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In this paper we present a model called the Modified Phase-Opponency (MPO) model for
single-channel speech enhancement when the speech is corrupted by additive noise. The MPO
model is based on the auditory PO model, proposed for detection of tones in noise. The PO model
includes a physiologically realistic mechanism for processing the information in neural discharge
times and exploits the frequency-dependent phase properties of the tuned filters in the auditory
periphery by using a cross-auditory-nerve-fiber coincidence detection for extracting temporal cues.
The MPO model alters the components of the PO model such that the basic functionality of the PO
model is maintained but the properties of the model can be analyzed and modified independently.
The MPO-based speech enhancement scheme does not need to estimate the noise characteristics nor
does it assume that the noise satisfies any statistical model. The MPO technique leads to the lowest
value of the LPC-based objective measures and the highest value of the perceptual evaluation of
speech quality measure compared to other methods when the speech signals are corrupted by
fluctuating noise. Combining the MPO speech enhancement technique with our aperiodicity,
periodicity, and pitch detector further improves its performance. © 2007 Acoustical Society of

America. [DOI: 10.1121/1.2714913]
PACS number(s): 43.72.Ne [DOS]

I. INTRODUCTION

Speech signals in real-world scenarios are often cor-
rupted by various additive noise types (e.g., computer fan
noise, subway noise, car noise, and babble), convolutive
noise types (e.g., change in microphone or telephone-band-
limited speech), and nonlinear disturbances. Speech en-
hancement techniques that can attenuate the interfering noise
with minimal distortions to the speech signal can be used in
various speech communication applications like automatic
speech recognition, hearing aids, car and mobile phones,
cockpits, and multiparty conferencing devices.

The problem of speech enhancement has received a tre-
mendous amount of research attention over the past several
decades. A thorough discussion of the different speech en-
hancement techniques can be found in Benesty er al. (2005).
A bulk of the speech enhancement techniques are based on
modifying the short time spectral amplitude (STSA) of the
noisy speech signals. The techniques based on subtractive-
type algorithms assume that the background noise is locally
stationary to the degree that noise characteristics computed
during the speech pauses are a good approximation to the
noise characteristics during the speech activity. In addition to
the basic spectral subtraction algorithm (Boll, 1979), several
extensions and improvements have been proposed (Beh and
Ko, 2003; Berouti et al., 1979; Compernolle, 1992; Gustafs-
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son et al., 2001). Virag (1999) presents a detailed analysis of
the effect of variations in the subtraction parameters like the
over-subtraction factor, the spectral flooring factor, and the
exponent on the residual noise as well as the intelligibility of
the enhanced speech. It also presents a spectral subtraction
algorithm that adapts the subtraction parameters in time and
frequency based on the masking properties of the human
auditory system.

McAulay and Malpass (1980) have shown that, under
certain assumptions about the spectral characteristics of the
speech signal and the noise, the spectral subtraction method
is the maximum likelihood estimator of the variance of the
speech spectral components. Ephraim and Malah (1984)
have proposed a system that utilizes the minimum mean
square-error short-time spectral amplitude (MMSE-STSA)
estimator to enhance speech signals. This method assumes
that each of the Fourier expansion coefficients of the speech
and of the noise process can be modeled as Gaussian random
variables with zero mean. Moreover, it is also assumed that
these coefficients are independent of each other. The MMSE-
STSA estimator which takes into account the uncertainty of
speech presence (McAulay and Malpass, 1980) is also pre-
sented. The quality of the enhanced speech is better using the
MMSE estimator that takes into account the speech presence
uncertainty than the one that does not. The residual noise is
perceived more as white noise than as musical noise and is
attributed to the smooth variation of a priori signal-to-noise
ratio (SNR) estimates (Cappe, 1994). The MMSE-STSA al-
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gorithm is extended by Ephraim and Malah (1985) to com-
pute the STSA estimator that minimizes the mean-square er-
ror of the log-spectral amplitude, which is a more relevant
criterion for perceivable distortions in speech. Loizou (2005)
replaced the squared-error cost function used in the MMSE
estimator by perceptually more relevant cost functions that
take into account the auditory masking effects.

All of these speech enhancement methods make various
restricting assumptions about the temporal and spectral char-
acteristics of the speech signals and the corrupting noise. It
will be shown in Sec. VI D that the performance of some of
these methods deteriorates when the speech signals are cor-
rupted by fluctuating noise. In this paper we present a speech
enhancement technique, called the Modified Phase Op-
ponency (MPO) speech enhancement technique, that makes
minimal assumptions about the noise characteristics. The
MPO speech enhancement scheme does not assume that the
noise satisfies any statistical model or any degree of station-
arity, nor does it need to estimate/update the noise character-
istics but takes advantage of the known nature of speech
signals. The MPO speech enhancement technique is thus po-
tentially robust to fluctuating background noise. The perfor-
mance of the MPO technique on fluctuating noise is pre-
sented in Sec. VI D. The MPO speech enhancement scheme
is based on the auditory Phase Opponency (PO) model (Car-
ney et al., 2002) for tone-in-noise detection that includes a
physiologically realistic mechanism for processing the infor-
mation in neural discharge times. Some of the other speech
enhancement techniques based on models of human auditory
systems include Cheng and O’Shaughnessy (1991), Hansen
and Nandkumar (1995), Mesgarani and Shamma (2005), and
Tsoukalas et al. (1997).

In the present work, the MPO enhancement scheme is
also combined with our Aperiodicity, Periodicity and Pitch
(APP) detector (Deshmukh er al., 2005b) to develop the
MPO-APP speech enhancement scheme. The APP detector
was developed to estimate the proportion of periodic and
aperiodic energy in a speech signal. The MPO scheme is
combined with the APP detector to remove the narrowband
noise that might be seen as speech-like by the MPO process-
ing and to retain some of the wideband speech signal that
might be seen as noise-like by the MPO processing. The
MPO-APP speech enhancement scheme produces a binary
spectrotemporal mask called the MPO profile that distin-
guishes spectrotemporal regions where the speech signal is
more dominant than the regions where the noise is more
dominant. The use of binary masks is fairly common in the
auditory scene analysis based speech enhancement and ro-
bust speech recognition techniques (Wang, 2005) and is mo-
tivated by the phenomenon of masking in the human audi-
tory system. Hu and Wang (2004) proposed a computational
auditory scene analysis method for segregating speech sig-
nals corrupted by various additive interferences. This method
segregates the low-frequency resolved harmonics of the
speech signals based on temporal continuity and cross-
channel correlation and the high-frequency unresolved har-
monics based on amplitude modulation and temporal conti-
nuity. The segments from the resolved harmonics are
grouped according to common periodicity estimates and the
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segments from the unresolved harmonics are grouped ac-
cording to common amplitude modulation rates. The pro-
posed MPO-APP technique also contains an algorithm that
reliably estimates the proportion of periodicity in speech sig-
nals but combines it with an algorithm that detects the pres-
ence of narrowband signals in noise to separate speech sig-
nals from the background noise.

