure 1d) represents the instantaneous discharge rate
r(t, f, L) of an individual high-spontaneous-rate, low-threshold AN �ber.
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2.2 Signal Detection Theory. The application of SDT to evaluate au-
ditory discrimination performance limits in this study is an extension of
Siebert’s (1970) study of frequency discrimination (see Figure 2). A model
of the auditory periphery describes the time-varying discharge rate ri(t, f, L)
of the ith AN �ber in response to a tonal stimulus of level L, frequency f ,
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and duration T. In order to calculate performance limits based on the ac-
tivity in the AN, the information in all �bers in the AN population must be
considered, that is, 30,000 total AN �bers (Rasmussen, 1940) spanning the
entire CF range (20 Hz–20 kHz; Greenwood, 1990). The total information
in the AN population depends on how the stochastic activity in each AN
�ber varies with the stimulus and on the statistical relations between AN
�bers. A Poisson process provides a good description of the random nature
of AN discharges (e.g., exponential interval distribution, and independent
successive intervals; Colburn, 1969, 1973; Siebert, 1970). All AN �bers in
the population were assumed in this study to have independent discharge-
generating mechanisms, including the 10–30 AN �bers that innervate each
IHC (Spoendlin, 1969; Liberman, 1980; Ryugo, 1992). This assumption im-
plies that the stochastic discharge activity of any two AN �bers will be
independent when the effects due to a common stimulus drive have been
removed and is consistent with evidence to date from studies that have in-
vestigated correlated AN activity (Johnson & Kiang, 1976; Young & Sachs,
1989; Kiang, 1990). For the deterministic tonal stimuli used in this study, the
independence assumption appears reasonable.

Two types of analyses are considered in this study. Rate-place predictions
are based on the assumption that the set of AN discharge counts over the
duration of the stimulus, fKig, is the only information used by the listener.
Thus, the rate-place analysis (left branch of Figure 2) is based on a set of
independent, stationary Poisson processes with rates equal to the average
discharge rates ri ( f, L) of the AN-model �bers (Siebert, 1968). In contrast,
the all-information predictions (right branch of Figure 2) are based on the
assumption that the set of observations are the population of discharge
times and counts fti

1, . . . , ti
Ki

g produced by a set of independent, nonstation-

Figure 1: Facing page. Basic pure-tone response properties of the computational
AN model. (a) Sustained-rate population responses for the 60 AN-model CFs
used in this study to pure tones at several levels. Tones were 970 Hz, 62 ms
(10 ms rise/fall), with levels from 0 to 80 dB SPL. Sustained rate (calculated as
the average rate over all full stimulus cycles within a temporal window from
10 to 52 ms) is plotted versus characteristic frequency (CF) of each model �ber.
(b) Onset rate, sustained rate, and synchrony for a 970Hz model �ber responding
to a 970 Hz, 62 ms tone as a function of level. Onset rate was calculated as
the maximum average rate over one stimulus cycle. The synchrony coef�cient
(units on right axis), represents the vector strength (Johnson, 1980) of the model
response calculated over one cycle beginning at 40 ms. (c) Maximum synchrony
coef�cient over level for tones at CF as a function of frequency. Circles are data
from cat (Johnson, 1980). Dashed line is from analytical model used by Goldstein
and Srulovicz (1977). (d) Stimulus waveform and instantaneous discharge rates
r(t, f, L) for a 970 Hz �ber in response to f D 970 Hz, 25 ms (2 ms rise/fall) tones
over a range of levels (L).



2284 M. G. Heinz, H. S. Colburn, & L. H. Carney

Table 1: Equations and Parameters Used to Implement Computational AN
Model.

Symbol Description (units) Equations/Values

Human cochlear mapa

x distance from apex (mm)
f (x) frequency corresponding to a position x (Hz) D 165.4(100.06x ¡ 0.88)

Gamma-tone �ltersb

CF characteristic frequency (kHz)
ERB equivalent rectangular bandwidth (Hz) D 24.7(4.37CF C 1)
t time constant of gamma-tone �lter (s) D [2p (1.019)ERB]¡1

gtf [k] output of gamma-tone �lter

Inner-hair cell

ihc[k] output of saturating nonlinearity
ihc[k] D farctan(K ¢ gtf [k] C b ) ¡ arctan(b )g/fp /2 ¡ arctan(b )g

K controls sensitivity 1225
b sets 3:1 asymmetric bias ¡1
ihcL[k] lowpass-�ltered inner-hair-cell output (see text)

Neural adaptation modelc

Ts sampling period (s) (see text)
ro spontaneous discharge rate (spikes/s) 50
VI immediate “volume” 0.0005
VL local “volume” 0.005
PG global permeability (“volume”/s) 0.03
PL local permeability (“volume”/s) 0.06
PIrest resting immediate permeability (“volume”/s) 0.012
PImax maximum immediate permeability (“volume”/s) 0.6
CG global concentration (“spikes/volume”)

CG D CL[0](1 C PL /PG ) ¡ CI[0]PL /PG D 6666.67
PI[k] immediate permeability (“volume”/s)

PI[k] D 0.0173 lnf1 C exp(34.657 ¢ ihcL[k])g
CI[k] immediate concentration (“spikes/volume”)

CI[k C 1] D CI[k] C (Ts /VI )f¡PI[k]CI[k] C PL[k](CL[k] ¡ CI[k])g
CI[0] D ro /PIrest D 4166.67

CL[k] local concentration (“spikes/volume”)
CL[k C 1] D CL[k] C (Ts /VL)f¡PL[k](CL[k] ¡ CI[k]) C PG (CG ¡ CL[k])g
CL[0] D CI[0](PIrest C PL )/PL D 5000.00

r[k] instantaneous discharge rate (spikes/s) D PI[k]CI[k]

Notes: a Greenwood (1990).
b See Patterson, Nimmo-Smith, Holdsworth, and Rice (1987); Glasberg & Moore (1990);
Carney (1993).
c See Westerman and Smith (1988); Carney (1993).

ary Poisson processes with time-varying rates ri(t, f, L) provided by the AN
model (Siebert, 1970). Descriptions of the probability density of the observa-
tions, p(ti

1, . . . , ti
Ki

| ri), are used to evaluate the optimal performance achiev-
able by any decision process (see section 3). Optimal performance based on



Performance Limits Using Computational Models 2285

1
0T
T dtò

p(Ki | ri ) p(t i
1

,…, t i
Ki

| ri(t) )

Acos(2 p f t ), 0 £ t £ T
L=20 log10(A/Aref)

Stimulus

Observations
ri(t,f,L)

Stationary 
Poisson Process

ri(f,L)

Rate-Place 
Model

All-Information 
Model

Signal Detection 
Theory

Signal Detection 
TheoryOptimal Performance

DfRP (f,L,T) DfAI (f,L,T)

Human Performance

DfHUMAN (f,L,T)

Auditory Periphery Model
CFi,  i = 1,…, n

ri(t,f,L)

ith AN fiber 

Average 
rate 

Time-varying 
discharge rateri(t,f,L)

Probability of 
Discharge 

Counts

Probability of 
Discharge 

Times

Nonstationary 
Poisson Process

Figure 2: Overviewofsignal detection theory (SDT) used with stochasticmodels
of the auditory periphery to evaluate fundamental limits of performance on a
psychophysical task (frequency discrimination shown).

rate-place, D fRP( f, L, T), and all-information, D fAI( f, L, T), is compared di-
rectly to human JNDs measured psychophysically, D fHUMAN ( f, L, T).

It is worthwhile, as Siebert (1965, 1968, 1970) has done, to discuss the
potential outcomes of a comparison between human and optimal perfor-
mance based on a particular type of neural information (e.g., rate-place or
all-information) in the AN. The best possible outcome is if human perfor-
mance matches optimal performance in both absolute value and the trends
versus stimulus parameters. This result would suggest that human per-
formance is essentially determined by the peripheral transformation from
acoustic waveform to action potentials in the AN and that the central ner-
vous system can be viewed roughly as an optimal processor for this task.
Another straightforward result is if human performance is superior to op-
timal performance. This result suggests that the information represented
by the model of peripheral transformations is inadequate to account for
human performance. A more likely result is that optimal performance is
superior to human performance. In this case, the strongest conclusion that
can be drawn is that there is suf�cient information in the AN discharge
patterns to account for human performance. However, if optimal perfor-
mance is uniformly better than human performance (i.e., parallel to human
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performance across the entire range of stimulus parameters), then a parsi-
monious hypothesis is that the AN information represented by the neural
model determines human performance, but is used in an inef�cient man-
ner that uniformly degrades optimal performance. On the other hand, if
optimal performance exceeds human performance in a nonuniform way
and there is no realistic processor that would be nonuniformly inef�cient
in the required manner, then a fairly strong hypothesis can be made that
although the information provided to the optimal detector is suf�cient, this
information is not likely to account solely for human performance.

