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A single-interval, yes-no, tone-in-noise detection experiment was conducted to measure the
proportion of “tone present” responses to each of 25 reproducible noise-alone and tone-plus-noise
waveforms under narrowband (100 Hz), wideband (2900 Hz), monotic, and diotic stimulus
conditions. Proportions of “tone present” responses (estimates of the probabilities of hits and false
alarms) were correlated across masker bandwidths and across monotic and diotic conditions. Two
categories of models were considered; one based on stimulus energy or neural counts, and another
based on temporal structure of the stimulus envelope or neural patterns. Both categories gave
significant correlation between decision variables and data. A model based on a weighted
combination of energy in multiple critical bands performed best, predicting up to 90% of the
variance in the reproducible-noise data. However, since energy-based models are unable to
successfully explain detection under a roving-level paradigm without substantial modification, it is
argued that other variations of detection models must be considered for future study. Temporal
models are resistant to changes in threshold under roving-level conditions, but explained at most

only 67% of the variance in the reproducible-noise data.
© 2006 Acoustical Society of America. [DOI: 10.1121/1.2177583]

PACS number(s): 43.66.Dc, 43.66.Ba [AK]

I. INTRODUCTION

The simple task of detecting a pure tone in the presence
of a noise masker has been studied for more than half a
century (e.g., Fletcher, 1940; Hawkins and Stevens, 1950;
Jeffress, 1968; Patterson, 1976; Kidd et al., 1989; Richards
et al., 1992). Yet, despite extensive study, a definitive expla-
nation of the underlying mechanisms has not emerged. To a
first approximation, detection performance can be predicted
on the basis of differences in energy statistics between the
noise-alone and tone-plus-noise stimuli in a narrow band of
frequencies close to the tone frequency. This “critical-band”
model can predict the bulk of the masking data and also
forms the foundation for much psychoacoustic theory and
research. However, the critical-band model is clearly wrong
in detail. For example, single-channel energy-based models
cannot explain results using the roving-level paradigm (e.g.,

¥ Author to whom correspondence should be addressed.

2258 J. Acoust. Soc. Am. 119 (4), April 2006

0001-4966/2006/119(4)/2258/18/$22.50

Pages: 2258-2275

Kidd et al., 1989). Physiologically, it is known that cochlear
tuning is level dependent (Rhode, 1971), and that interac-
tions among frequency bands are inherent (e.g., suppression).
Although the rate of auditory-nerve discharge varies mono-
tonically with stimulus energy, the temporal pattern of dis-
charge also has the potential to code differences between the
tone-plus-noise and noise-alone stimuli. Finally, intersubject
performance differences suggest that both cognitive and pe-
ripheral differences influence detection. That is, individual
subjects may apply different detection strategies to the re-
sponse of the auditory nerve in order to generate detection
judgments.

This study is part of a series focused on psychophysical
and physiological aspects of the coding of tones in noise
(Evilsizer et al., 2002; Zheng et al., 2002). The tools of
human psychophysics, animal behavior and, in ongoing stud-
ies, physiological recordings, are being applied to gain a bet-
ter understanding of the cues that listeners use to detect tones
in noise and the neural mechanisms that make the use of
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these cues possible. The goal of this paper is to systemati-
cally measure and model tone-in-noise detection. Although
our focus here was on “monaural” processing, monotic and
diotic performance were directly compared and the findings
were considered in the context of other relevant binaural re-
sults. We use reproducible noise data to evaluate the predic-
tions of a variety of detection models, including the critical-
band model. Modeling results under wideband and
narrowband stimulus conditions were compared. These mod-
els were also compared to the data from eight subjects [four
from the current study and four from the study of Evilsizer et
al. (2002)].

A. Reproducible noise

We employed reproducible noise as a masking stimulus
because it allowed for a more detailed comparison between
subject responses and model predictions. In a classical tone-
in-noise detection experiment, the masker waveform is gen-
erated, independently and without replacement on each trial,
by a random or pseudorandom process, such that the same
waveform is never presented twice. The performance of
models and subjects is “averaged” across masker waveforms
and then compared. Averaging the data in this way discards
the information inherent in the trial-by-trial fluctuations in
the statistics of the noise and in the subjects’ responses to
those fluctuations. In contrast, a tone-in-reproducible-noise
detection experiment utilizes masker waveforms that are ran-
domly selected on each trial with replacement from a small
set (typically 10 to a few hundred) of noise waveforms. The
performance of subjects and models can then be compared
on a waveform-by-waveform basis. Note that the word
“waveform” refers to any tone-plus-noise or noise-alone
stimulus waveform. The phrase “masker waveform” refers
only to the noise-alone waveform before the addition of a
tone. Because subjects’ responses show substantial and reli-
able variation across waveforms, the data from this type of
reproducible-noise experiment provide a more demanding
test for models. Indeed, models that make the same average
(across waveforms) responses as the subjects can still fail to
predict their responses to individual waveforms (e.g., Gilkey
et al., 1985).

Although different in experimental methodology, the
reproducible-noise detection task in this study is analogous
to more traditional tone-in-noise masking experiments in
which the noise is created randomly and without replacement
on each trial (e.g., Dolan, 1968). When the number of repro-
ducible masker waveforms exceeds 10, subjects do not
“learn” individual masker waveforms (Pfafflin, 1968). Here,
25 masker waveforms were used in each listening condition.
Thus, as in studies where each masker waveform is created
randomly and used without replacement, subjects in this
study did not learn individual masker waveforms. In con-
trast, if only a single or a few masker waveforms are used
(e.g., Langhans and Kohlrausch, 1992) subjects are most
likely functioning differently because they have the ability to
learn the individual waveforms.
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B. Masker bandwidth

The critical-band model suggests that energy outside of
the auditory filter centered at the tone frequency will not
influence detection performance. However, a variety of evi-
dence indicates that a more broadband process affects
masked detection. Research on auditory physiology (e.g.,
Ruggero, 1973; Kiang and Moxon, 1974; Schalk and Sachs,
1980; and Costalupes et al., 1984) has long suggested the
presence of suppressive regions in the response of auditory-
nerve fibers outside of the normal excitatory band. Similar
effects have also been routinely observed in psychoacoustic
data (e.g., Shannon, 1976). Other psychoacoustic findings
suggest the presence of broader-bandwidth interactions
(some extending more than 2 octaves above and below the
tone frequency), both in cases when such interactions are
advantageous [e.g., in profile analysis (Green, 1988) and co-
modulation masking release (Hall et al., 1984)] and in cases
when such interactions are disadvantageous (e.g., Neff and
Callaghan, 1988). Reproducible-noise studies provide evi-
dence for across-critical-band comparison in tone-in-noise
detection (e.g., Ahumada and Lovell, 1971; Gilkey and Rob-
inson, 1986) and for differences between wideband- and
narrowband-masker conditions, at least under dichotic con-
ditions (Evilsizer et al., 2002).