The proposed speech enhancement scheme leads to the
lowest value of the linear-predictive coefficients based objec-
tive measures and the highest value of the perceptual evalu-
ation of speech quality (PESQ) measure compared to some
of the other methods when the speech signals are corrupted
by fluctuating noise. The performance of the proposed
speech enhancement scheme is comparable to some of the
other enhancement techniques when the global SNR and the
noise type of the corrupting noise are not fluctuating.

Il. THE PHASE OPPONENCY MODEL

A model for detection of tone-in-noise based on process-
ing the information in neural discharge times is presented in
Carney et al. (2002). This model exploits the frequency-
dependent phase properties of the tuned filters in the auditory
periphery and uses cross-auditory-nerve-fiber coincidence
detection to extract temporal cues. It is shown that the re-
sponses of some of the cross-channel coincidence detectors
are reduced when a tone is present in the background noise.
This reduction in response to the presence of the target is
referred to as Phase Opponency (PO). The performance of
the PO model in the detection of low-frequency tones em-
bedded in fixed-level or roving-level masking noise is con-
sistent with that of humans (Carney er al., 2002), making it a
suitable model to detect narrowband signals corrupted by
additive noise. In the present work, the PO model is ex-
tended to develop a speech enhancement scheme by utilizing
the facts that (a) much of the speech signal is voiced and can
be thought of as a combination of narrowband signals (i.e.,
harmonics) with varying amplitudes and (b) retaining the
high-amplitude harmonics near the formant frequencies is
perceptually more significant than the harmonics in the val-
ley regions. The MPO processing scheme will thus not be
able to retain the obstruents in a given speech signal al-
though it does detect the frequency onset of strident friction
in high SNR situations.

Figure 1 shows the PO model with center frequency
(CF) equal to 900 Hz. The two nerve fibers are modeled as
two gammatone filters with slightly different CFs. The mag-
nitude and the phase response of the two gammatone filters
are also shown in Fig. 1.

When the input is a tone at 900 Hz, the outputs of the
two filters will be out of phase and the cross correlation will
lead to a negative output. The output will remain negative as
long as the input is a bandlimited signal centered at the CF
(900 Hz in this case) and with bandwidth (BW) within the
out-of-phase frequency region (F,—F, in Fig. 1). We refer to
the frequency region F,—F) as the out-of-phase region and
the rest of the frequency region as the in-phase region. When
the input is a wideband signal, the output of the two filters
will exhibit some degree of correlation and the cross-
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FIG. 1. PO filter pair to detect a tone at 900 Hz. GTF: Gammatone filter.
The relative phase response of the two GTFs is out-of-phase in the fre-
quency range [F,—F,]. The CFs for the two filters are 848.5 and 951.5 Hz.
Adapted from Carney er al. (2002).

correlation output will be positive or very slightly negative.
Thus the model is able to distinguish between narrowband
signals and wideband noise. A saturating nonlinearity is ap-
plied to the output of each of the filters to minimize the effect
of amplitude fluctuations on the overall output of the PO
model.

Some of the issues with the PO model shown in Fig. 1
are that the relative magnitude response and the relative
phase response of the two paths depend on the same set of
parameters, making it difficult to manipulate either of the
two independent of the other. It is difficult to predict the
relationship between the parameters controlling the charac-
teristics of the PO model and the width and the location of
the out-of-phase region.

lll. MODIFIED PHASE OPPONENCY MODEL

To address the concerns raised in Sec. II about the PO
model, the MPO model was developed in such a way that the
basic functionality of the PO model is maintained, but the
various properties of the model can be analyzed and modi-
fied independent of each other. Figure 2 shows the schematic
of the MPO model used in the present work. In the MPO
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FIG. 2. Modified PO filter pair. “Norm” indicates amplitude normalization.
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FIG. 3. (Color online) Magnitude and phase response of a typical all pass
filter with one pair of complex conjugate poles. The out-of-phase frequency
region is also shown.

model, one of the paths is modeled as a linear-phase finite
impulse response (FIR) bandpass filter (BPF). The other
channel is modeled as a concatenation of the same FIR BPF
followed by an all pass filter (APF). The relative phase re-
sponse of the two paths can be manipulated by changing the
parameters of the APF which does not introduce any changes
in the relative magnitude response. The magnitude response
of the two paths can be manipulated by changing the param-
eters of the BPF which does not introduce any changes in the
relative phase response. Thus the MPO model shown in Fig.
2 allows for manipulation of the relative magnitude response
and the relative phase response independently of the other.
The filters are followed by an amplitude normalizing scheme
to minimize the effect of magnitude information in the cross-
frequency coincidence. The characteristics of the BPF are
mainly decided by the range of the target frequency that is to
be detected. The characteristics of the APF are mainly de-
cided by the expected frequency range and BWs of the target
signals. The relation between the parameters of the APF and
its phase response is explored below.

A. Mathematical formulation of the MPO model

Consider a second-order APF, H(z), with one pair of
complex conjugate poles,

('-a)("'-a)
(1-a'zY1=-az™h

H(z) =

s

where a=re/? is the complex pole and a” is its complex
conjugate. Figure 3 shows the magnitude and the phase re-
sponse of the APF for r=0.93 and 6=0.3757. The magnitude
response is uniformly O dB for all values of the frequency w.
The phase response, ®(w), is given by

Deshmukh et al.: Modified phase-opponency based speech enhancement



D(w)=-2w

2r sin(w)cos(6) — 1 sin(2w)
1 = 2r cos(w)cos(8) + r* cosRw) |

(1)

We are interested in deriving the relationship between r and
0 and the location and the width of the out-of-phase region.
Notice from Fig. 3 that locating the out-of-phase region is
equivalent to locating the frequency region where the phase
response is the steepest. The frequency region where the
phase response, ®(w), is the steepest can be located by find-
ing the frequency where the slope of the phase response has
an inflection point, i.e., by finding the ® for which
d*(®(w))/dw*=0. Equating the numerator of the second-
order derivative to zero and simplifying leads to

-2 tan”!