3 General Analytical Results: Performance Limits for One-Parameter
Discrimination

3.1 Overview of Basic Result. The results in this section are presented
in terms of discrimination of a single stimulus parameter a, which is either
frequency f (Hz) or level L (dB SPL) in this study. A measure (d 0

a[CF])2,
which is closely related to the sensitivity measure d0 from SDT (Green &
Swets, 1966), is used to represent the information from an individual AN
�ber with characteristic frequencyCF,whered 0

a represents the sensitivity per
unit a (see section 3.2).4 Based on the assumption of independent AN �bers
(see section 2.2), the total information from the population is the sum of the
information from individual AN �bers. The JND in a, DaJND , is inversely
related to the amount of information available from the AN population and
can be calculated as

DaJND D

(
X

i

¡
d 0

a [CFi]
¢2

)¡ 1
2

D

(
X

i

Z T

0

1
ri(t, a)

µ
@ri(t, a)

@a

¶2

dt

)¡ 1
2

, (3.1)

as described in section 3.2. Equation 3.1 describes the optimal performance
possible from all information available in the AN in terms of the time-
varying discharge rates ri(t, a) of the population of AN �bers. Optimal
rate-place performance is calculated by using the average discharge rate
ri(a) in equation 3.1 rather than ri(t, a). Equation 3.1 is extremely general
because it is applicable to any single-parameter discrimination experiment,

4 Durlach and Braida (1969) used the metric d0 to represent sensitivity per bel for
intensity discrimination [i.e., d0 D d0 (I1 , I2 )/ log10(I2 /I1 )] (see also Braida & Durlach, 1988).
In our study, d0

a is used to represent sensitivity per unit a, where a can be level L in dB,
or frequency f in Hz. Thus, the normalized sensitivity metric d0

L differs from that used by
Durlach and Braida (1969) only in the unit of level used (i.e., d0

L represents sensitivity per
decibel).
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and it can be used with any neural model (e.g., analytical or computational)
that describes the transformation from sensory stimulus to neural response
and assumes statistically independent Poisson discharges.

3.2 Mathematical Analysis. A complete analysis of a general one-pa-
rameter discrimination experiment based on stochastic neural responses
is described below using SDT and extends several previous results (e.g.,
Siebert, 1970; Colburn, 1981; Rieke, Warland, de Ruyter van Steveninck, &
Bialek, 1997). Prediction of performance limits based on the Cram Âer-Rao
bound is described �rst, because this was the method �rst described by
Siebert (1970); however, this approach lacks an explicit description of the
processing that is required to achieve these performance limits. The use of
a likelihood ratio test, which is described second, provides insight into the
meaning of the Cram Âer-Rao bound result, describes the form of an optimal
processor, and demonstrates that the Cram Âer-Rao bound can be met with
equality in this case (i.e., an ef�cient estimator exists; van Trees, 1968).

The assumption that a nonstationary Poisson process is a good model for
the AN discharge patterns allows the random nature of the observations to
be described (see Parzen, 1962; Snyder & Miller, 1991; Rieke et al., 1997).
The joint probability density of the unordered discharge times fti

1, . . . , ti
Ki

g on
the ith AN �ber is given by

p(ti
1, . . . , ti

Ki
| a) D

QKi
nD1 ri(ti

n, a)

Ki!
exp

"
¡

Z T

0
ri(t, a) dt

#
, (3.2)

where ri(t, a) is the time-varyingdischarge rate, and a is the stimulus param-
eter to be discriminated. (Note that this formula applies to unordered dis-
charge times; i.e., the times are not constrained such that ti

1 < ti
2 < ¢ ¢ ¢ < ti

Ki
.)

3.2.1 Cram Âer-Rao Bound. The Poisson description of the random nature
of the observations can be used in the Cram Âer-Rao bound (Cram Âer, 1951;
van Trees, 1968) to describe performance limits for estimating the value of
a based on the response of a single AN �ber in terms of its time-varying
discharge rate ri(t, a). The variance s2

Oa[i] of any unbiased estimate of the
parameter a from the observed discharge times on the ith �ber is bounded
by the Cram Âer-Rao inequality,

1
s2

Oa[i]
· E

(µ
@

@a
ln p(ti

1, . . . , ti
Ki

| a)
¶2

)
, (3.3)
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1, . . . , ti
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| a)
¶2

£ p(ti
1, . . . , ti

Ki
| a)dti

1 ¢ ¢ ¢ dti
Ki

, (3.4)



2288 M. G. Heinz, H. S. Colburn, & L. H. Carney

where the expectation in equation 3.3 is over the random observations
fti

1, . . . , ti
Ki

g and represents the Fisher information in the random discharge
times about a. This inequality provides a lower bound on the variance of
any unbiased estimator by relating the accuracy of the estimate to the rate
of change with a of the likelihood of the observations. The variance s2

Oa[i]
can be related to the time-varying discharge rate ri(t, a) by substituting the
joint probability density from equation 3.2 into equation 3.4 and performing
some extensive simpli�cations to obtain

1

s2
Oa[i]

·
Z T

0

1
ri(t, a)

µ
@ri(t, a)

@a

¶2

dt. (3.5)

Equation 3.5 provides a lower bound on the variance of any unbiased esti-
mate of a based on the observations from a single AN �ber in terms of the
time-varying discharge rate ri(t, a).

The JND DaJND of the ideal observer is equal to the minimum stan-
dard deviation of any estimator based on the observations, when threshold
is de�ned as 75% correct in a two-interval, two-alternative, forced-choice
task (Green & Swets, 1966; Siebert, 1968, 1970). This de�nition of threshold
corresponds to a sensitivity d0 D 1, where d0 D DaJND/sOa[i], and produces
predicted JNDs that are directly comparable to JNDs measured psychophys-
ically. The JND based on the population of AN�bers isgiven by equation 3.1,
because the information from each AN �ber adds under the assumption
that the discharge patterns of all �bers are statistically independent (see
section 2.2).

3.2.2 Likelihood Ratio Test. This analysis extends previous results from
Colburn (1981) and Rieke et al. (1997). It is shown that the performance
of a suf�cient statistic for a nonstationary Poisson process derived from
a likelihood ratio test (LRT) meets the Cram Âer-Rao bound with equality
(i.e., that an ef�cient estimator exists). This alternative approach provides
more intuition in the present case and is therefore more accessible than the
Cram Âer-Rao bound analysis; however, the LRT approach does not always
lead to a form of an optimal processor that is simple enough to allow the
evaluationof performanceanalytically, inwhichcase the Cram Âer-Rao bound
may be more useful (see the companion article in this issue). In the present
case, the LRT analysis shows that the quantity

(d 0
a[CFi])2 DD

Z T

0

1
ri(t, a)

µ
@ri (t, a)

@a

¶2

dt (3.6)

represents the information available on the ith AN �ber for discriminating
a, where d0

a[CFi] represents the normalized sensitivity (see note 4) of the ith
�ber, and is de�ned as the sensitivity d0 per unit a (see Durlach & Braida,
1969; Braida & Durlach, 1988).
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The form of the optimal processor for discriminating between a and
a C Da can be derived from a log-likelihood test,

ln
p(ti

1, . . . , ti
Ki

|a C Da)

p(ti
1, . . . , ti

Ki
|a)

aCDa

a
0, (3.7)

where the threshold of 0 corresponds to the minimum-probability-of-error
criterion with equal a priori probabilities (van Trees, 1968, pp. 23–30). Substi-
tuting the joint probability density of the discharge times, equation 3.2, into
equation 3.7 and simplifying, one obtains the following form of an optimal
test,

Y(ti
1, . . . , ti

Ki
) DD

KiX

nD1

ln
ri(ti

n, a C Da)
ri(ti

n, a)

aCDa

a

Z T

0
[ri(t, a C Da) ¡ ri(t, a)] dt, (3.8)

where the decision variable Y depends on the observed data, and the right
side of the comparison in equation 3.8 is a criterion based on a priori infor-
mation.