C. NoS, to N,,S,,, comparison

Experimental results were directly compared under di-
otic (NyS,) and monaural (N,S,,) conditions. Most models
of binaural processing assume that detection patterns col-
lected under NS, and NS, conditions are ‘“equivalent”
(i.e., there is no masking-level difference between the NS |
and NS, configurations). However, despite the fact that
comparable average performance is observed in these two
conditions, it is possible that different strategies or different
cell populations are used under each of the two conditions,
and that detection statistics for individual waveforms may
differ between the two conditions. Although reproducible
noise has not previously been used to compare these condi-
tions directly, such a comparison can reveal similarities and
differences that may be obscured when the data are averaged
across waveforms in a typical masking experiment. We di-
rectly compared the data for each subject under these two
conditions.

D. Models of tone-in-noise detection

The major focus of this effort is to evaluate models of
tone-in-noise detection. The set of models examined were
broadly sampled from the range of ideas that have been ap-
plied to tone-in-noise detection and correspond to a diverse
set of underlying physiological mechanisms. The specific
models were selected to satisfy three criteria: they can be
readily implemented and applied to reproducible-noise data,
they have been successfully applied to tone-in-noise detec-
tion, and they have broad neurophysiological or psychoa-
coustic relevance. The critical-band model (Fletcher, 1940) is
directly evaluated. A variation of the critical-band model,
referred to as the multiple-detector model, is also evaluated.
This model uses a linear combination of the energy at the
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output of multiple critical-band filters as a decision variable
(e.g., Ahumada and Lovell, 1971; Gilkey and Meyer, 1987).
Energy-related models based on the average discharge rate of
model auditory-nerve fibers (Heinz et al., 2001b) were also
considered.

Although energy is perhaps the most obvious decision
statistic to compute from the narrowband output of an audi-
tory filter, the addition of a tone to noise also changes the
temporal properties of the filter output. Richards (1992), for
example, has examined how the shape of the narrowband
envelope differs between tone-plus-noise and noise-alone
stimuli. We extend her analysis to the current conditions and
refer to it as the envelope-slope model. Finally, we examine
the predictions of a single-cell version of the phase-
opponency model (Carney et al., 2002), which uses coinci-
dence detection of auditory-nerve discharges from fibers
tuned to different frequencies to reveal similarities in dis-
charge timing across these fibers associated with the pres-
ence of the tone. This model has been shown to describe
significant features of the tone-in-noise masking data, includ-
ing the minimal effects on subject performance of random-
izing (or roving) overall stimulus level within a trial and
across intervals for a 2-interval task (Carney et al., 2002;
Kidd, 1987; Kidd et al., 1989). These effects cannot be cap-
tured by simple energy-based models, whose decision vari-
ables are based entirely on overall stimulus energy. The
within-trial rove confounds the energy-based models, which
select the interval with more energy as containing the tone,
regardless of whether the tone was present, increasing
thresholds by about 25% of the rove range (Green, 1984).

Overall, this study takes a broad view of data and pre-
existing models’ for monotic and diotic tone-in-
reproducible-noise masking data. The ability of each model
to explain results for a reproducible-noise task as well as
each model’s ability to predict roving-level data are consid-
ered.

Il. PSYCHOPHYSICAL EXPERIMENT
A. Methods

Experimental procedures were matched to those of Evil-
sizer et al. (2002) and Gilkey et al. (1985). NS, (diotic) and
N,.S,, (monaural, left ear) interaural configurations were
tested. All listening was completed in a double-walled sound
attenuating booth (Acoustic Systems, Austin, TX). Four sub-
jects participated in this study and ranged from
19 to 25 years in age. Each subject had audiometrically nor-
mal hearing. None of the subjects had prior experience with
tone-in-noise detection experiments. Subjects occasionally
commented on the various listening tasks, but were not so-
licited to do so. Subjects were debriefed as to the use of
reproducible stimuli at the end of the final testing session.

1. Stimuli

Stimuli were generated and controlled by MATLAB soft-
ware (Mathworks, Natick, MA). All stimuli were presented
via a TDT System 3 (Tucker Davis Technologies, Gaines-
ville, FL) RP2 programmable D/A converter and TDH-39
headphones (Telephonics Corp., Farmington, NY). Repro-
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ducible masker waveforms used by Evilsizer et al. (2002)
were down-sampled from 50 kHz to 48.125 kHz with the
MATLAB “resample” function to be compatible with a TDT
System 3 sample rate. Each of the 25 wideband maskers was
created from a broadband, Gaussian white noise by zeroing
frequency components outside 100—3000 Hz. Narrowband
maskers were created from the wideband maskers by zeroing
frequency components outside 450-550 Hz. This process
ensured that the spectral content of the narrowband maskers
was identical to that of the wideband maskers within a range
of 450-550 Hz. The masker spectrum level was 40 dB SPL.
Tones and maskers were mixed in software and had 300
-ms durations including 10-ms cosine-squared on/off ramps.
Tones were always added in the sine phase.

2. Training

The final testing procedure was a single-interval task
involving large numbers of trials near threshold. In this
study, we refer to threshold as the Eg/N, value (in dB) re-
sulting in a d’=1. The modeling procedures assumed that the
subjects were performing at the same level throughout these
trials. Therefore, an extensive subject-training paradigm was
employed to establish stable performance and decision crite-
ria, and to minimize effects of learning. There were three
separate training tasks. These tasks progressed in difficulty
and similarity to the final testing procedure. The first was a
two-interval, two-alternative forced-choice, tracking task
with feedback. This was followed by a one-interval, fixed-
level task with feedback and then by a one-interval, fixed-
level task without feedback. For all tasks, subjects were
given an unlimited amount of time to respond after the final
observation interval. Random maskers were employed dur-
ing all training tasks to prevent learning the individual repro-
ducible noise waveforms.

In the first training procedure, two-down, one-up track-
ing with feedback was used to quickly estimate a tone level
where d’'=0.77 (the 70.7% correct point on the psychometric
function as described by Levitt, 1971). Subjects were asked
to use a computer mouse to click one of two large buttons
corresponding to “Interval One” or “Interval Two.” The but-
tons were presented following the second observation inter-
val on an external computer screen visible through the win-
dow of the sound-attenuating booth. Immediately following
each response, the word “correct” or “incorrect” was dis-
played on the computer screen for 700 ms. Each track had a
duration of 100 trials. Each trial contained a pair of randomly
generated maskers that were frozen across intervals. Intervals
were separated by 500 ms of silence. The step size used in
the adaptive track was 4 dB for the first two reversals and
2 dB thereafter. Threshold estimates were calculated by av-
eraging the tone levels at reversals in the track, excluding the
first 4 or 5 reversals such that the number of remaining re-
versals was even. Subjects completed 10-15 runs for each
configuration and bandwidth before moving on to single-
interval tasks.