D(r,w, 6)cos 0= cos w,
where

14277 +4r%(cos® w + sin 6) + r*
4r(1+ 1)

D(r,w,0) = (2)
If we assume w= 6, then the cos 6 term on the left-hand side
of Eq. (2) is balanced by the cos w term on the right-hand
side. Further, if we assume r=1, then the sum of the coeffi-
cients in the numerator of D(r,w,8) [1+2+4+1=8] is ex-
actly equal to that of the coefficients in the denominator [4
X (1+1)=8]. Thus, the equality in Eq. (2) holds for #=w and
r=1. However, stability of the APF dictates that the magni-
tude of r be less than 1. It can easily be verified (Deshmukh,
2006) that D(r,w, ) remains close to 1 even for various
values of r less than 1. Thus, it is reasonably accurate to
assume that:

The slope of the phase response, ®(w), of a stable APF
with a pair of complex conjugate poles at re*? is the steepest
at frequency w= 0. Moreover, this frequency location is inde-
pendent of r, the magnitude of the pole.

The phase response, ®(w), of the APF at f=w, under the
assumption of r=1 simplifies to:

a7 ifcot <0
d(w) = { (3)

—a if cot 6> 0.

The phase response at w=6 can thus be approximated
as £.

The closer the value of r to 1, the more accurate the
approximation is. The next step is to express the dependence
of the width of the out-of-phase region on the values of r and
6. This is equivalent to expressing the slope of ®(w) at w
=0 in terms of r and 6. Evaluating the derivative of ®(w)
with respect to @ at w=40 for various values of # and w
shows that for a given value of r, the value of d(P(w))/dw is
not very sensitive to the value of 6. On the other hand, it is
very sensitive to the choice of r. It can thus be assumed that:

d(®(w))/dw evaluated at w=0 (ie., at the frequency
where the phase response of the APF is the steepest) is inde-
pendent of 6 and is dependent only on the value of r.

In summary, for an APF with poles at a=re/? and a”, the
out-of-phase region is centered around w= 6 irrespective of
the value of r (the phase response at w= 6 is approximately
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FIG. 4. (Color online) Magnitude response of the (a) symmetric BPF; (b)
upward-skewed BFP; and (c) downward-skewed BPF that will be used in
the MPO structure with CF=1000 Hz. (d) Phase response of the APF that
will be used in the MPO structure with CF=1000 Hz. (e) Spectral slice of a
sonorant region in speech signal.

equal to +) and the width of the out-of-phase region is
controlled only by the value of r, irrespective of the value of
0.

B. MPO design

Our aim is to design a MPO structure to detect signals
centered at w, and of bandwidths less than or equal to Aw.
The first requirement is to choose the APF such that the
phase response is about —7 at .. Analysis in Sec. III A
shows that this requirement is satisfied by choosing the phase
of the pole of the APF as 6=w, [see Eq. (3)], irrespective of
what the value of r, the magnitude of the pole of the APF, is.
The expected bandwidth of the target signal, Aw, dictates the
value of r. The value of r should be such that the phase
response, ®(w), of the APF spans —7/2 to =37/2 in Aw rad
centered around w, (i.e., the out-of-phase region corresponds
to the expected bandwidth of the input signal). Unfortu-
nately, there is no closed form relation between r and the
BW of the out-of-phase region. For a given expected band-
width, Aw, the value of r has to be computed using multiple
trials. But, as is shown in Sec. IIT A, for a given bandwidth,
the value of r is dependent only on the bandwidth and is
independent of the center frequency of the signal. Assume
that the optimal value of r for the expected bandwidth of Aw
is r=r.. The APF is completely defined by specifying the
parameters r and 6.

The next step is to choose the FIR BPF. The BPF has to
satisfy two constraints:

(1) The passband of the BPF should include the out-of-
phase region.

(2) The passband should be such that the MPO output is
negative for narrowband signals (with bandwidth less
than or equal to Aw and centered at the CF) and positive
for wideband signals.

Several BPFs can be designed that satisfy the two above-
mentioned constraints. Figure 4 shows three such BPFs for a
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FIG. 5. (Color online) Variation in the binary classification error as the
bandwidth of the BPF is varied. The two classes are: (a) presence of nar-
rowband signal in broadband noise at 0 dB SNR and (b) broadband noise.

MPO structure that can be used to distinguish narrowband
signals centered at 1000 Hz with bandwidth less than 250 Hz
from wideband noise signals. Initial versions of the MPO-
based speech enhancement scheme (Deshmukh and Espy-
Wilson, 2005; Deshmukh ef al., 2005a) used BPFs with pass-
band symmetry across the CF of the MPO structure. Figure
4(a) shows the magnitude response of such a symmetric BPF.
Figure 4(d) shows the phase response of the APF used in the
corresponding MPO structure. The optimal bandwidth of the
BPF is computed by calculating the two-class (narrowband-
signal-in-noise versus noise-only) classification error for dif-
ferent choices of bandwidths and choosing the one that gives
the least error. For low values of bandwidth the output for
the presence-of-signal situations as well as for the absence-
of-signal situations will be negative leading to many false-
positive errors whereas for high values of bandwidth the out-
put for the absence-of-signal situations as well as for the
presence-of-signal situations will be positive leading to many
correct-miss errors. Figure 5 plots the total classification er-
ror for a MPO structure that uses the APF shown in Fig. 4(d)
and for different bandwidths of the corresponding symmetric
BPF. The optimal BPF is 450 X2=900 Hz. Note that the
classification error is close to the minimum value over a
wide range of the BPF bandwidths (8001200 Hz) and is
thus not very sensitive to the exact choice of the BPF band-
width. In all the simulations, the BPF length was kept con-
stant at 76 samples, and was constructed using the standard
MATLAB routine firl.

Figure 6 shows the distribution of the output of the MPO
model shown in Figs. 4(a) and 4(d) for 5000 frames (a frame
is 30 ms long with a frame rate of 5 ms) each of white noise
and a bandlimited signal centered at 1000 Hz and of band-
width 250 Hz corrupted with white noise at o, 20, 10, and
0 dB SNR. Notice that the distribution of the output for
white noise is well separated from that for the bandlimited
signal at o dB SNR. Moreover, the distribution of the band-
limited signal corrupted by white noise remains quite similar
over a wide range of SNRs (% to 0 dB). The threshold to
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FIG. 6. (Color online) Distribution of the output of MPO model when the
input is white noise (A); band-limited signal at % dB SNR (O); at 20 dB
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discriminate the presence of the signal from the absence of
signal is computed using the maximum likelihood (ML)-
based likelihood ratio test (LRT). The optimal threshold
value is —0.0215. Figure 7 shows the receiver operating char-
acteristic (ROC) curve for MPO detectors at three different
CFs: 950 Hz (dash curve), 1000 Hz (dotted curve), and
1050 Hz (solid curve). The optimal threshold values are:
—-0.0183, -0.0215, and —0.0197, respectively. The ROC
curves in Fig. 7 were obtained by varying the threshold over
the range: [opt_thresh —0.05:-0.005] where opt_thresh is the
optimal threshold for the corresponding MPO detector. In
general, it is observed that the probability of false alarm is
below 3% for threshold values below 0 (the theoretical
threshold) and the probability of detection remains above
96% for threshold values as low as opt_thresh —0.05 indicat-
ing that the exact value of the threshold is not critical for the
overall operation of the MPO detectors. It is worth pointing
out that the thresholds for the MPO detectors at different CFs
are computed using the two extremes of (a) narrowband sig-
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FIG. 7. (Color online) ROC curves for MPO detectors at three different
CFs: 950 Hz (dash curve); 1000 Hz (dotted curve); and 1050 Hz (solid
curve).