The sensitivity metric d0 can be used to characterize performance com-
pletely if the decision variable Y follows a gaussian distribution and has
equal variance under both hypotheses, a and a C Da (Green & Swets, 1966;
van Trees, 1968). These two conditions can be reasonably assumed to hold
in this analysis. Since the decision variable Y is a sum of random variables,
a gaussian assumption is reasonable based on the central limit theorem
if Ki (the number of discharges on the ith �ber) is large. Even for condi-
tions in which Ki is small (e.g., a 25 ms stimulus and an average discharge
rate of 200 spikes per second), the gaussian assumption is reasonable for
the total population decision variable (i.e., based on all 30,000 AN �bers;
see below and section 4). The total population decision variable is a linear
combination of the individual �ber decision variables based on the inde-
pendence assumption. The variance of the decision variable Y is shown
below to depend on a, and thus the variances under the two hypotheses
are not strictly equal. However, for the small values of Da associated with
optimal JNDs, the equal-variance assumption is reasonable and makes the
performance analysis signi�cantly more simple. Thus, the d0 metric will
be used to characterize performance of the optimal detector Y(ti

1, . . . , ti
Ki

),
where

¡
d0[CFi]

¢2 D
fE[Y(ti

1, . . . , ti
Ki

) | a C Da] ¡ E[Y(ti
1, . . . , ti

Ki
) | a]g2

Var[Y(ti
1, . . . , ti

Ki
) | a]

. (3.9)
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It can be shown (e.g., see Rieke et al., 1997) that for any decision variable
Y of the form

Y(t1, . . . , tK) D
KX

nD1

g(tn), (3.10)

where g(tn) is any function of the Poisson discharge time tn, the expected
value and variance of Y are given by

E [Y(t1, . . . , tK)|a] D
Z T

0
g(t)ri(t, a) dt, (3.11)

Var [Y(t1, . . . , tK)|a] D
Z T

0
g2(t)ri(t, a) dt. (3.12)

Given these relations with g(t) D ln[ri(t, a C Da)/ ri(t, a)],
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With the additional assumption that ri(t, a) varies linearly and slowly over
the incremental range from a to a C Da (Colburn, 1981), that is,

ri(t, a C Da) ’ ri(t, a) C Pri(t, a)Da, (3.14)

where Pri (t, a) D @ri(t, a)/@a, one obtains
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The approximation ln(1 C x) ’ x for small x then leads to the equations5
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d0[CFi]
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Pri(t, a)2

ri(t, a)
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#2, "
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ri(t, a)
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#

5 Note that the “small-x” approximation may notbeappropriate for low dischargerates
ri (t, a). To avoid this potential problem (e.g., in the valleys of the phase-locked response),
a constant was added to all discharge rates ri (t, a) prior to the SDT analysis in this study.
A value of ’ 7 spikes per second was used, based on the minimum value of ri (t, f, L) in
Siebert’s (1970) model. The precise value of this constant is not signi�cant, as long as the
instantaneous discharge rate does not go to zero.
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Finally, taking d0 D 1 as the JND and combining optimally over inde-
pendent �bers, one obtains equation 3.1. The summation over �bers in
equation 3.1 results from the independence assumption (see section 2.2)
and comes directly in the LRT analysis for the population response since
the probability function in equation 3.2 is a product of the individual �ber
probabilities. In this case, the total populationdecision variable isa weighted
combination of the individual �ber decision variables given in equation 3.8.
The equivalence of the equations derived using the Cram Âer-Rao bound and
LRT analyses demonstrates that the Cram Âer-Rao bound provides a tight
bound on achievable performance in this case (i.e., an ef�cient estimator
exists) and thus describes optimal performance.

4 Computational Methods: Use of Auditory Nerve Models

The time-varying discharge rates ri(t, a) from the computational AN model
can be substituted into equation 3.1 to evaluate optimal performance for
various stimulus conditions. However, the partial derivative of the rate
waveform with respect to a must be calculated as a function of time. The
partial derivative was approximated from the responses of the computa-
tional AN model, for example,

@ri(t, a)
@a

’
ri(t, a C Da) ¡ ri(t, a)

Da
. (4.1)

An approximation of the partial derivative with respect to frequency using
D f D 0.0001 Hz is illustrated in Figure 3. The top panel shows the two
stimuli (although only one waveform is apparent due to the small D f ), and
the middle panel illustrates the two time-varying discharge rate waveforms
from the AN model �ber. The bottom panel represents the approximation
of the partial derivative squared as a function of time. The distinct growth
of the derivative squared as time increases up to 30 ms (bottom panel of
Figure 3) is a result of the increasing difference in the phase between the
two tones as a function of time. Even if a random phase were used,as in some
psychophysical experiments, the ability to distinguish between a difference
in phase and a difference in frequency increases with duration. The bimodal
shape within each stimulus period of the derivative squared arises because
the two rate waveforms differ in both the upward- and downward-going
portions of each response period. Values ofD f D 0.0001 Hz and DL D 0.0001
dB were used in equation 4.1 to approximate the partial derivatives with
respect to frequency and level. These values were chosen by verifying that
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Figure 3: Approximation of the partial derivative in equation 3.1 for evaluating
optimal frequency-discrimination performance for the stimulus condition: L D
40 dB SPL, f D 500 Hz, and T D 25 ms (2 ms rise/fall). Two tonal stimuli
differing in frequency by D f D 0.0001 Hz are shown in the top panel. The middle
panel shows the two time-varying rate waveforms from the computational AN
model (CF D 500 Hz) in response to the two stimuli. The two functions cannot be
distinguished visually in the top and middle panels. The bottom panel illustrates
the partial derivative squared, as approximated by equation 3.18.

the derivatives for a variety of conditions were unaffected by increases in
D f or DL by an order of magnitude.

All predictions of performance limits using the computational AN model
(see section 2.1) are based on the total high-spontaneous-rate (HSR), low-
threshold AN �ber population, which makes up 61% of the AN population
in cat (Liberman, 1978). The total HSR �ber population response was sim-
ulated using 60 model CFs, which ranged from 100 Hz to 10 kHz and were
uniformly spaced in location according to a human cochlear map (Green-
wood, 1990; see Table 1).6 The model CF range represents two orders of
magnitude, while the commonly accepted human CF range (20 Hz–20 kHz;

6 The choice of 60 model CFs represents a (somewhat arbitrary) compromise between
a dense sampling of the frequency range and reduced computation time.
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Greenwood, 1990) represents three orders of magnitude. Thus, roughly two-
thirds of the 30,000 total AN �bers in human (Rasmussen, 1940) are repre-
sented by the model CF range. The total number of HSR �bers represented
by the 60 model CFs was therefore 12,200, and thus roughly 200independent
AN �bers were assumed to be driven by each of the 60 model responses.

Stimulus conditions were chosen based on psychophysical experiments
of interest,7 and a sampling rate of 500 kHz was used.8 Stimulus dura-
tion was de�ned to be the duration between half-amplitude points on the
stimulus envelope. All rise-fall ramps were generated from raised cosine
functions. The temporal analysis window (see equation 3.1) included the
model response beginning at stimulus onset and ending 25 ms after stimu-
lus offset, to allow for the response delay and the transient onset and offset
responses associated with AN �bers (see Figures 1d and 3) over the range
of CFs and stimulus parameters used in this study.

5 Computational Results

Human and predicted optimal performance on psychophysical discrimina-
tion tasks are compared in this section in terms of the JND in either tone
frequency or level. Higher JNDs correspond to worse performance in the
psychophysical task and in the optimal case indicate a reduction in the
amount of sensory information about changes in the given stimulus param-
eter. Comparisons between optimal and human performance are made in
terms of both absolute values and trends versus stimulus parameters, as
discussed in section 2.2.