In the second training procedure, a one-interval fixed-
level task with feedback was used to familiarize subjects
with a one-interval task and ensure thresholds were stable.
Subjects were asked to click on one of two large buttons
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corresponding to ‘“Tone” or “No Tone.” Feedback was pre-
sented by displaying either “Correct” or “Incorrect” on the
monitor for 700 ms after the response button was clicked.
Each block had 100 trials with tone levels +3, +1 or —1 dB
with respect to the tone level determined by the two-interval,
two-alternative forced-choice task. Two 100-trial blocks
were completed for each of the three tone levels for each
interaural configuration and bandwidth. If a subject’s thresh-
old changed, this sequence was repeated, after adjusting the
tone level in 1-dB steps, until a tone level was determined
that resulted in a stable d’ approximately equal to unity for
each bandwidth and stimulus configuration.

After a stable tone level for each condition was deter-
mined, subjects completed the third training procedure, a
one-interval training task without feedback using random
noise. This task was used to determine whether d’ could be
expected to remain near unity when trial-by-trial feedback
was eliminated during the testing phase. In the rare case that
the value of d' changed such that it was no longer near unity,
the level was adjusted with 1-dB resolution until d’ returned
to near unity.

3. Testing

The testing procedure was identical to the final training
procedure except that reproducible maskers were used during
testing. When present, the tone was always at the level de-
termined during training without feedback. Final analyses
were performed on complete data sets at a single tone level
for each subject, with a d’ near unity for the duration of the
testing period.

Each testing set consisted of four blocks of 100 trials.
Before each set, 20 practice trials with feedback were pre-
sented using a tone level 2 dB above the testing level. These
practice trials were included to help the subjects maintain an
effective and consistent detection strategy during the course
of the experiment, given that feedback was never presented
while using reproducible maskers. Random maskers were
used during the practice trials to prevent learning the repro-
ducible stimuli. Using the level determined during the train-
ing procedure, 12 sets were run without feedback for each
bandwidth and configuration. During testing, 25 reproducible
masker waveforms were used. Each masker waveform was
presented twice with a tone and twice without a tone in each
block. Overall, 96 presentations of each tone-plus-noise and
96 presentations of each noise-alone stimulus were made (a
total of 48 blocks) in each of the four testing conditions
(narrowband and wideband; monotic and diotic).

Bias (8, MacMillan and Creelman, 1991) was computed
across all waveforms in a particular listening condition. If 8
departed more than 15% from 1.0 (i.e., equally likely to re-
spond “tone” and “no tone”) on a given run, subjects were
instructed to “try to make an equal number of ‘Tone’ and ‘No
Tone’ responses.” All trials were included in the study re-
gardless of the resulting bias measure. No attempt was made
to account for or correct data with bias deviating from unity,
as this was not the primary focus of the study.

Hit rates, or the conditional probabilities of responding
yes given a particular tone-plus-noise waveform [P(Y|T
+N)], and false-alarm rates, or the conditional probabilities
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of responding yes given a particular noise-alone waveform
[P(Y|N)], were computed in each bandwidth and stimulus
configuration for individual tone-plus-noise and noise-alone
waveforms, respectively. A third set of probabilities of re-
sponding yes given a particular stimulus waveform
[P(Y|W)] was also created for each listening condition. That
is, P(Y|W) includes the 25 P(Y|Y+N) and the 25 P(Y|N)
values. The set of 50 P(Y|W) values is referred to as a de-
tection pattern (see Fig. 1). Each value of P(Y|W) represents
the probability of responding “yes” or “tone present” to an
individual waveform (either tone-plus-noise or noise-alone)
and can be thought of as the likelihood of the tone being
perceived in that particular waveform.

Comparisons between detection patterns were quantified
in terms of the square of the correlation coefficient, or the
coefficient of determination (r?). Statistically significant (p
<0.05) r* values occurred above the critical value of r2
=0.08 for comparisons involving the set of 50 P(Y|W) val-
ues, or above the critical value of r*=0.17 for comparisons
involving either the set of 25 P(Y|T+N) or the set of 25
P(Y|N) values. These critical values were established using a
two-tailed t-test (Bruning and Kintz, 1968). The coefficient
of determination allows for comparisons between experi-
mental results and the regression analysis presented in the
modeling section of this paper.

B. Results and discussion

Subject performance was characterized on two levels.
Overall performance for the ensemble of waveforms was
characterized by averaging across noise-alone waveforms
and across tone-plus-noise waveforms, as well as across re-
peated presentations of the waveforms. These ensemble-level
results provide traditional measures of performance (e.g., d’
and ) that represent the subjects ability to perform the tasks,
show consistent responding among subjects, and allow direct
comparison to other studies. In addition to these traditional
ensemble-level results, detection patterns were computed for
each subject under each condition by averaging across re-
peated presentations of the individual waveforms, but not
across waveforms. Note that an “average subject” was cre-
ated by averaging the P(Y|W) values across the four subjects
in this study. Detection patterns of the individual and average
subjects were then used for the following empirical compari-
sons: P(Y|T+N) and P(Y|N) values were compared between
NS, and NS, stimuli to test the hypothesis that detection
patterns were the same between stimulus configurations, for
both narrowband and wideband stimuli. P(Y|T+N) and
P(Y|N) values were compared between narrowband and
wideband stimuli to test the hypothesis that stimulus infor-
mation outside a critical-band influences detection patterns in
both NS, and NS, conditions. Finally, detection patterns
were compared across subjects to reveal the possible uses of
different/similar strategies within each stimulus configura-
tion and bandwidth.

1. Reliability of the data

The ensemble-level results are shown in the left side of
Table 1. Data are presented for each subject and the average
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FIG. 1. Detection performance across reproducible maskers for the monaural and diotic stimulus conditions for narrowband maskers (top) and wideband
maskers (bottom). Note that the horizontal axis is not a continuous variable; lines connect symbols corresponding to individual subjects to facilitate

intersubject comparisons.

subject within each stimulus configuration and bandwidth
(NB: narrowband, 450-550 Hz; WB: wideband
100-3000 Hz). Stimulus Eg/N, levels were within 3 dB for
all subjects in all conditions tested. All d’ values were within
20% of unity, thus subjects were tested at threshold. Bias
results indicated that S4 had a tendency to report “tone ab-
sent” more often than “tone present” in all but the wideband
NS, stimulus configuration. $2 showed similar bias for the
two wideband conditions. Other subjects showed little or no
bias. Overall, subjects’ performance levels were similar and
near unity d’ and bias.