Deshmukh et al.: Modified phase-opponency based speech enhancement



Speech signal

P

&l

k4

Speech signal

Speech | Analysis Synthesis
Szl ®| Fil terbank *| Filterbark

L

2

Speech signal

®...(§V§)¢—

nals centered at the CF and (b) white noise. These thresholds
are not retrained when the background conditions change. It
is shown in Sec. VI that the MPO speech enhancement
scheme is robust to various noise types at different levels
with no additional noise-specific training.

The other two BPFs shown in Fig. 4 have passbands
skewed upward or downward in frequency with respect to
the CF of the MPO structure [Figs. 4(b) and 4(c), respec-
tively]. Both of these BPFs offer some advantages over the
symmetric BPF and will be discussed in Sec. IV A.

IV. MPO-BASED SPEECH ENHANCEMENT

Speech signals, for the most part, are composed of nar-
rowband signals (i.e., harmonics) with varying amplitudes.
The MPO-based speech enhancement scheme attempts to de-
tect and maintain these time-varying narrowband signals
while attenuating the other spectro-temporal regions. Figure
8 shows the schematic of the MPO-based speech enhance-
ment scheme. The analysis-synthesis filterbank can be any
near-perfect reconstruction (PR) filterbank. The overall per-
formance of the MPO enhancement scheme is insensitive to
the choice of the analysis-synthesis filterbank. In the present
work, a DFT-based PR filterbank is used. In a related work
(Anzalone et al., submitted), a near-PR analysis-synthesis
gammatone filterbank proposed by Hohmann (2002) was
used. The input speech signal is split into overlapping frames
of length 30 ms at a frame rate of 5 ms. Each MPO,; in the
figure is a MPO structure (Fig. 2) with a different CF. The
CFs are spaced every 50 Hz from 100 Hz to just below the
maximum frequency. The threshold, x;, to discriminate the
presence of signal from the absence of signal is trained sepa-
rately for each MPO structure as described in Sec. III B. The
MPO structures act as switches allowing the speech frame to
either pass as it is for reconstruction if the corresponding
MPO output is less than the threshold (indicating presence of
signal) or be attenuated by 10 dB if the output is greater than
or equal to the threshold (indicating absence of signal). At-
tenuating the signal-absent regions by 10 dB, instead of ze-
roing them out completely, reduces the perceptual effect of
the residual noise. Higher attenuation of the speech-absent
regions leads to an overall increase in the objective distortion
measures as well as a lower PESQ measure.
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FIG. 8. Schematic of the MPO-based speech enhance-
ment scheme. The threshold, x;, is trained using the
ML-LRT technique and all the regions with output
above this threshold are suppressed.

Enhanced
speec

In the initial version of the MPO-based speech enhance-
ment scheme (Deshmukh and Espy-Wilson, 2005; Desh-
mukh et al., 2005a), each of the MPO; in Fig. 8 consisted of
a symmetric BPF and the APF was configured so that signals
with bandwidths less than or equal to 150 Hz would lead to
negative outputs. Such a scheme performs well when the
input speech signal is corrupted by additive white noise
which has a relatively flat spectrum with minimal level fluc-
tuations over time. But it passes a lot more noise when the
corrupting signal is colored noise with fluctuating levels. To
overcome this problem, the present version of the speech
enhancement scheme uses two sets of MPO structures at
each CF. Each set has five different MPO structures such that
each one of them has a different out-of-phase region ranging
from 120 to 250 Hz. Noise can be wrongly seen as speech
by one or more of the five different structures in either set,
but it is rarely seen as a narrowband speech signal by all five
structures. Similarly, narrowband speech signals are almost
always seen as speech signals by all five MPO structures.
Using five structures in each set strikes a better balance be-
tween computational cost and the amount of residual noise as
compared to a higher or lower number of structures per set.

A. Choosing the BPF for speech signals

Consider the spectral slice shown in Fig. 4(e). The har-
monics close to F2 (around 1050 Hz) fall in the out-of-phase
frequency region of the MPO structure whereas the harmon-
ics close to F1 (around 550 Hz) fall in the in-phase fre-
quency region of the MPO structure with symmetric BPF.
The amplitude of F1 (and hence that of the harmonics close
to F1) is greater than that of F2 due to the known spectral tilt
in sonorant regions of speech signals. As a result, although
there is a narrowband signal at the CF of the MPO, the
output of this MPO structure will be positive and therefore
the speech information present in that frequency region will
be missed. The upward skewed BPF shown in Fig. 4(b) will
attenuate the F1 region and thus the output of the upward-
skewed MPO structure will be driven mainly by the fre-
quency content near the CF and in the frequency region
above the CF. Most of the time, such upward skewed MPO
structures are able to correctly detect the speech information
as they inherently take advantage of the spectral tilt present
in sonorant speech regions. The F2 information in Fig. 4(e)
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FIG. 9. (Color online) Magnitude response of the (a) symmetric BPF; (b)
upward-skewed BFP; and (c) downward-skewed BPF that will be used in
the MPO structure with CF=2300 Hz. (d) Phase response of the APF that
will be used in the MPO structure with CF=2300 Hz. (e) Spectral slice of a
sonorant region in speech signal.

that was missed by the symmetric MPO structure will be
detected by the upward-skewed MPO structure.

The downward-skewed filter shown in Fig. 4(c) is the
exact opposite of the upward-skewed filter. The passband of
the downward-skewed filter extends downward in frequency
with respect to the CF of the MPO structure. Consider the
case shown in Fig. 9(e) when two formants are of compa-
rable amplitudes and are in close proximity in frequency
(hence, the harmonics near these formant frequencies have
comparable amplitudes). In such cases, the upward skewed
MPO structures will detect the higher frequency harmonics,
but will fail to detect the lower frequency harmonics. The
downward skewed MPO structures centered on the lower
frequency harmonics will be able to successfully detect such
instances because their in-phase region extends on the lower
frequency side. Each CF is thus analyzed using an upward
MPO structure as well as a downward MPO structure.