5.1 Frequency Discrimination in Quiet. Predicted optimal frequency
JNDs for the population of HSR AN �bers were calculated as a function of
frequency f , level L, and duration T for the all-information and rate-place
encoding schemes using equation 3.1. Figure 4 shows the frequency dis-
crimination predictions along with predictions from Siebert’s (1970) study
and human performance. Rate-place and all-information predictions from

7 Two factors occasionally led to a slight mismatch between the stimulus parameters
used in this study and those that were used in the psychophysical studies. (1) Stimulus
conditions were chosen to be the same for frequency- and level-discrimination predictions
in order to allow for direct comparisons of model results between frequency and level
discrimination. (2) Tone frequencies were always chosen to be equal to one of the 60
model CFs in order to avoid artifacts related to the spatial undersampling of the human
frequency range.

8 A sampling frequency of 500 kHz was used for all predictions, except for three high-
frequency conditions for which higher sampling rates were chosen to avoid subharmonic
distortion generated by the saturating nonlinearity for speci�c relations between stimulus
and sampling frequency. In general, this sampling artifact was most prominent for high
levels and high frequencies, and thus for high frequencies the predictions were limited to
low to medium levels.
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Figure 4: Optimal performance for pure-tone frequency discrimination. Pre-
dictions from the computational AN model are shown by �lled circles for the
rate-place (RP) scheme, and by �lled squares for the all-information (AI) scheme.
Predictions from Siebert’s (1970) analytical model are shown for the two encod-
ing schemes by corresponding open symbols. Typical human performance is
illustrated by stars. (a) The Weber fraction D f/ f is plotted as a function of fre-
quency. All model predictions are for L D 40 dB SPL and T D 200 ms (20 ms
rise/fall). Human data are from Moore (1973) for T D 200 ms and equal loudness
across frequency (L D 60 dB SPL at 1 kHz). The two high-frequency points not
connected by lines for each encoding scheme are conditions for which the upper
limit of the computational model CF range in�uenced the results. (b) The dif-
ference limen D f is plotted as a function of duration. Predictions are for L D 40
dB SPL, f D 970 Hz, and 4 ms rise/fall ramps. Predictions from Siebert (1970)
follow D f /

p
T¡1 for rate-place and D f /

p
T¡3 for all-information. Human

data are from Moore (1973) for L D 60 dB SPL, f D 1000 Hz and 2 ms rise/fall
ramps. (c) The difference limen D f is plotted as a function of level. Predictions
were made for f D 970 Hz and T D 500 ms (20 ms rise/fall). Human data are
from Wier et al. (1977) for f D 1000 Hz and T D 500 ms.

the computational AN model match predictions from Siebert well, both
qualitatively and quantitatively, over the range of stimulus parameters for
which Siebert’s analytical model is applicable (200 < f < 2000 Hz, T ¸ 100
ms, and 20 · L · 50 dB SPL). This general agreement supports the validity
of the computational approach.

The effect of frequency on pure tone frequency discrimination is shown
in Figure 4a. Rate-place predictions are essentially �at as a function of fre-
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quency due to the roughly constant �lter shape on a logarithmic axis. The
predictions from the computational AN model show a slight improvement
in performance as frequency increases due to the small increase in the sharp-
ness of tuning (quality factor Q D CF/ERB) as frequency increases (Table 1;
Glasberg & Moore, 1990). Rate-place predictions match human performance
very closely below 2 kHz but deviate signi�cantly at high frequencies. As
discussed in section 6.2.1, none of the limitations of the present simple AN
model is likely to account for the large discrepancy between rate-place and
human performance at high frequencies.

All-information performance is roughly two orders of magnitude better
than rate-place and human performance, consistent with Siebert (1970). At
low frequencies, predicted performance based on all-information improves
as frequency increases, due to the increased number of stimulus cycles as
frequency increases (i.e., the two tones become more out of phase by the
end of the stimulus duration for higher frequencies; see the bottom panel
of Figure 3). All-information predictions, when extended to high frequen-
cies, demonstrate a sharp worsening in performance above 2–3 kHz due
to the rolloff of phase locking at high frequencies included in the compu-
tational AN model (see Figure 1c). This worsening matches the general
trend observed in human data (Moore, 1973; Wier, Jesteadt, & Green, 1977,
Moore & Glasberg, 1989). The all-information predictions converge toward
the rate-place predictions as frequency increases, as expected due to the
loss of temporal information. However, all-information performance is still
one order of magnitude better than rate-place performance at 10 kHz (see
Figure 4a), despite low synchrony coef�cients at high frequencies (see Fig-
ure 1c). The upper-CF limit in the model slightly in�uenced both rate-place
and all-information predictions for high frequencies by underestimating the
amount of information available (by up to a factor of 2), and thus overesti-
mating the JND (by up to a factor of

p
2).

Performance as a function of duration is shown in Figure 4b. Com-
putational predictions for long durations can generally be described by
D f /

p
T¡1 for rate-place and D f /

p
T¡3 for all-information, consistent

with the analytical predictions from Siebert (1970). Predicted performance
from the all-information scheme improves much faster with duration than
the rate-place predictions or the human data. The rapid improvement with
increased duration is due to allowing the decision process to make all possi-
ble temporal comparisons throughout the entire time course of the stimulus
(see the distinct growth of information with time in the bottom panel of Fig-
ure 3). Both the rate-place and all-information predictions have a slightly
smaller slope at shorter durations than at longer durations, with the all-
information slope matching the slope of human performance for T · 16
ms. The computational AN model included realistic onsets and offsets, as
well as neural adaptation, which would be expected to be signi�cant for
shorter durations.
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Frequency discrimination performance as a function of level is shown
in Figure 4c. At low levels, both rate-place and all-information predictions
from the computational AN model demonstrate the same sharp improve-
ment in performance with increasing level, as seen in the human data.
Above 20 dB SPL, rate-place performance is roughly �at, with the predicted
JNDs from the computational AN model demonstrating a slight increase
as level increases. Both all-information and human performance continue
to improve slowly as level increases. The improvement with level in the
all-information model is due to the increase in the number of excited �bers
as level increases. The lack of improvement in rate-place performance with
level results from the limited dynamic range and low thresholds of HSR
�bers. Inclusion of AN �bers with higher thresholds and broader dynamic
ranges may produce an improvement in rate-place performance with level,
as discussed in section 6.2.1.

In order to understand the basis for predicted rate-place and all-infor-
mation frequency discrimination performance, it is useful to examine the
distribution of information across the population of AN �bers. Information
pro�les (d 0

f [CF])2 are plotted in Figure 5 for all 60 AN model CFs for low-,

medium-, and high-frequency tones. The information pro�les (d0
f [CF])2 are

plotted on a logarithmic scale to allow comparison across the three tone
frequencies shown. The information pro�les for the all-information and
rate-place schemes are different in shape for the HSR �bers included in the
computational ANmodel. In theall-information scheme,a contiguous range
of CFs centered at the frequency of the tone provides information. Above
10 dB SPL, �bers near the frequency of the tone have similar high levels of
synchrony, and thus contribute nearly equally to frequency discrimination.
In contrast, in the rate-place encoding scheme, model AN �bers �ring at the
maximum average rate do not provide any information for estimating fre-
quency. For HSR �bers, only AN �bers at the edge of the rate-response area
provide useful information for estimating frequency based on rate-place
(Siebert, 1968). The small populations of AN �bers with higher thresholds
and broader dynamic ranges could provide useful rate-place information
for CFs close to the tone frequency.