The r* values between detection patterns constructed
from the first and last 48 presentations of each stimulus and
across the 25 individual tone-plus-noise and noise-alone
waveforms in each bandwidth and stimulus condition were
computed using P(Y|T+N), P(Y|N), and P(Y|W) values
(Table I). These first-half, last-half 2 values indicate within-
subject response consistency and serve as a reference for
intersubject comparisons, as well as a reference for between-
bandwidth and between-stimulus configuration comparisons.
Subjects tended to respond more consistently on trials with

2262 J. Acoust. Soc. Am., Vol. 119, No. 4, April 2006

the tone present than on trials with the tone absent. However,
all coefficients were significant, and 52 of the 60 values were
above 0.80, indicating that subjects were stable throughout
the experiment.

2. Differences across waveforms

Results for each subject are presented in Table I and in
Fig. 1 for each stimulus configuration. Figure 1 shows both
monotic (left panels) and diotic (right panels) detection pat-
terns. The hit-rates [P(Y|T+N), upper panels] are based on
trials containing the tone, and the false-alarm rates [P(Y|N),
lower panels] are based on trials without the tone.

Consistent with the results of other reproducible-masker
studies, subjects’ hit rates and false-alarm rates depended on
the individual masker waveform (Evilsizer et al., 2002; Isa-
belle and Colburn, 1991; Siegel and Colburn, 1989). The
results of a y? analysis with 24 degrees of freedom, using the
procedure developed by Siegel and Colburn (1989), are
shown in Table I. The y* statistic was used to test the hy-
potheses that variation in P(Y|T+N) and P(Y|N) across
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TABLE 1. Psychophysical results across waveforms. Eg/N, is the ratio of tone energy to noise spectrum level (in dB). Eg/N,, d', and B are shown for each
combination of subject, interaural configuration, and noise bandwidth. NB and WB correspond to masker bandwidth: 100 Hz and 2900 Hz, respectively. The
X’-values are given for performance across reproducible waveforms for both P(Y|T+N) and P(Y|N). The number of presentations of each masker for both
P(Y|T+N) and P(Y|N) is given by n. The coefficient of determination, r2, for the first half of trials vs the last half of trials is presented for both P(Y|T
+N) and P(Y|N), individually, as well as across the entire ensemble of waveforms [P(Y|W)]. All ¥* and 7 values are significant to p <0.001.

P(Y|T+N) P(Y|N) P(Y|W)
Interaural
configuration BW S Eg/N, d B X n ? X n r r”

NoSn NB S1 11.8 0.80 0.90 5109 96 0.94 184.6 96 0.49 0.86
S2 10.8 0.92 0.99 597.2 96 0.77 475.7 96 0.72 0.84

S3 10.8 1.06 0.99 866.0 96 0.94 718.9 96 0.81 0.90

S4 10.8 0.92 1.45 1003.4 96 0.92 602.2 96 0.86 0.91

Save(a) 11.1 0.93 1.08 2379.6 384 0.96 1391.3 384 0.91 0.96

WB  S1 11.8 0.80 0.91 699.5 96 0.92 278.5 96 0.72 0.88

S2 10.8 0.96 1.40 926.3 96 0.94 599.3 96 0.83 0.92

S3 10.8 0.90 1.00 1017.1 96 0.96 952.5 96 0.90 0.95

S4 9.8 0.86 1.06 856.1 96 0.84 543.0 96 0.81 0.88

Save() 10.8 0.88 1.09 3240.9 384 0.98 2057.7 384 0.96 0.98

NoSq NB S1 12.8 1.08 0.94 400.5 96 0.79 2333 96 0.64 0.87
S2 10.8 1.09 0.94 593.5 96 0.79 498.6 96 0.72 0.86

S3 10.8 1.12 0.96 608.4 96 0.86 666.4 96 0.84 0.92

S4 10.8 1.01 1.58 984.7 96 0.94 610.0 96 0.92 0.95

Save(d) 11.3 1.07 1.11 1907.3 384 0.94 1427.3 384 0.87 0.95

WB  S1 11.8 1.03 0.94 728.9 96 0.88 300.0 96 0.81 0.92

S2 10.8 1.08 1.25 1138.0 96 0.92 647.8 96 0.88 0.94

S3 9.8 0.91 1.03 1066.6 96 0.94 671.9 96 0.88 0.94

S4 10.8 1.17 1.37 1079.8 96 0.92 686.6 96 0.86 0.93

Save(a) 10.8 1.04 1.15 3776.1 384 0.97 1903.0 384 0.98 0.98

maskers was not due to chance (i.e., that the detection pat-
terns were waveform dependent). All y° statistics greatly ex-
ceeded the p<0.001 significance level (x2;,=51.18), and
thus the null hypotheses of only random variations in detec-
tion patterns were rejected. Note that a larger x> statistic
indicates a more reliable detection pattern.

3. Comparisons between stimulus configurations

This experiment tested the hypothesis that psychophysi-
cal detection patterns are the same for the NS, and NS,
stimulus configurations. Detection patterns were significantly
(p<0.001) correlated between the N,S,, and NS, stimulus
configurations for both narrowband and wideband maskers
(see Table II). In Fig. 1, the similarity between NS, and
NS, detection patterns for individual subjects is also visible.

In this study, tone levels producing unity d' for indi-
vidual subjects were within about 1 dB for the NS, and
NS, conditions. These results were consistent with the fail-
ure to find N,S,,—NySy MLDs in several other experiments
(Sever and Small, 1979; Egan er al., 1969; Egan, 1965; Hirsh
and Burgeat, 1958; Blodgett et al., 1958) that used free-
running noise and similar masker levels as in this experi-
ment. However, at lower masker levels, some have observed
an N, S, —NyS, MLD.” In a study that used a single frozen
noise masker, Langhans and Kohlrausch (1992) compared
monaural and diotic thresholds and found an NS, —NyS,
MLD. It is not surprising that the results in these two studies
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are different, since subjects could use the learned properties
of the single noise waveform in their study. As previously
explained, our study was designed to provide results that are
comparable to performance in traditional experiments with
random noise.