B. Speech enhancement scheme

As explained in Sec. IV A each MPO; in Fig. 8 consists
of five upward-skewed MPO structures (one set) and five
downward-skewed MPO structures (second set) all tuned to
the same CF, but with the width of the out-of-phase region
ranging from 120 to 250 Hz. The speech enhancement
scheme can now be described as a two-step process. In the
first step, the temporal regions where speech is present are
computed. For a temporal region to be voted as speech
present, it has to satisfy two conditions: (a) The MPO output
of at least one frequency channel from all five different
upward-skewed or all five different downward-skewed MPO
structures should be at least four times more negative than
the threshold for that particular channel and (b) the temporal
region should be at least 50 ms long.

In the second step, the frequency channels within the
speech-present temporal regions where speech information is
present are computed by finding the channels where the
MPO output from all five upward skewed or all five down-
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FIG. 10. (Color online) (a) Spectrogram of the utterance “five three seven
six eight six;” (b) the energy-based maximal mask; and (c), (d), (e), and (f)
MPO profile at e, 20, 10, and 5 dB SNR, respectively.

ward skewed MPO structures is below the corresponding
threshold. The noisy speech signal from only these channels
is used for reconstruction.

The first step is to ensure that wrongful insertions in the
decision of temporal speech-present regions are kept to a
minimum and the second step is to ensure that all of the valid
speech-present spectral channels in a given speech-present
temporal region are detected.

The MPO speech enhancement scheme can thus be
thought of as applying a time-frequency two-dimensional bi-
nary mask to the input speech signal. The binary mask has a
value of one in speech-present spectrotemporal regions
where the speech signal is dominant and has a value of zero
in the speech-absent spectrotemporal regions where the noise
signal is more dominant. The binary mask is referred to as
the “MPO profile.” Figure 10(a) shows the spectrogram of
the utterance “five three seven six eight six” in clean. Figures
10(c)-10(f) shows the corresponding MPO profile when the
utterance is corrupted by subway noise at %, 20, 10, and
5 dB SNR, respectively. The dark (blue) regions are the
spectrotemporal channels where the MPO profile is one. The
speech signal from these channels is used ‘“as-is” to construct
the enhanced speech signal. The MPO processing retains al-
most all of the perceptually significant speech information
when the input signal is clean. Some of the formant transi-
tions through the fricative regions as well as the frequency
onset of strident frication are also tracked (e.g., around 1.6
and around 2.2 s). As the SNR is reduced, most of the strong
sonorant information is detected by the MPO processing
while very little noise is mistaken as speech signal [e.g.,
around 1.4 s in Fig. 10(e) and around 1.2 and 1.9 s in Fig.
10(f)].

Figures 11(a) and 11(c) compare the MPO profiles of
two utterances “four three six four six three” (left) and “one
five” (right) in clean and when they are corrupted by car
noise and subway noise, respectively, at 10 dB SNR. The
MPO processing retains almost all of the perceptually sig-
nificant speech information when the input signal is clean.
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FIG. 11. (Color online) (a) Spectrograms of clean signals “four three three
six four six three” (left) and “one five” (right). (b) The MPO profiles of the
corresponding signals. (c) Spectrograms of the signals corrupted by car
noise (left) and subway noise (right) at 10 dB SNR. (d) The MPO profiles of
the corresponding noisy signals. (¢) Periodicity confidence. Frames with
periodicity confidence greater than per_thresh are shown with a thicker line.
(f) The combined MPO-APP profiles of the noisy signals.

When the input signal is noisy, the MPO processing,
while detecting most of the strong harmonics, fails to detect
the short vowel /I/ in both the instances of “six” [1.12-1.16
and 1.68—1.73 s in Fig. 11(d)] as well as completely misses
the last “three” (1.9-2.3 s). Also notice that the /w/ in the
noisy “one” [0.22-0.3 s Fig. 11(d) on the right] is not de-
tected by the MPO processing. F1 and F2 for /w/ are very
close and thus look like a wideband signal which is not de-
tected by the MPO processing. Also note that in all of these
regions the temporal signal has strong periodicity which dis-
tinguishes it from the temporal signal in the noise-only re-
gions. On the other hand, some of the noise is wrongly seen
as narrowband signal by the MPO processing and is passed
for reconstruction [e.g., 0.12-0.2 and 2.23-2.3 s in Fig.
11(d)]. But these noise regions are not as periodic as the
speech-present regions.

The number of noise-insertions and the number of
speech-deletions can be reduced by combining the MPO pro-
cessing with an algorithm that reliably estimates the period-
icity information in speech signals. In the present work, the
MPO processing is combined with our APP detector (Desh-
mukh er al., 2005b). The APP detector estimates the propor-
tion of periodic and aperiodic energy in each spectrotemporal
channel as well as the confidence of periodicity in each time
frame. Such a time-frequency analysis by the APP detector
makes it convenient to combine the APP detector with the
MPO processing. The narrowband noise that is inserted in
the reconstructed speech signal by the MPO processing does
not have a harmonic structure across the frequency channels
similar to that of the periodic regions in a speech signal. On
the other hand, the locally wide-band regions of speech sig-
nals formed due to the proximity of two or more formants
retain a coherent harmonic structure across the frequency
channels. The APP detector captures this coherence of
across-frequency-channel periodicity and can reduce such
speech-deletions in the MPO speech enhancement scheme.

Section V presents a brief overview of the APP detector,
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FIG. 12. AMDF clusters for a periodic frame at different SNRs and for an
aperiodic frame.

the use of the APP detector as a separate speech enhance-
ment technique, and the way in which the MPO processing is
combined with the APP detector.

V. APERIODICITY, PERIODICITY, AND PITCH
DETECTOR

The processing in the APP detector begins by splitting
the speech signal into 60 frequency channels that are equi-
spaced on the ERB scale. The average magnitude difference
function (AMDF) is computed on the envelope of each of the
frequency channels at a frame rate of 2.5 ms and a frame
length of 20 ms. The AMDF is given by

m=9%

v, (k) = 2 [x(n + m)w(m) = x(n +m — k)w(m — k)

m=—%

b

where x(n) is the envelope signal, k is the lag value in
samples, and w(m) is a 20-ms-long rectangular window.