5.2 Level Discrimination in Quiet. Predictions of optimal performance
for pure-tone level discrimination are compared with human performance
in terms of DL as a function of level, duration, and frequency in Figure 6.9

Rate-place predictions from an analytical AN model with HSR �bers are

9 Level discrimination will be discussed in terms of the level difference between the
two tones, de�ned as DL D 20 log10[(p C Dp)/p] dB, where p is the sound pressure of the
standard tone. While there has been much debate about the most appropriate metric for
level discrimination (see Grantham & Yost, 1982; Green, 1988), DL has been reported to
be proportional to sensitivity d0 by several groups (e.g., Rabinowitz et al., 1976; Buus &
Florentine, 1991), and thus this metric will be used in this study.
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Figure 5: Information responsible for optimal frequency discrimination for low-
(487 Hz), medium- (1951 Hz), and high-frequency (6803 Hz) conditions (indi-
cated by arrows) with L D 40 dB SPL and T D 200 ms (20 ms rise/fall). The top
and bottom panels show the information (d 0

f [CF])2 for each of the 60 AN model
CFs (roughly 200 independent AN �bers per model CF) in the all-information
and rate-place encoding schemes, respectively. The linear decline in the peaks
of the rate-place information pro�les as frequency increases contrasts the sharp
drop in the all-information peaks at the highest frequency. These trends corre-
spond directly to the �at rate-place D f/ f and to the increasing all-information
D f/ f seen in Figure 4a as frequency increases.

also shown for comparison (Siebert, 1968). Optimal performance is roughly
an order of magnitude better than human performance, and all-information
JNDs are roughly a factor of two lower than rate-place predictions (due to
the level information from AN phase locking; Colburn, 1981).

Both the human and computational model predictions demonstrate a
decrease in DL as level is increased in Figure 6a, that is, the near-miss to
Weber ’s law. The slope of DL versus level in the computational model pre-
dictions is similar to that in the human data for levels above 30 dB SPL.
In contrast, Siebert’s (1968) model demonstrates Weber’s law above 40 dB
SPL. This difference is a consequence of the nontriangular �lters used in
the computational model (see section 6.3). In addition, the inclusion of non-
linear tuning and distributions of AN-�ber threshold and dynamic range
contributes additional information about changes in level that is not in-
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Figure 6: Optimal performance in terms of DL for pure-tone level discrimina-
tion. Predictions from the computational AN model are shown by �lled circles
for the rate-place scheme and �lled squares for the all-information scheme. Rate-
place predictions from an analytical AN model (Siebert, 1968) are shown as open
circles. Typical human performance is illustrated by stars. (a) Effect of level. All
model predictions are for f D 970 Hz and T D 500 ms (20 ms rise/fall). Human
data are from Florentine et al. (1987) for f D 1000 Hz and T D 500 ms (20 ms
rise/fall). (b) Effect of duration. Predictions are for L D 40 dB SPL, f D 970 Hz,
and 4 ms rise/fall ramps. Human data are from Florentine (1986) for L D 40
dB SPL and f D 1000 Hz, and 1 ms rise/fall ramps. The solid line illustrates
the slope associated with DL / T¡1/2. (c) Effect of frequency. Predictions are
for L D 40 dB SPL and T D 200 ms (20-ms rise/fall). Human data are from
Florentine et al. (1987) for L D 40 dB SPL and T D 500 ms (20 ms rise/fall). The
two high-frequency points not connected by lines for each encoding scheme
are conditions for which the upper limit of the computational model CF range
resulted in overestimates of the JNDs.

cluded in the model’s HSR population (Heinz, 2000), as discussed in sec-
tion 6.3.

As a function of duration, the computational model predictions for both
all-information and rate-place illustrate the same rate of improvement in
performance as is observed in the human data (see Figure 6b). The rate of
improvement is shallower in slope than the predictions from the analytical
AN model (open circles) and than the solid line representing DL /

p
T¡1.

The decay in discharge rate due to neural adaptation is likely to be respon-
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Figure 7: Information responsible for optimal level discrimination for three level
conditions (20, 40, and 60 dB SPL) with f D 970 Hz (indicated by arrow)and
T D 500 ms (20 ms rise/fall). The top and bottom panels show the informa-
tion (d 0

L[CF])2 for each of the 60 AN model CFs (roughly 200 independent AN
�bers per model CF) in the all-information and rate-place encoding schemes,
respectively.

sible for the shallow slope in optimal performance demonstrated by the
computational AN model.

As a function of frequency (see Figure 6c), the rate-place predictions are
essentially �at except for the highest-frequency conditions for which the up-
per limit of the model CF range limited performance. The all-information
predictions converge toward the rate-place predictions as frequency in-
creases due to the loss of temporal phase-locking information at high fre-
quencies. The shallow slope versus frequency in the all-information predic-
tions is similar to that in the human JNDs for this stimulus level. A much
sharper increase with frequency is observed in human data at high levels
(Florentine et al., 1987), but this effect is not likely to be present in model
predictions at higher levels.

Level-discrimination information pro�les (see Figure 7) for rate-place
and all-information have the same general shape, unlike the information
pro�les for frequency discrimination (see Figure 5). For level discrimina-
tion based on HSR �bers with a limited dynamic range, the edges of the
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response area provide the only information in the model for both the all-
information and rate-place encoding schemes due to the saturation of both
rate and synchrony as level increases. Thus, spread of excitation across the
population of AN �bers is the primary source of robust level encoding
across a wide range of levels based on HSR �bers with a limited dynamic
range (Siebert, 1968). Additional information (both rate and temporal) about
changes in level is present in AN �bers with CFs near the tone frequency
based on nonlinear cochlear tuning (Heinz, 2000), which is not included in
the present AN model and is discussed further in section 6.3. The primary
source of the near-miss in the model predictions is an increase in the number
of �bers that contribute signi�cantly as level increases, especially above the
frequency of the tone.

6 Discussion

6.1 Analytical Versus Computational Approach. The limits on perfor-
mance for level and frequency discrimination imposed by the random na-
ture of AN responses were �rst examined roughly 30 years ago by Siebert
(1965, 1968, 1970). The primary goal of this study is to extend the signal
detection theory approach Siebert used to allow the use of more general
(computational, rather than analytical) AN models. In order to verify the
computational method, a simpli�ed AN model was used in this study to
permit direct comparisons to Siebert’s predictions based on his analytical
AN model.

The predictions from this study matched Siebert’s (1965, 1968, 1970) pre-
dictions well in almost all aspects over the parameter range for which the
analytical AN model was applicable:

1. There is signi�cantly more temporal information than rate-place in-
formation in the AN for encoding changes in frequency.

2. Rate-place performance in terms of D f/ f is roughly �at as a function
of frequency.

3. All-information performance in terms of D f/ f improves as frequency
increases for low frequencies.

4. All-information performance improves as D f /
p

T¡3, while rate-
place improves as D f /

p
T¡1.

5. All-information D f continues to decrease as level increases,while rate-
place D f is roughly asymptotic above 20 dB SPL.

6. Spread of excitation can produce constant level-discrimination per-
formance over a wide range of levels based on only low-threshold
�bers with a limited dynamic range.

7. Level discrimination is essentially independent of frequency.
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The predictions from the computational AN model differed from Siebert’s
(1965, 1968, 1970) predictions in two cases: (1) level discrimination in the
computational model improved at a slower rate versus duration and sim-
ilarly to human data, due to the effect of neural adaptation that was not
included in Siebert’s (1965, 1968) model, and (2) level-discrimination per-
formance in our model demonstrated the near-miss to Weber’s law that is
observed in human performance, due to the nontriangular �lters used in the
computational model, whereas Siebert’s (1965, 1968) model predicted We-
ber’s law. Both of these discrepancies represent cases in which the compu-
tational model provides a better match to human performance. The general
agreement between the predictions from the computational and analytical
models establishes the validity of the computational approach.

The predictions from the computational AN model extended Siebert’s
(1965, 1968, 1970) predictions in two cases: (1) all-information predictions
were able to be made at high frequencies due to the inclusion of the rolloff in
phase locking, and (2) predictions were able to be made at short durations
due to the inclusion of realistic onset and offset responses and neural adap-
tation. Both of these extensions raise important issues for auditory encoding
of frequency and level, as discussed below.

6.2 Encoding of Frequency.

6.2.1 Rate-Place. The absolute JNDs for optimal use of rate-place infor-
mation are close to human performance—much closer to human JNDs than
are all-information predictions (see Figure 4). Further, rate-place predictions
match the trends in human performance versus frequency below 2 kHz and
versus duration above 20 ms. However, there are several inconsistencies be-
tween predicted rate-place and human performance that must be explained
if a rate-place model is to account for human performance.