TABLE II. Correlations between detection patterns for NS, and NS,
stimulus configurations. Narrowband and wideband 72 values are presented
for each subject. These > values were calculated from responses across the
25 tone-plus-noise waveforms [ri(ymm], 25 noise-alone waveforms
[ri(y‘m], as well as across the ensemble of all 25 tone-plus-noise and 25
noise-alone waveforms [ri(y‘w)].a

Bandwidth Subject Fhren) o o m
NB S1 0.94 0.70 0.90
S2 0.86 0.88 0.92

S3 0.81 0.86 0.90

S4 0.96 0.86 0.95

Save) 0.89 0.90 0.91

WB S1 0.79 0.64 0.83
S2 0.92 0.92 0.95

S3 0.90 0.82 0.89

S4 0.88 0.90 0.92

Savets) 0.95 0.91 0.95

“All values p<0.001.
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TABLE III. Correlations between detection patterns for narrow (100 Hz)
and wide (2900 Hz) stimulus bandwidths. Individual-subject > values are
presented within either the NS, or NS, stimulus configuration and were
calculated from responses across the 25 tone-plus-noise waveforms
[rfj(ymN)], 25 noise-alone waveforms [rf,(y‘N)], as well as across the en-
semble all 25 tone-plus-noise and 25 noise-alone waveforms [r;(y\w)]-

Stimulus
configuration Subject rf,( YITeN) r?’(YIT) r?,( Yiw)
NS S1 0.21° 0.03 0.37°
S2 0.41° 0.31° 0.54°
S3 0.29° 0.38" 0.49°
S4 0.07 0.11 0.23°
Savel) 0.28" 0.29° 0.48°
NoSo S1 0.36° 0.09 0.56°
S2 0.41° 0.41° 0.59°
S3 0.50° 0.46° 0.61°
S4 0.06 0.07 0.24°
Savet@) 044° 0.42° 0.64°
2 <0.05.
°p<0.01.

4. Comparisons between bandwidths

Between-bandwidth comparisons were performed to de-
termine whether stimulus information outside the critical-
band centered at the tone frequency influenced detection pat-
terns. Recall that narrowband maskers were created by
removing all components outside the band centered at
500 Hz; thus, narrowband and wideband stimuli should be
identical within the 500-Hz critical band. Between-
bandwidth r? values are presented in Table III and the under-
lying correlations are also visible in the detection patterns in
Fig. 1. Although between-bandwidth > values were signifi-
cant for most subjects in both stimulus configurations (recall
that for n=25, r2>0.17 is significant, p <0.05), values were
significantly lower than those observed between the first 48
and last 48 presentations of each masker (first-half, last-half
r?, Table I). A test for significant difference between two
nonindependent correlations (Bruning and Kintz, 1968) was
performed between the first-half, last-half correlations and
cross-bandwidth correlations to determine if the two sets of
correlations differed significantly. Results showed significant
differences (p<<0.01) for 37 of the 64 tests (4 subjects
X 2 bandwidths X 2 stimulus configurations X 2 tone cases,
with and without tone X 2 halves). Of the 27 that failed at the
p<0.01 level, 15 involved statistically insignificant (p
<0.05) cross-bandwidth correlations of 0.34 or less. Given

that the between-bandwidth variation in detection patterns
was statistically larger than the within-bandwidth variation in
detection patterns (between the first half and the last half of
trials recorded), these results indicate that detection perfor-
mance was influenced by stimulus information outside one
critical-band for both monotic and diotic conditions. It is
notable that the noise added outside the critical band did not
affect threshold (i.e., E/N, where d’ was near unity), but it
did affect detection patterns.

Narrowband maskers had the same magnitude and phase
as wideband maskers for components in the 100-Hz region
centered on the stimulus frequency. Consequently, stimulus
information in the wideband masker falling inside one
critical-band was approximately (ignoring frequency compo-
nents present in the auditory filter skirts) the same as that of
the narrowband masker, while information falling in adjacent
critical-bands was unique to the wideband masker.

The effect of the noise added outside the critical band
presents a challenge for models based on energy in a single
critical band. These models cannot correctly predict changes
in detection patterns unless energy differences in the filter
skirts are responsible for the differences between the two
conditions. Another hypothesis is that listeners use different
detection strategies for different noise bandwidths, causing
reduced correlations (Evilsizer et al., 2002). In this case, a
model based on a single critical band may still be used, but
such models would require different decision variables for
the different bandwidths.

5. Comparisons among subjects

Comparisons were performed between detection pat-
terns, P(Y|W), for each subject-subject pair to reveal inter-
subject consistency and the possible uses of different/similar
strategies within each stimulus configuration and bandwidth.
The means and ranges of intersubject r*-values are provided
in each experimental condition in Table IV.

All possible intersubject correlations were computed and
were found to be significant (p<<0.05) for all monaural
stimuli. Within the monaural stimulus condition, higher in-
tersubject correlations were observed for wideband stimuli
relative to narrowband stimuli. S4 was the least correlated to
other subjects in the monaural stimulus condition (see Fig. 1)
and also had the lowest correlation across stimulus band-
widths.

Intersubject correlations were lower for narrowband
conditions relative to wideband conditions in both the NS,

TABLE IV. Mean, minimum, and maximum intersubject 2 values [P(Y | W), calculated from responses across
the ensemble of all 25 tone-plus-noise and 25 noise-alone waveforms] for the subjects in the current study and

the subjects from Evilsizer et al. (2002).

Interaural
configuration Bandwidth mean[r[zp(y‘ wi] min[rfp(y‘ wl max[rfp(y‘ wil
NS, NB 0.67 0.48 0.84
WB 0.85 0.81 0.89
NoSo NB 0.62 0.31 0.81
WB 0.72 0.51 0.91
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TABLE V. Proportions of predictable variance estimated by four different methods (see text for details) for
Ni»Sim and NS, stimulus configurations and NB (100 Hz) and WB (2900 Hz) conditions.

Statistical method

Interaural
conﬁguration BW V]) 012>/ a-sz Uﬁxlla"zf‘ol U%Vavsf«»rm/o-'zl‘ot
NS NB 0.990 0.994 0.996 0.939
WB 0.995 0.995 0.998 0.975
NoSy NB 0.988 0.997 0.997 0.941
WB 0.996 0.998 0.998 0.977

and NgS, listening configurations in this study and also in
both the NS, and NS listening configurations in Evilsizer
et al. (2002). Subjects in the current study reported more
difficulty with the narrowband task, which may have led to
increased variability in detection strategies and reduced in-
tersubject correlations for narrowband conditions. Diotic in-
tersubject correlations were computed for the four subjects in
this work (S1-S4), as well as the four subjects in the Evil-
sizer et al. (2002) study (S5-S8). No noticeable decrease in
intersubject correlation occurred when comparing across
studies (i.e., when comparing between S1-S4 and S5-S8),
although S4 and S7 did show the lowest intersubject corre-
lations [0.67 and 0.52 for 100-Hz N,S, P(Y|T+N) and
P(Y|N), respectively]. As in the monotic case, diotic trials
using wideband maskers had higher intersubject correlations
than those using narrowband maskers. However, low inter-
subject correlations were rare, and all but 6 of the 112 diotic
intersubject correlations were significant at the p<<0.05
level. Overall, these results indicate that detection patterns
were consistent across subjects, except for S4 and S7.