For a periodic signal, the AMDF attains minima (re-
ferred to as dips) values close to one at lags equivalent to the
pitch period and its integer multiples. Moreover, for a frame
in a periodic speech region, the pitch period is quite similar
across the different frequency channels. Thus, lag-wise addi-
tion of the AMDF dips across the frequency channels leads
to clustering at integer multiples of the pitch period as shown
in Fig. 12(a) for a frame during the /w/ centered at 0.27 s in
clean condition (Fig. 11, right-hand side). Figures 12(b) and
12(c) show that the clusters are retained even as the SNR is
reduced to 10 and 5 dB, respectively. For an aperiodic frame,
the lag-wise addition of the AMDF dips across the frequency
channels results in dips that are randomly scattered over the
range of the possible lag values. For example, Fig. 12(d)
shows the lag-wise addition of the AMDF dips for an aperi-
odic frame centered at 0.46 s in the utterance shown on the
right-hand side in Fig. 11 and corresponds to the phoneme /f/
in “five.”

The periodicity confidence of a given temporal frame is
computed as the strength of the dips close to the cluster
peaks relative to the strength of the rest of the dips. The
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locations of the cluster peaks is the estimate of the pitch
frequency. For aperiodic frames, where no strong clusters
exist, a cluster is formed around the lag with the maximum
strength. The periodicity confidence values for the plots in
Figs. 12(a)-12(d) are: 50.8, 9.7, 9.3, and 0.4, respectively.
The periodicity confidence can thus distinguish a periodic
frame from an aperiodic frame even when the speech signal
is corrupted by noise. The optimal threshold of the periodic-
ity confidence, per_thresh, to distinguish periodic frames
from aperiodic frames is computed using periodic and aperi-
odic frames from clean speech signals and is not altered as
the background conditions change.

Frequency channels where the AMDF dips close to the
cluster peaks are stronger than the AMDF dips away from
the cluster peaks are classified as periodic channels. The rest
of the channels are classified as aperiodic channels. This
leads to a spectrotemporal binary mask, called the “APP pro-
file,” which has a value of 1 in frequency channels which are
estimated to be periodic and a value of O in channels which
are estimated to be aperiodic. Also, note that if any of the
frequency channels has periodic noise then the periodic noise
will be classified as periodic speech signal only if the corre-
sponding period of the noise is very close to the estimated
pitch period of the speech signal. [Please refer to Deshmukh
et al. (2005b) for more details on the various stages of the
APP detector.

A. APP-based speech enhancement technique

The APP speech enhancement technique consists of the
APP detector sandwiched between a near-PR analysis-
synthesis gammatone filterbank proposed by Hohmann
(2002). (The setup is similar to the one shown in Fig. 8 for
the MPO speech enhancement scheme.) The filters of the
near-PR filterbank are equi-spaced on the ERB scale and the
CFs and the bandwidths are chosen such that they match the
filters used in the analysis of the APP detector. The spec-
trotemporal channels where the APP profile is one (indicat-
ing presence of periodic signal) are passed as-is to the syn-
thesis filterbank and the rest of the spectrotemporal channels
are attenuated by 10 dB before being passed to the synthesis
filterbank.

B. Combining MPO processing with the APP detector

As mentioned earlier, some of the main shortcomings of
the MPO processing are: (1) Noise insertions: Where some
of the narrowband noise is detected as speech-like although
it lacks the harmonicity typical of the sonorant speech re-
gions and (2) speech deletions: Where locally wideband re-
gions of speech signals are not retained although they have a
coherent harmonic structure across the frequency channels.

For each of the frequency channels analyzed by the
MPO processing, the AMDF dips are computed on the enve-
lope of the channel signal. The periodicity confidence of
each temporal frame is computed by the lag-wise addition of
the AMDF dips across the frequency channels as mentioned
in Sec. V. A given speech-present region in the MPO-
processing is classified as speech-absent (and thus not used
for reconstruction) if the maximum value of the periodicity
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confidence in the corresponding region is below per_thresh.
For example, consider the MPO-estimated speech-present re-
gion between 0.13 and 0.20 s [Fig. 11(d), left-hand side].
The maximum value of the periodicity confidence in this
region is below per_thresh [frames with periodicity confi-
dence greater than per_thresh are shown with a thicker line in
Fig. 11(e)]. Thus, this region will not be used for reconstruc-
tion. Such a strategy leads to a reduction in noise insertions.

All the frames that are classified as speech absent by the
MPO processing but have the corresponding periodicity con-
fidence greater than 2 X per_thresh (indicating strong period-
icity) are classified as speech present and reintroduced for
synthesis. Figure 11(f) shows the combined MPO-APP pro-
file for the noisy utterances shown in Fig. 11(c). Notice that
the noise insertions are removed and most of the speech de-
letions are reintroduced.

VI. EVALUATION
A. Database

The Aurora database (Hirsch and Pearce, 2000) was
used to evaluate the MPO-based speech enhancement
scheme. This database is a derivative of the TIdigits database
resampled at 8 kHz. The database has three different subsets
for testing. In the present study, only the test subset A was
used for evaluation. Subset A consists of utterances corrupted
by four different noise types at seven different SNRs from
© to —5 dB. Each utterance in the Aurora database is cor-
rupted by one of the noise types at a given SNR. The four
different noise types are: Subway noise, babble, car noise,
and exhibition hall noise. These are referred to as N1, N2,
N3, and N4, respectively.

A database of speech signals corrupted by fluctuating
noise (F-DB) was formed from this subset of the Aurora
database. Each utterance in F-DB database consists of seven
digits. Each of the seven digits is corrupted by a different
noise type at a different SNR. The F-DB database consists of
1120 such utterances.

The overall MPO speech enhancement strategy (i.e.,
number of MPO structures at each CF, combining the output
of these MPO structures) was developed using a subset of the
TIMIT database corrupted by white noise and a subset of the
Aurora database.

The performance of the MPO and the combined MPO-
APP speech enhancement technique was compared with
some of the speech enhancement techniques presented in the
literature: (a) MMSE-STSA (Ephraim and Malah, 1984); (b)
MMSE-STSA with noncausal SNR estimation (NC-MMSE)
(Cohen, 2004); (c) 1ogMMSE-STSA (Ephraim and Malah,
1985); (d) Generalized Spectral Subtraction (GSS) (Comper-
nolle, 1992); (¢) Hu-Wang method (2004); and (f) APP-
based speech enhancement technique. The code for the Hu-
Wang method was downloaded from their lab website. The
code was used as-is except the sampling rate was changed
from 16 to 8 kHz.

The evaluations presented here only compare the quality
of the enhanced speech signals and not their intelligibility.
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i | Ll
04 06 08

» g 1. 2
T T
L5 gl s TRV,
2000 i MM" [ ey (e ; w ::3 ®
oLz ey AR, . ... oo Vo i L ] L O T
4006 02 04 06 08 1 12 14 16 18 2
2000 1 Mg o .1l,,, e g ‘M;’%w il ; W ::‘ 4001 @
o low nie s R ... gihimicwbje L T ST
0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2

FIG. 13. Spectrogram of (a) the clean speech signal “five three seven six
eight six.” (b) The speech signal corrupted by subway noise at 10 dB SNR.
The speech signal enhanced using the (c) GSS technique, (d) MMSE tech-
nique, (¢) Hu-Wang technique, (f) MPO technique, and (g) MPO-APP tech-
nique.