First, predicted frequency-discrimination performance based on rate-
place information is inconsistent with the distinct worsening in human
performance above 2 kHz (see Figure 4a). Our prediction of invariant per-
formance with frequency is consistent with all other rate-place models for
frequency discrimination that incorporate realistic �lter slopes as a function
of frequency (e.g., Siebert, 1968, 1970; Javel & Mott, 1988). Thus, in order for
a rate-place model to account for human frequency discrimination, some
alteration must be included to account for the order-of-magnitude increase
in D f/ f between 2 and 8 kHz. Several possible explanations are considered:

1. A decrease in the ef�ciency of processing rate-place information above
2 kHz could explain human performance; however, it is not clear why
a mechanism for counting AN discharges would be optimal at low fre-
quencies but an order of magnitude less ef�cient at high frequencies.

2. A reduction in the innervation density of independent AN �bers at
high frequencies by a factor of 100 could explain the order of magni-
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tude worsening in human performance. However, this is inconsistent
with the increase in AN-�ber innervation density from apex to base
of the cat cochlea (Keithley & Schreiber, 1987; Liberman, Dodds, &
Pierce, 1990).

3. The maximum potential increase in D f/ f that would result from the
disappearance of the entire upper side of the information pro�le (see
Figure 5) off the basal end of the cochlea as tone frequency increases
is

p
2, which is too small to account for human performance.

4. A decrease in the sharpness of tuning at high frequencies is incon-
sistent with reports of human (Glasberg & Moore, 1990, used in this
study) and cat tuning (Liberman, 1978; Miller, Schilling, Franck, &
Young, 1997), which become sharper as frequency increases.

Thus, there appears to be no physiologically realistic explanation for the
worsening of rate-place performance as frequency increases above 2 kHz,
as observed in the human data.

The second possible explanation is that asymptotic rate-place perfor-
mance as level increases (actually slight increase in computational-model
JNDs) is inconsistent with the shallow improvement in human performance
as level increases (see Figure 4c). The inclusion of high-threshold, low-
spontaneous-rate AN �bers could be expected to lead to improved per-
formance at high levels. However, Erell (1988) demonstrated that inclusion
of medium- and low-spontaneous-rate �bers (with higher thresholds and
larger dynamic ranges; Liberman, 1978) did not signi�cantly extend the
limited range of levels over which rate-place performance improves.

6.2.2 All-Information. In contrast to rate-place, all-information perfor-
mance matches the trends in human performance across all frequencies,
especially at high frequencies, and across level (see Figures 4a and 4c). The
current predictions quantify that there is signi�cant temporal information
in the AN up to at least 10 kHz, despite very low synchrony coef�cients
for AN �bers at high frequencies (see Figure 1c). However, there are several
inconsistencies between predicted all-information performance and human
performance.

First, there is a two-orders-of-magnitude discrepancy between human
performance and optimal all-information performance at both low and high
frequencies. Second, all-information performance for frequency discrimina-
tion improves much too rapidly as duration increases (D f /

p
T¡3 rather

than D f /
p

T¡1; see Figure 4b). This rapid improvement is due to allow-
ing all possible comparisons between discharges to be used by the optimal
processor (see Figure 3).

6.2.3 Potential Signal-Processing Mechanisms. It is of interest to hypoth-
esize signal processing mechanisms that would incorporate the useful as-
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pects of both rate-place and all-information encoding schemes for explain-
ing human performance. A processor that makes use of the temporal dis-
charge patterns appears to be required to produce theU-shaped dependence
of D f/ f on frequency (see Figure 4a); however, the temporal information
must be used inef�ciently to account for the durationeffect (seeFigure 4b). In
a pilot modeling study, the computational AN model population was used
to make predictions based on Goldstein and Srulovicz’s (1977) analysis of
�rst-order intervals.10 While the �rst-order interval behavior demonstrated
a D f /

p
T¡1 relation at long durations (T ¸ 50 ms), a D f /

p
T¡3 relation

was observed at short durations. The steep improvement at short dura-
tions is similar to Goldstein and Srulovicz’s predictions, but is steeper than
the improvement in human performance at short durations (see Figure 4b;
Moore, 1973). The U-shaped dependence of performance versus frequency
was maintained by the computational �rst-order-interval scheme, similar
to Goldstein and Srulovicz, with a parallel upward shift of the entire curve
by roughly one order of magnitude (i.e., roughly halfway closer to human
performance).

A temporal processor that considered all discharge times (i.e., all-order
intervals) within a limited temporal window would be expected to demon-
strate the desired D f /

p
T¡1 dependence for stimulus durations much

longer than the length of the temporal window. For durations shorter than
the temporal window, such a scheme would be expected to behave similarly
to the all-information processor, which matches the rate of improvement in
human performance with duration for T · 16 ms in this study (see Fig-
ure 4b). A restricted temporal processor of this type would demonstrate
the same shallow improvement with level as the all-information scheme,
consistent with human performance, and would be considerably closer to
overall human performance levels due to the large amount of temporal in-
formation discarded (see Figures 3 and 4b). It is reasonable to assume that
neurons in the central nervous system perform signal processing over re-
stricted temporal windows, given that cell membranes have �nite time con-
stants; however, speci�c restricted temporal processors must be proposed
and tested quantitatively to determine whether the above expectations hold.

6.3 Encoding of Level. Our predictions for pure-tone level discrimina-
tion did not demonstrate a large difference between performance based on

10 There are several simplifying assumptions in Goldstein and Srulovicz’s (1977) anal-
ysis of frequency-discrimination performance based on �rst-order intervals. Several of the
simpli�cations that were made by assuming that RT was large (where R is average rate),
were removed in the pilot study with the computational AN model and had little effect.
However, the assumption that all intervals within the duration of the stimulus are inde-
pendent, which is not true for a limited-duration stimulus or for a nonstationary Poisson
process, was not able to be removed. The signi�cance of this assumption for predicting
optimal performance based on �rst-order intervals is unclear.
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the all-information and rate-place encoding schemes. Performance based
on optimal use of the information available in the AN was roughly one
order of magnitude better than human performance. Optimal performance
demonstrated the same general trends seen in human performance for the
conditions studied (see Figure 6). This result is of interest because the AN
model used in this study did not include many physiological properties
that have been hypothesized to be important for level discrimination, as
discussed below.

The computational AN model used in this study did not include several
important aspects of the nonlinear tuning on the basilar membrane (BM):
changes in gain, bandwidth, and phase with level (Rhode, 1971; Anderson,
Rose, Hind, & Brugge, 1971; Geisler & Rhode, 1982; Ruggero, Rich, Recio,
Narayan, & Robles, 1997; Recio, Rich, Narayan, & Ruggero, 1998), and sup-
pression (Sachs & Kiang, 1968; Delgutte, 1990; Ruggero, Robles, & Rich,
1992). The perceptual signi�cance of the compressive gain observed on the
BM has been primarily examined psychophysically (see Moore, 1995, and
Moore & Oxenham, 1998, for reviews). The compressive gain can extend the
dynamic range over which changes in level can be detected in individual
AN �bers (Heinz, 2000). The level-dependent phase response of AN �bers
has a much larger dynamic range than rate information (Anderson et al.,
1971) and thus can provide additional temporal information for level dis-
crimination at high levels for which the majority of AN �bers are saturated
in terms of average rate (Carney, 1994; Heinz, 2000). The absence of sup-
pression in our model prohibits the accurate simulation of AN responses to
complex stimuli, as discussed in section 6.5.

The near-miss to Weber’s law in the computational model predictions
matches human performance (see Figure 6a), but contrasts with Siebert’s
(1965, 1968) prediction of Weber’s law. Both the computational AN model
and Siebert’s (1965, 1968) model have only high-spontaneous-rate (HSR),
low-threshold �bers and rely strongly on spread of excitation across the AN
population to encode changes in level for medium and high levels. In the
computational model, an increase in the number of CFs contributing useful
information as level increases, especially above the frequency of the tone,
produces the near-miss (see Figure 7). Potentially signi�cant differences
between the computational AN model and Siebert’s (1965, 1968) analytical
model include (1) the use of gamma-tone �lters rather than triangular �lters,
(2) the form of the variation in �lter bandwidth with CF, and (3) the distribu-
tion of CF across the population of AN �bers. Our results, and those of Teich
and Lachs (1979), demonstrate that the near-miss does not require Weber’s
law to hold in narrow frequency regions (an assumption that is often made
in psychophysical models; e.g., Florentine & Buus, 1981). However, the sim-
pli�ed AN model used in this study has several signi�cant limitations that
preclude any de�nitive conclusions regarding level encoding.