6. Internal noise

In previous studies of detection using reproducible
noise, investigators have taken advantage of the fact that the
amount of variability in the responses across a set of wave-
forms is available (i.e., the detection pattern) to estimate the
relative amount of internal variability. The ratio of internal to
external noise would be large if the external noise sample
had a small effect on performance and small if performance
was highly variable across noise waveforms. This measure is
also useful for comparison to other psychophysical results.
To estimate the internal-to-external noise ratio, the internal
variance (o7,) is assumed to be equal to 1 for all masker
waveforms, and the external variance (o2,,) is estimated from
the sample variance of the z scores across the set of wave-
forms; the ratio (o7, /aZ,,) is then the reciprocal of the square
root of the external variance (Siegel and Colburn, 1989).
Internal-to-external noise ratios (in standard deviations)
ranged from approximately 1.0 to 4.0 across the four subjects
in our study3 (similar to values reported in Spiegel and
Green, 1981; Siegel and Colburn, 1989; and Isabelle and
Colburn, 1991). Monotic and diotic results were similar for
each subject, indicating that the amount of internal noise did
not substantially change between the monotic and diotic
tasks.

J. Acoust. Soc. Am., Vol. 119, No. 4, April 2006

7. Predictable variance

In Sec. III, various models are used to predict the
changes in P(Y|W) observed across the combined set of 25
noise-alone and 25 tone-plus-noise waveforms. As discussed
in the previous sections, the data are quite reliable, suggest-
ing that the models have the potential to predict a substantial
portion of the variability in P(Y|W). Table V presents four
estimates of the portion of predictable variance for the aver-
age subject under each of the four stimulus conditions.

The first column shows estimates of the proportion of
predictable variance based on the first-half, last-half correla-
tions for the results described in Table I. These estimates
were obtained using the equation presented by Ahumada and
Lovell (1971),

T2
Vy=——""7—7, 1
P r12+0.5(1 —r12) ( )

where V), is the proportion of predictable variance, and ry; is
the first-half, last-half correlation. [Note because the first-
half, last-half correlations from the Evilsizer et al. (2002)
experiment were not readily available; these estimates are
based on only the four subjects in this experiment, even
under the NS, condition. ]

The second column of Table V presents estimates of the
proportion of predictable variance calculated from the as-
sumption that the only source of error is that associated with
estimating a proportion based on Bernoulli trials, such that

P(Y|W)[1 - P(Y|W)]

E
0-[29 Nirials
2 =1- 2 s (2)
OTot OTot

where 0'[2, is the predictable variance, 02TOt is the total vari-
ance in the P(Y|W) values for the average subject, P(Y|W)
is the probability of a “tone present” response for each
tone-plus-noise and each noise-alone waveform, ng,, 1S
the number of trials used to estimate each P(Y|W), and the
expected value is across the combined set of 50 wave-
forms (25 tone-plus-noise and 25 noise-alone waveforms).

The third column presents estimates of the proportion of
predictable variance based on the internal-to-external noise
ratio (07, /07,) discussed in Sec. Il B 6. Assuming that the
internal variance estimate is reduced by the number of trials,
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where the internal-to-external noise ratio (o7,/0% ) is the

reciprocal of the variance in the z scores of P(Y| W) across
the waveforms (i.e., predictable variance), o7, is the esti-
mated total variance across the z scores of P(Y|W) for
each waveform for the average subject, and n,, is the
number of trials used to estimate each z score of P(Y| w).

The fourth column presents estimates of the proportion
of predictable variance based on partitioning the variance
from separate Waveform X Subject Analyses of Variance
computed for each condition. A randomized-blocks design
was used, such that each cell had a single value, P(Y| W) for
that waveform and that subject. Adapting equations from
Kirk (1995, pp. 258 and 267) for the Random-Effects Model,
we have

MS = Myypioey - Oog = O+ O
Waveform — "*subject Tot — Yerror (WaveformX Subject)

+ Ngubject * U%V

aveform

and

MSResidual = a-c%,rror + U(ZWaveformXSubject)'
Therefore,

a%Vaveform _ MSWaveform — MSResidual (4)

- ’
U%"ot MSWaveform

where 0y,.erom 1 the variance associated with the effect

of waveform (i.e., predictable variance), MSyyeform 18 the
mean square for the effect of Waveform, MSg.gqua 1S the
mean square for the residual error based on the Subject by
Waveform interaction, ngpjee 18 the number of subjects,
and 0%, is the estimated total variance in the P(Y|W)
values for the average subject.

A similar analysis can be applied to estimate the propor-
tion of predictable variance in the responses of individual
subjects as opposed to the proportion of predictable variance
in the average subject, as presented here. The results of such
an analysis are reported in the Appendix.

All four estimates suggest that over 93% of the variance
is potentially predictable in all four conditions, with the es-
timates of the proportion of predictable variance ranging
from 0.939 to 0.998 across methods and conditions.

lll. MODELS FOR MASKED DETECTION
A. General approach

Two general categories of models were considered in
this study. The general structure of each model is illustrated
in Fig. 2: six were based on energy or average firing rates:
[CB: critical band; MD: multiple detector; and four AN-
count-based models (L: low spontaneous-rate; H: high spon-
taneous rate; Lgg: steady-state, low spontaneous-rate; and
Hgg: steady-state, high spontaneouse-rate)], and two were
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FIG. 2. Summary of model structures. The model inputs were pressure
waveforms as a function of time. Each model’s output was a decision vari-
able corresponding to a given input waveform. Models, listed top to bottom
are: CB, critical band; MD, multiple detector; low (L) and high (H)
spontaneous-rate and steady-state versions of low (Lgg) and high (Hgs)
spontaneous-rate auditory-nerve fibers; envelope slope (ES); and phase op-
ponency (PO). H(r) denotes the absolute value of the complex analytic
function.

based on temporal variation: [an envelope-based model (ES:
envelope slope), and the phase-opponency model (PO)]. The
first category combines energy-based models with models
based on neural counts of AN fibers, which are a first ap-
proximation of a physiologically-based energy estimate. The
temporal models considered here were based on either the
envelopes of narrowband-filtered stimuli (ES) or on fine-
structure, as assessed using a physiological coincidence-
detection-based model for detection (PO). The specific func-
tion and structure of each model will be described in detail in
the following sections. All model simulations used a 50
-kHz sampling rate.