Detailed evaluations comparing the intelligibility of the
speech signals enhanced using the different techniques will
be reported in the future.

B. Spectrograms displays

We begin the evaluations by comparing the spectro-
grams of the speech signals enhanced using different tech-
niques. Figure 13 shows the spectrograms of a clean speech
signal, the speech signal corrupted by subway noise at 10 dB
SNR, and the speech signals enhanced by the GSS method,
the MMSE-STSA method, the Hu-Wang method, the pro-
posed MPO method, and the combined MPO-APP method.
The GSS method has a relatively less amount of residual
noise but suppresses alot of high-frequency low-energy
speech information. The MMSE-STSA method is able to re-
tain most of the speech information but passes alot more
noise compared to the other methods. The MPO method, on
the other hand, attenuates most of the residual noise while
retaining much of the speech signal including the high fre-
quency low energy speech information. For example, the
MPO method is able to retain the weak F3 information
around 2500 Hz near 0.65 s and again around 2700 Hz near
1.5 and 1.95 s while passing very little noise. Also notice
that the combined MPO-APP method removes the noise
around 1.4 s which was passed by the MPO method.

C. Evaluation using objective measures

The performance of the MPO speech enhancement
scheme was evaluated using three objective quality assess-
ment measures that have a high degree of correlation with
subjective quality. These three measures are based on the
dissimilarity of the linear predictive (LP) coefficients be-
tween the original and the enhanced speech signals (Hansen
and Pellom, 1998).

(1) Itakura-Saito (IS) distortion measure: The 1S distor-
tion measure between a frame of clean speech signal and the
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TABLE I. IS distortion measure at different SNRs. The results are averaged
across the four different noise types used in this study.

Type Clean 20 dB 10 dB 5dB
GSS 1.407 3.839 3.774 3.427
MMSE 0.526 1.448 2.571 3.453
logMMSE 1.642 3.584 5.230 7.468
NC-MMSE 0.623 2.221 3.712 8.765
Hu-Wang NaN NaN NaN NaN
APP 15.084 4.771 3.183 3.257
MPO 1.034 1.425 2.018 2511
MPO-APP 1.083 1.399 1.981 2.469

corresponding frame of the enhanced speech signal is com-
puted by

ol || L,R.LY o
dIS=|:_§ L1 +log| 5 |-1,
o, |LLR.L, 0.

where L, and L, are the LPC vectors for the clean frame and
the processed frame, respectively, a'f and 0'127 are the all-pole
gains for the clean frame and the processed frame, respec-
tively, and R, is the autocorrelation matrix of the clean
frame.

(2) Log-likelihood ratio (LLR) measure: The LLR mea-
sure, unlike the IS measure, does not compare the all-pole
gains of the clean frame and the processed frame and thus
lays more emphasis on the difference in the overall spectral
envelopes of the two frames. The LLR measure is computed
using

LR.L,
fin = log[ LAL } '

(3) Log-area-ratio (LAR) measure: The LAR measure is
computed using the Pth order LP reflection coefficients of
the clean frame and the processed frame in the following

way:
P

1 1+r.(

_2 |:10g rc(.])

1+r,G) |2 [

diar = - —log . ,
R Y e 1-r.(j) 1= r,())
where r. and r, are the reflection coefficients of the clean

frame and the processed frame, respectively.

All three measures return frame-level scores for a given
processed speech signal. An overall score is computed by
calculating the mean of the frame-level scores of the frames
with the lowest 95% scores. Such a scheme removes a fixed
number of frames which may have unrealistically high
scores (Hansen and Pellom, 1998). An overall score of zero
implies the processed speech signal is exactly identical to the
original clean speech signal. Higher values indicate a greater
degree of distortion in the processed speech signal.

The performance was also evaluated using the objective
perceptual quality measure called the PESQ measure (Rix er
al., 2001). The PESQ measure is the ITU-T standard to
evaluate the perceptual quality of processed speech signal.
The PESQ evaluation includes aligning the clean (reference)
signal and the enhanced signal in time and processing them
through an auditory transform. The auditory transform in-
cludes models of various stages of the human auditory appa-
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TABLE II. LAR measure at different SNRs. The results are averaged across
the four different noise types used in this study.

TABLE IV. PESQ measure at different SNRs. The results are averaged
across the four different noise types used in this study.

Type Clean 20 dB 10 dB 5dB Type Clean 20 dB 10 dB 5 dB
GSS 1.712 3.987 5.372 5.758 GSS 3.718 3.042 2.361 1.928
MMSE 0.994 3.215 4.871 5.496 MMSE 4.086 3.060 2.464 2.072
logMMSE 1.160 3.218 5.211 5.867 logMMSE 4.054 3.133 2.502 2.075
NC-MMSE 0.779 2.867 4.881 6.013 NC-MMSE 4.136 3.045 2.440 2.020
Hu-Wang 7.761 17.841 32.533 40.827 Hu-Wang 1.402 1.012 0.780 0.625
APP 2.590 4.538 5.433 5.923 APP 3.002 2.768 2.377 2.059
MPO 1.939 4.070 5.003 5.577 MPO 4.116 2.955 2.331 1.958
MPO-APP 1.919 4.022 4.941 5.507 MPO-APP 3.815 2.994 2.420 2.051

ratus. The outcome of the PESQ measure is an estimate of
the subjective mean opinion score (MOS), which has values
between 0 (poor quality) and 4.5 (no perceptual distortion).

Table I compares the IS distortion measure at different
SNRs for the output of different enhancement techniques.
The MPO processing leads to the lowest IS measure when
the input speech signal is noisy. Combining the MPO pro-
cessing with the APP detector (MPO-APP) leads to a further
drop in the IS distortion measure in noisy conditions. The IS
distortion measure computed on MPO-processed clean
speech signals is higher than that computed on clean speech
signals processed by other enhancement techniques. One of
the reasons for this higher value could be that the spectral
valleys in clean speech signal are further attenuated by the
MPO processing. The IS distortion values for the Hu-Wang
method were quite high and are hence replaced by NaNs
(not-a-number). One of the reasons for the drop in the per-
formance of the Hu-Wang method could be the change in the
sampling rate. (Some of the parameters in the algorithm
could be optimized for the default sampling rate of 16 kHz.).