Our model would not likely predict Weber’s law for broadband noise
(Miller, 1947) or for narrowband noise in band-reject noise (Viemeister,
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1983), or the nonmonotonic dependence of DL on level at high frequencies
(Carlyon & Moore, 1984; Florentine et al., 1987). A signi�cant limitation of
the AN model used in this study is the exclusion of LSR, high-threshold AN
�bers (16% of the population; Liberman, 1978), which have been implicated
in accounting for Weber’s law in limited frequency regions (Colburn, 1981;
Delgutte, 1987; Viemeister, 1988a, 1988b; Winslow & Sachs, 1988; Winter &
Palmer, 1991). However, more ef�cient processing of the LSR �bers than the
HSR �bers is required to achieve Weber’s law in narrow frequency regions,
and thus the near-miss when information is combined across the population
of CFs (Delgutte, 1987). A more complex AN model that includes the non-
linear changes in gain and phase as well as the LSR population is needed to
quantify the relative contributions of these physiological properties to the
encoding of sound level at high levels (Heinz, 2000).

An interesting �nding from this study, despite the limitations mentioned,
is that the shallow improvement in DL with duration observed in the com-
putational model predictions matches human performance (see Figure 6b).
This shallow improvement is likely due to neural adaptation, as suggested
by Buus and Florentine (1992), and indicates that a limitation in the tem-
poral integration capabilities of a central processor is not needed to explain
the shallow improvement in level-discrimination performance as duration
increases.

6.4 Relation Between Frequency and Level Encoding. The bandpass
tuning in the auditory system implies that a change in rate on an AN �ber
can result from a change in either stimulus level or frequency. The implica-
tions of this property for random-level frequency discrimination are eval-
uated quantitatively in the companion study. Siebert (1968) used a simple
AN model with triangular-shaped �lters to demonstrate a fundamental re-
lationship between level and frequency discrimination based on rate-place
information. A shortcoming of rate-place models has been their inability to
account for both frequency and level discrimination in terms of the ratio
of Weber fractions WA/WF (Siebert, 1968; Erell, 1988). Siebert (1968) pre-
dicted that the ratio of the Weber fraction for amplitude, WA D D A/A,
to the Weber fraction for frequency, WF D D f/ f , should be roughly 15 for
rate-place models based on the shapes of AN tuning curves. Values of 10
to 15 for this ratio are typical of most rate-place models; however, human
psychophysical data typically yield a ratio closer to 50 (Erell, 1988). Erell
(1988) suggested that this discrepancy could be resolved by using �lter
bandwidths that were four to �ve times narrower than those based on tun-
ing in cat and that human tuning is sharper than in cat. Typical values of
the ratio WA/WF from this study (based on human tuning estimated psy-
chophysically) were11 for rate-place and 710 for all-information (for f D 970
Hz, L D 40 dB SPL, T D 64 ms, and 4 ms rise/fall). Human behavior lies
between the predicted behavior based on rate-place and all-information
encoding schemes. This result supports the notion that a restricted tempo-
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ral encoding scheme (one intermediate to rate-place and all-information)
should be pursued.

6.5 Limitations of This Study. 6.5.1 Computational Auditory Nerve
Model. The computational AN model used in this study has a basic �l-
ter shape that is the same for low and high CFs, with the only difference
being �lter bandwidth. This assumption ignores the tails of AN tuning
curves observed for high-CF AN �bers (Kiang & Moxon, 1974). Inclusion
of tails would affect the details of the predicted performance as a function
of level; however, the signi�cance of this assumption is minimized for the
predictions versus frequency and duration, which were limited to low- and
mid-level stimuli. The omission of tuning curve tails and of nonlinear in-
teraction between different CFs, for example, suppression (Sachs & Kiang,
1968; Delgutte, 1990), also limits the applicability of this AN model for com-
plex (broadband) sounds.

The Poisson assumption used in our model ignores refractory effects and
could affect some of the details of the performance limits predicted in this
study. Siebert (1965, 1968, 1970) and Colburn (1969, 1973) have argued that
this assumption is not signi�cant because AN �bers never respond at a sus-
tained rate for which the typical interspike interval is less than four to �ve
times larger than the absolute refractory period; however, this argument
does not rule out a signi�cant in�uence of the relative refractory period
for sustained responses and does not address short-duration stimuli. The
standard deviation of AN discharge counts to long-duration stimuli (i.e.,
¸ 50 ms) has been reported to be less than that predicted by the Poisson
model (Teich & Khanna, 1985; Young & Barta, 1986; Delgutte, 1987, 1996;
Winter & Palmer, 1991). The maximum deviation from thePoisson model oc-
curs at high discharge rates, and the Poisson model becomes more accurate
as discharge rate decreases. Young and Barta (1986) reported that the stan-
dard deviation of the highest discharge counts for 200-ms stimuli ranged
from 55% to 80% of the Poisson value, quantitatively consistent with other
reports that used 50-ms stimuli (e.g., Delgutte, 1987, and Winter & Palmer,
1991). Thus, the maximum discrepancy from using the Poisson model for
long-duration stimuli (¸ 50 ms) could be an overestimate of some rate-place
JNDs by a factor of two; however, the discrepancy will typically be much
less since �bers with high discharge rates do not contribute signi�cant rate-
place information (see Figures 5 and 7; Colburn, 1981; Winter & Palmer,
1991). Miller, Barta, and Sachs (1987) provided evidence that single-unit
phase-locked responses are consistent with a nonstationary Poisson model.
They showed that the mean and variance of period histograms (from sus-
tained responses) had roughly the same pattern and absolute value. Thus,
for stimulus durations greater than 50 ms, the errors from using a Poisson
model without refractory effects are small compared with the important
trends in our predictions, which often range over more than an order of
magnitude.
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For short-duration stimuli, refractory effects could be expected to have
a larger in�uence than for long-duration stimuli; however, there are insuf-
�cient data to estimate quantitatively the effect of refractoriness on rate-
place and all-information predictions for short-duration stimuli. The over-
estimation of rate-place JNDs may be more signi�cant for short-duration
stimuli because onset responses have higher discharge rates (and larger
dynamic ranges; see Figure 1b) than sustained responses and therefore
may deviate more from the Poisson model. The effect of refractoriness on
the all-information model can be thought of as removing those discharges
that fall within the refractory period of a previous discharge. Thus, all-
information predictions underestimate JNDs because refractoriness results
in less information (i.e., fewer observations) than the Poisson model. How-
ever, all-information predictions for frequency discrimination may not be
signi�cantly in�uenced by refractoriness, even for short-duration stimuli,
because low-order intervals are removed, and all-information performance
is dominated by information from large-order intervals (see Figure 3). Thus,
refractoriness would generally act to worsen all-information performance
and improve rate-place performance, and this prediction can be used to
bound the potential effects of refractoriness in this study—for example, a
small effect is predicted for level-discrimination (see Figure 6).

6.5.2 Signal Detection Theory. The Cram Âer-Rao bound is restricted in
that it only provides a limit on the performance of all possible decision
processes for a Poisson process, and thus should be viewed primarily as a
method for quantifying an upper bound on the total information available
in the auditory nerve. When an ef�cient estimator is shown to exist, as in
the case here, the Cram Âer-Rao bound quanti�es the total information ex-
actly. The Cram Âer-Rao-bound method by itself does not describe the type
of processing required to achieve the performance limit, which is often sig-
ni�cantly better than human performance (e.g., see Figure 4). Derived op-
timal processors (e.g., using a likelihood ratio test) typically include many
physiologically unrealistic operations on the observed population of AN
discharges, such as the ability to compare all discharge times across the
entire duration of the stimulus, as well as the ability to compare the dis-
charges across all AN �bers (Colburn, 1969, 1973; Siebert, 1970). It is often
the case that physiologically realistic, but nonoptimal, processors can be
described that perform at levels more consistent with human performance
(e.g., Colburn, 1969, 1973, 1977a, 1977b; Goldstein & Srulovicz, 1977; see
Delgutte, 1996). This approach provides intuition regarding the actual pro-
cessing performed in the auditory system and is thus a natural second step
after the fundamental performance limits have been described based on the
total AN information.