These models used either stimulus-based or
physiologically-based decision variables that were computed
from specific noise-alone and tone-plus-noise waveforms.
Model outputs were compared to the individual data of each
subject and also to the average subject [Savg; including sub-
jects from the Evilsizer er al. (2002) study for the NS, con-
dition]. Although the models tested here were monaural,
modeling results were compared to both monotic and diotic
psychophysical data because subjects’ detection patterns
were highly correlated across the NS, and NS, stimulus
configurations. Model predictions were quantified using the
following logistical regression procedure (Gilkey and Robin-
son, 1986). Model decision variables were fit to hit and false-
alarm rates for individual subjects as well as to those for the
average subject. An ogive function with two parameters was
used for each case,

1
1 + -(ogo0-mVl°

P'(Y|W) = (5)
where P'(Y|W) is the probability of a model “yes” response,
x is the model decision variable, w is the threshold param-

eter, and 6 is the slope parameter (Gilkey and Robinson,
1986; MacMillan and Creelman, 1991). A Nelder-Mead sim-
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FIG. 3. Model predictions. Logistical regression was used to quantify the ability of the models in Fig. 2 to predict the average subject’s P(Y|W) values. Each
panel shows the resulting ogive, and a scatter plot of model decision variables vs the average subject’s P(Y|W) values, subdivided into P(Y|T+N) (squares,
the probability of responding yes to a tone-plus-noise waveform) and P(Y|N) (circles, the probability of responding yes to a noise-alone waveform). R? values
and model d’s are also shown. A perfect model would be indicated by all points in the scatter plot falling along the ogive and R?=1. Model abbreviations are
as in Fig. 2. Note that only the low-spontaneous-rate AN models are shown because of the relatively poor performance of high-spontaneous-rate AN models
(see text).
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plex direct search (MATLAB fminsearch) was used to mini-
mize the sum of squared deviations between the set of sub-
ject P(Y|W) values and the set of model P'(Y|W) values.
The search produced threshold and slope parameters corre-
sponding to the best model fit for each individual subject and
for the average subject. Model fits to the average subject are
shown in Fig. 3. Note that although the plots in Fig. 3 ex-
plicitly show tone-plus-noise and noise-alone data, models
were fit to the combined tone-plus-noise and noise alone
data, that is, all 50 P(Y|X) values. The resulting threshold
and slope parameters were used in Eq. (5) to transform the
model decision variable corresponding to each tone-plus-
noise waveform into a model P(Y|7+N), and the model de-
cision variable corresponding to each noise-alone waveform
into a model P(Y|N), yielding a set of model hit and false-
alarm rates. The following R? statistic was used to quantify
the ability of each model to predict the data. The proportion
of variance accounted for by the fit is defined as

>0 [P (YIW) - P(Y|W) P

R’= — 6
>0 [P(YIW) - POTW) P ©

where P(Y|W) is the subject’s probability of a “yes” re-
sponse and P’(Y|W) is the model’s probability of a “yes”
response. The numerator of Eq. (6) is the sum of squared
errors between individual model and subject probabilities
across waveforms, where i indicates the waveform index.
The denominator is the sum of squared deviations between
subject probabilities corresponding to individual waveforms
and the mean subject probability across waveforms. The
symbol R? is used to indicate the nonlinear fit between the
model decision variable and the subject P(Y | W) values, but
is otherwise analogous to the r? values between sets of
P(Y|W) values reported in Sec. II. The use of model param-
eters in addition to the slope and threshold based on Eq. (5)
is specifically reported in each model description below.

Each model was run at an E¢/N, of 10.8 dB, the median
signal-to-noise ratio of all listeners combined across all con-
ditions. Model d’ values were computed as a relative sensi-
tivity measure from the raw decision variables (i.e., before
any fitting was performed). Thus, a single d’ was computed
for each model in each bandwidth as the difference in the
means of the model decision variable between tone-plus-
noise and noise-alone waveforms, divided by the square root
of the average variance of model decision variables for tone-
plus-noise and noise-alone waveforms. Individual model d’
values were expected to be identical under the NS, and
NS listening conditions because the models were monaural
and d' values were computed from decision variables based
on the same stimulus waveforms (before any fitting proce-
dures were completed).

None of the models in this study included internal noise.
Accordingly, if we assume the subjects’ internal-to-external
noise ratios are equal to 1 (internal-to-external noise ratios
for the average subject ranged from 1.0 to 1.3), and that the
model sensitivity equals the average listeners’ sensitivity,
then we expect model d ’rvalues to be larger than those of the
subjects by a factor of 2 (i.e., since the model contained no
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FIG. 4. Summary of model-subject R? values for combined tone-plus-noise
and noise-alone trials for the eight models tested in this work. Individual
subject data are shown by different symbols. The average-subject data are
shown by the solid line with closed squares. Note that the horizontal axis is
not a continuous variable; lines connect symbols corresponding to the aver-
age subject to facilitate comparisons between models. Model abbreviations
are as in Fig. 2. Recall that CB, MD, and AN models use energy-based
decision variables. ES and PO use temporally-based decision variables. R?
values exceeding the p <<0.05 significance levels are above the thick-dashed
line.

internal noise, and the models and subjects experienced the
same external noise, the overall model noise was half that of
the listener, and thus the model d’ was larger by a factor of
V2).

Modeling results are presented in Figs. 3 and 4. Each
panel in Fig. 3 shows the ogive fit of an individual model to
the average subject. Each panel also shows a scatter plot of
the average subject’s P(Y|T+N) (squares) and P(Y|N)
(circles) values versus the model decision variable for each
waveform. Model abbreviations are as in Fig. 2. Values for
R? and d' are reported in the panels of Fig. 3 for each model
in all four listening conditions. Note that the high-
spontaneous-rate auditory-nerve models were omitted from
Fig. 3 because of their relatively poor performance. In Fig. 4,
model types are listed on the abscissa and the ordinate shows
the proportion of variance in subject detection patterns pre-
dicted by each model (R?). Scatter plots for individual-
subject model predictions are available at http://web.syr.edu/
“lacarney/auditory.htm. In the following sections, each
model is explicitly described and evaluated. A final section
addresses effects of roving the stimulus level.

B. Critical-band model
1. Methods

Several energy-based models were implemented and
compared to monotic and diotic psychophysical data col-
lected from this study and from Evilsizer et al. (2002). The

first energy-based model, the simple critical-band (CB)
model, was composed of a 4th-order linear gammatone filter
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centered at the tone frequency (500 Hz). The basic structure
of the CB model is shown in the CB panel of Fig. 2. The
equivalent-rectangular bandwidth was fixed at 75 Hz to cor-
respond to the auditory-filter estimates of Glasberg and
Moore (1990). The rms energy of the filter output was used
as the decision variable, similar to the “Energy Mnemonic”
described in Gilkey and Robinson (1986). This model had no
free parameters in addition to the slope and threshold of the
ogive fit [ Eq. (5)].