Tables II and III compare the LAR and LLR measures,
respectively, at different SNRs for the output of different
enhancement techniques. The LAR and LLR measures ob-
tained for the proposed MPO enhancement scheme are com-
parable with those obtained for some of the other enhance-
ment schemes although the values are consistently higher
(indicating more distortion) than those obtained for the
MMSE-STSA enhancement scheme. Combining the MPO
enhancement scheme with the APP detector (MPO-APP)
consistently leads to a drop in the distortion values. Table IV
compares the PESQ measure at different SNRs for the output
of different enhancement techniques. The results are similar
to those obtained for the LAR and LLR measures. The com-

TABLE III. LLR measure at different SNRs. The results are averaged across
the four different noise types used in this study.

Type Clean 20 dB 10 dB 5 dB

GSS 0.103 0.453 0.782 0.958
MMSE 0.081 0.397 0.748 0.942
logMMSE 0.111 0.392 0.784 0.998
NC-MMSE 0.064 0.366 0.765 1.032
Hu-Wang 2.746 11.362 26.807 35.710
APP 0.241 0.556 0.775 0.923
MPO 0.159 0.519 0.761 0.943
MPO-APP 0.158 0.510 0.750 0.929
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bined MPO-APP enhancement technique is an improvement
over the MPO enhancement technique and its performance is
comparable to that of some of the other enhancement tech-
niques.

D. Robustness to fluctuating noise types and noise
levels

The salient features of the MPO-based speech enhance-
ment scheme are as follows: (a) It makes minimal assump-
tions about the noise characteristics (the only assumption is
that noise is broader than the harmonics of the speech sig-
nal), (b) it does not need to estimate the noise characteristics
nor does it assume the noise satisfies any particular statistical
model, and (c) the noise removal performance on a given
frame is independent of the performance on the adjoining
frames. This scheme can thus be potentially robust when the
level and the type of the background noise are fluctuating.
The performance of the proposed MPO enhancement scheme
was evaluated on the F-DB database of speech signals cor-
rupted by fluctuating noise. Figure 14(a) shows the spectro-
gram of one of the clean signals “oh three zero six zero two
four” from the F-DB database. The noisy signal is shown in
Fig. 14(b). Figures 14(c)-14(f) compare the spectrograms of
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FIG. 14. The efficiency of the MPO method in enhancing the speech signal
when the background noise is fluctuating is demonstrated. The digit se-
quence is “oh three zero six zero two four.” Spectrogram of (a) the clean
signal, (b) the noisy signal, the speech signal enhanced using the (c) GSS
technique, (d) logMMSE technique, (¢) Hu-Wang technique, and (f) MPO
technique.
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TABLE V. Performance of different speech enhancement techniques using
various objective measures when the speech signals are corrupted by fluc-
tuating noise.

Type IS LAR LLR PESQ
GSS 41301 2972 0377 2.030
MMSE 23.473 2.542 0.351 1.974
NC-MMSE 29.975 3.061 0.474 2.024
logMMSE 34.946 2.646 0.370 1.911
Hu-Wang NaN 16.997 8.250 0.800
APP 43.148 2.952 0.344 2271
MPO 5.241 2.167 0.276 2.282
MPO-APP 4971 2.175 0277 2.320

the speech signals obtained using the GSS enhancement
scheme, the logMMSE method, the Hu-Wang method, and
the proposed MPO enhancement method, respectively. No-
tice that the MPO method is able to retain most of the speech
information while passing very little noise. The MPO
method attenuates the noise in between the spectral peaks of
“four” (3.6—3.9 s, local SNR -5 dB) and “zero” (2.5-2.8 s,
local SNR 5 dB) while retaining most the spectral peaks. The
performance of the different enhancement techniques in
terms of the various objective measures on the F-DB data-
base is tabulated in Table V. The IS, LAR, and LLR mea-
sures show lower distortion values on MPO-processed
speech signals compared to the output of the other enhance-
ment techniques and the PESQ measure shows that the
speech signals enhanced using the MPO enhancement
scheme have a better perceptual quality than those obtained
using the other enhancement schemes. Also, the combined
MPO-APP enhancement scheme introduces further improve-
ments in the MPO-enhanced speech signals.

Vil. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for enhancing speech
signals corrupted by additive noise. The proposed MPO en-
hancement scheme alters the components of the PO model in
such a way that the basic functionality of the PO model is
maintained but the various properties of the model can be
analyzed and modified independently of each other. The
MPO speech enhancement scheme is based on the fact that
speech signals, for the most part, are composed of narrow-
band signals (i.e., harmonics) with varying amplitudes and
that the harmonics that are higher in amplitude are perceptu-
ally more significant. Combining the MPO speech enhance-
ment technique with the APP detector further improves its
performance by reducing the number of speech deletions and
noise insertions. The speech enhancement scheme presented
here does not need to estimate the noise characteristics, nor
does it assume that the noise satisfies any particular statisti-
cal model. The performance of the proposed enhancement
scheme, evaluated using different objective measures, is
comparable to that of some of the other speech enhancement
schemes when the characteristics of the background noise are
not fluctuating. The proposed MPO-APP enhancement
scheme outperforms other speech enhancement schemes
when the speech signals are corrupted by fluctuating noise.
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The proposed enhancement scheme is implemented in
MATLAB and is about 30 times real time on a typical PC with
2.99 GHz CPU and 2.0 Gbytes of RAM. One of the main
factors contributing to the computational cost is the fre-
quency spacing of the MPO structures. In the present work,
the MPO structures are spaced every 50 Hz. Preliminary
evaluations show that increasing the spacing to 100 Hz dras-
tically reduces the computational cost while degrading the
performance only slightly. Several other modules in the
implementation of the MPO method can be optimized to
reduce the computational cost and will be addressed in the
near future. The residual noise passed by the proposed en-
hancement scheme is usually narrowband in nature and is
perceived as musical noise. Work is in progress to propose
algorithms to reduce the insertions of the musical noise. The
main limitations of the proposed MPO enhancement scheme
are its inability to retain turbulent speech sounds and its in-
ability to separate target speech signals from competing
speech signals. Evaluations of the MPO enhancement
scheme on the task of recognizing speech from a target
speaker in the presence of speech from competing speakers
show only a slight improvement in the recognition rate espe-
cially at low SNRs (Deshmukh and Espy-Wilson, 2006). The
MPO-APP processing has to be combined with other speech
separation methods to improve the overall performance in
such cases. Work is in progress to evaluate the subjective
quality of the speech signals enhanced using the proposed
MPO-APP scheme. Work is also in progress to evaluate the
effectiveness of MPO processing as a preprocessing block
for robust speech recognition systems using large databases
like the Aurora database and to compare its performance
with that of some of the other enhancement schemes.
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