There is particular interest in the potential to evaluate quantitatively the
effect of noise maskers in experiments that have been used to test rate-place
and temporal encoding schemes (e.g., Viemeister, 1983; Moore & Glasberg,
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1989). However, the SDT analysis used in this study is limited to single-
parameter discrimination tasks withdeterministic stimuli (e.g., frequency or
level discrimination). Analysis of performance limits in tasks with random
stimuli requires several extensions from this study. The in�uence of stimulus
(external) variability on the information in individual AN �bers must be cal-
culated in addition to the in�uence of the physiological (internal) variability
that was evaluated in the study. Random stimuli also result in correlations
between activity of AN �bers with overlapping frequency tuning due to
the common stimulus drive (Young & Sachs, 1989). Thus, the independence
assumption used in this study is invalid for random stimuli, and the correla-
tionbetweenAN �bers mustbe considered in evaluating performance limits
based on the entire AN population. Suppression (i.e., nonlinear interaction
between different CFs; Sachs & Kiang, 1968; Delgutte, 1990), which is not
included in our AN model, in�uences AN responses to complex stimuli.
Suppression could potentially produce signi�cant interactions between a
target and an off-frequency noise masker that are not intuitively clear or con-
sistent with the assumption that all �ber information is eliminated within
the noise masker (e.g., Viemeister, 1983; Moore & Glasberg, 1989). There-
fore, suppression must be included in AN models to evaluate performance
limits for tasks with random-noise stimuli. There are now computational
AN models that include the effects of suppression and produce responses
to arbitrary stimuli (e.g., Robert & Eriksson, 1999; Zhang et al., 2001).

An initial extension of the SDT analysis to random stimuli is presented in
the companion paper in this issue, which evaluates performance limits for
psychophysical discrimination tasks in which a single nuisance parameter
is randomly varied (e.g., random-level frequency discrimination). A more
general extension of the SDT analysis to random stimuli has been devel-
oped and applied to the detection of tones in noise maskers (Heinz, 2000).
In addition to the effects of suppression and across-�ber correlation, the in-
formation contained in the temporal patterns (either �ne-time or envelope)
of AN �ber responses was shown to be signi�cant in this study.

7 Conclusion

Signal detection theory can be combined with computational models to
predict psychophysical performance limits based on an entire neural pop-
ulation. Auditory discrimination performance limits based on the compu-
tational AN model matched predictions from previous studies over the
parameter range for which analytical AN models were applicable. The pa-
rameter range over which psychophysical performance can be predicted
was extended using the computational AN model.

The following three conclusions related to the encoding of frequency are
not likely to depend on the details of the AN model used in this study:

� Optimal use of rate-place information is consistent with human fre-
quency discrimination performance at low frequencies but inconsis-
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tent with the trends in performance versus frequency at high frequen-
cies.

� Frequency discrimination based on optimal use of all-information is
roughly two orders of magnitude better than human performance at
all frequencies but demonstrates the correct trends versus frequency,
based on the frequency dependence of phase locking in the cat.

� There is signi�cant temporal information in the AN for frequency dis-
crimination up to at least 10 kHz, and thus temporal schemes cannot
be rejected at high frequencies based on the decrease in phase locking
in the AN.

Future studies using the computational approach with more complex
AN models are now justi�ed and will be particularly interesting for the
task of level discrimination. In addition, this approach is applicable to any
neural population in a sensory system for which a model of the discharge
pattern statistics is available.

Acknowledgments

We thank Bertrand Delgutte, Christopher Long, Christine Mason, Martin
McKinney, Susan Moscynski, Bill Peake, Tom Person, Timothy Wilson, Xue-
dong Zhang, and Ling Zheng for providing valuable comments on an earlier
version of this article. We greatly appreciate the constructive comments and
suggestions provided by three anonymous reviewers. We thank Mary Flo-
rentine for providing the data from Florentine (1986) shown in Figure 4b
and Don Johnson for his synchrony data from cat shown in Figure 1c. This
studywas part of a graduate dissertation in the Speech and Hearing Sciences
Program of the Harvard-MIT Division of Health Sciences and Technology
(Heinz, 2000). Portions of this work were presented at the 21st and 22nd
Midwinter Meeting of the Association for Research in Otolaryngology. The
simulations in this study were performed on computers provided by the
Scienti�c Computing and Visualization group at Boston University. This
work was supported in part by the National Institutes of Health, Grants
T32DC00038 and R01DC00100, as well as by the Of�ce of Naval Research,
Grant Agmt Z883402.

References

Abbott, L. F., & Sejnowski, T. J. (1999). Introduction. In L. F. Abbott & T. J.
Sejnowski (Eds.), Neural codes and distributed representations: Foundations of
neural computation. Cambridge, MA: MIT Press.

Anderson, D. J., Rose, J. E., Hind, J. E., & Brugge, J. F. (1971). Temporal position
of discharges in single auditory nerve �bers within the cycle of a sinewave
stimulus: Frequency and intensity effects. J. Acoust. Soc. Am., 49, 1131–
1139.



2310 M. G. Heinz, H. S. Colburn, & L. H. Carney

Braida, L. D., & Durlach, N. I. (1988). Peripheral and central factors in intensity
perception. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.), Auditory
function: Neurobiological bases of hearing (pp. 559–583). New York: Wiley.

Buus, S., & Florentine, M. (1991). Psychometric functions for level discrimina-
tion. J. Acoust. Soc. Am., 90, 1371–1380.

Buus, S., & Florentine, M. (1992). Possible relation of auditory-nerve adaptation
to slow improvement in level discrimination with increasing duration. In
Y. Cazals, L. Demany, & K. Horner (Eds.), Auditory physiology and perception
(pp. 279–288). New York: Pergamon.

Cariani, P. A., & Delgutte, B. (1996a). Neural correlates of the pitch of complex
tones: I. Pitch and pitch salience. J. Neurophysiol., 76, 1698–1716.

Cariani, P. A., & Delgutte, B. (1996b). Neural correlates of the pitch of com-
plex tones: II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity,
rate pitch, and the dominance region for pitch. J. Neurophysiol., 76, 1717–
1734.

Carlyon, R. P., & Moore, B. C. J. (1984). Intensity discrimination: A severe de-
parture from Weber’s law. J. Acoust. Soc. Am., 76, 1369–1376.

Carney, L. H. (1993). A model for the responses of low-frequency auditory-nerve
�bers in cat. J. Acoust. Soc. Am., 93, 401–417.

Carney, L. H. (1994). Spatiotemporal encoding of sound level: Models for normal
encoding and recruitment of loudness. Hear. Res., 76, 31–44.

Colburn, H. S. (1969). Some physiological limitations on binaural performance. Un-
published doctoral dissertation, Massachusetts Institute of Technology, Cam-
bridge, MA.

Colburn, H. S. (1973). Theory of binaural interaction based on auditory-nerve
data. I. General strategy and preliminary results on interaural discrimination.
J. Acoust. Soc. Am., 54, 1458–1470.

Colburn, H. S. (1977a). Theory of binaural interaction based on auditory-nerve
data. II. Detection of tones in noise. J. Acoust. Soc. Am., 61, 525–533.

Colburn, H. S. (1977b). Theory of binaural interaction based on auditory-nerve data.
II. Detection of tones in noise. Supplementary material. (AIP Document No.
PAPS JASMA-61-525-98). Available online at: http://www.aip.org/epaps/
howorder.html.

Colburn, H. S. (1981). Intensity perception: Relation of intensity discrimination to
auditory-nerve �ring patterns (Internal Memorandum). Cambridge, MA: Re-
search Laboratory of Electronics, Massachusetts Institute of Technology.

Cram Âer, H. (1951). Mathematical methods of statistics. Princeton: Princeton Uni-
versity Press.

Dau,T.,Kollmeier, B., & Kohlrausch, A. (1997a).Modeling auditory processing of
amplitude modulation. I. Detection and masking with narrow-band carriers.
J. Acoust. Soc. Am., 102, 2892–2905.

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997b). Modeling auditory processing
of amplitude modulation. II. Spectral and temporal integration. J. Acoust. Soc.
Am., 102, 2906–2919.
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