2. Results and Discussion

This model predicts 64%—82% of the variance in the
average subject’s detection patterns as shown in Figs. 3 and 4
(CB). Model sensitivity was slightly higher for narrowband
stimuli (d'=1.45) than for wideband stimuli (d’=1.39),
however both of the resulting d’ values were consistent with
what wouldr be expected for a model with no internal noise
(i.e., d' =2, as described above). The finding that stimulus
energy was related to subject responses is consistent with
previous studies (e.g., Pfafflin and Mathews, 1966; Ahumada
et al., 1975; Gilkey and Robinson, 1986). Critical-band
model predictions were significant for all subjects in all con-
ditions; however, a substantial portion of the variance in the
average subject’s detection pattern was unaccounted for un-
der wideband conditions. The lower R* values under wide-
band conditions (with respect to narrowband conditions) can
be understood by considering that the model, in contrast to
the experimental data (see Table III), predicts a high corre-
lation between narrow and wideband results (r2=0.98).

C. Multiple-detector model

As noted previously, the results of Ahumada and Lovell
(1971), Gilkey and Robinson (1986), Isabelle and Colburn
(1991), and Evilsizer er al. (2002) suggest that information
outside the critical-band influences detection patterns for
wideband, tone-in-noise detection tasks. In the current sec-
tion, a more sophisticated energy-based model is explored.
Referred to here as the multiple-detector model (MD), this
model is capable of incorporating energy outside the critical-
band centered at the tone frequency.

1. Methods

The basic model structure is shown in Fig. 2. A linear
combination of the RMS output of seven 4th-order, 75-Hz
equivalent-rectangular bandwidth (ERB) linear gammatone
filters, spaced at 75-Hz intervals from 275 to 725 Hz, was
used as the decision variable (adapted from Gilkey and Rob-
inson, 1986). The coefficients for the linear combination
were determined using a two-stage fit. The Matlab fmin-
search function was used to iteratively adjust six of the seven
weights in the linear combination (the weight for the 500
-Hz channel was fixed at 1.0); within each iteration the fmin-
search function was called again to find the best fitting ogive
between the model decision variable (i.e., the linear combi-
nation with the “current” weights) and the subject’s P(Y|W)
values.
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2. Results and discussion

The best-fitting weights had a characteristic shape for
wideband stimuli; the strongest weight, which was positive,
was observed for the band centered at the tone frequency,
and smaller magnitude negative weights were observed for
frequency bands above and below the tone frequency.

Because our study also included narrowband (100-Hz)
stimuli, it was of interest to consider the importance of filters
located more than a critical band away from the tone fre-
quency and centered outside the region of greatest stimulus
energy. It was found that dramatically different weights
could be obtained for filters more than one critical band
above and below the tone frequency with little impact on the
variance explained by the model for narrowband stimuli. In
order to investigate this phenomenon, the results from a
seven-filter MD model were compared to those from a three-
filter MD model, each fit to the average subject using nar-
rowband stimuli. The three-filter MD model used only three
4th-order, 75-Hz equivalent-rectangular bandwidth (ERB)
linear gammatone filters centered at 425, 500, and 575 Hz,
and was otherwise identical to the 7-filter model. Partial cor-
relation coefficients were computed to measure the variabil-
ity explained by the 7-filter model, while already accounting
for the variability explained by a model using only the 3
filters closest to the tone frequency. These coefficients were
found to be insignificant (p >0.1) for both N,S,, and NS,
stimulus conditions, indicating that, as expected, energy at
filters more than a critical band from the tone frequency did
not significantly improve MD predictions for narrowband
stimuli. Weights for wideband stimuli were found to be con-
sistent across listeners for all seven filters. The MD model
was therefore restricted to the three filters closest to the tone
frequency for narrowband stimuli, while all seven filters
were included for the wideband stimuli. This model used a
total of two free parameters for narrowband stimuli, and six
free parameters for wideband stimuli (the central filter
weight was always fixed at 1.0), in addition to the slope and
threshold of the ogive fit. Figure 5 shows weight patterns
across the outputs of the filters in the multiple-detector
model for the average subject for all four stimulus condi-
tions.

None of the other models explored in this study included
additional model parameters (beyond the slope and threshold
of the ogive function) that were fif to subject data. In order to
more closely compare the multiple-detector model to other
models in this work, weight patterns derived for the average
subject in the NS, conditions were used for all MD model
predictions. Using the average subject’s weights for all sub-
jects served to eliminate the process of fitting additional
model parameters to individual subject data, while still fitting
the model to the subject data in an average sense. Filter
weights were very consistent across listeners.

Results for the MD model using the average subject’s
weights are shown in Figs. 3 and 4. This model accounted
for more variance in the average subjects’ detection patterns
than any of the other models discussed here. The MD model
was able to predict 78%—-90% of the variance in the average
subject’s detection patterns. Figures 3 and 4 show, interest-
ingly, that this model made better predictions for narrowband
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FIG. 5. Spectral weights from the multiple-detector model. The average
subject is shown by the thick line. Subject data were taken from this work
and that of Evilsizer ef al. (2002). The thick, dashed line denotes the weight-
ing pattern resulting from a multiple-detector model fit to phase-opponency
model hit and false-alarm rates for the narrowband and wideband NS,
stimulus configurations.

stimuli than wideband stimuli. Also note that NS, predic-
tions were better than N, S, predictions, which was ex-
pected, because weight patterns were derived in the NS,
condition and the data were averaged across more subjects in
the NyS, condition than in the NS, condition. This model
was slightly less sensitive under the wideband condition
(d'=1.37) than the narrowband condition (d'=1.41).

Incorporating energy present in channels outside a single
critical bandwidth improved model-subject correlations with
respect to the critical-band model, which used the energy at
the output of a single 75-Hz bandwidth filter centered at
500 Hz. This improvement occurred for both wideband and
narrowband stimuli. Although little stimulus energy existed
outside the critical-band for narrowband stimuli, the reduced
weights in the filters adjacent to the filter centered at 500 Hz
must have been responsible for improving model predictions
with respect to the critical-band model, and thus this infor-
mation should not be ignored. Implications of the weight
pattern are discussed below.

Unlike other models discussed in this study, which had
only two free parameters (the slope and intercept of the psy-
chometric function), the MD model incorporated either four
or eight free parameters (the three narrowband or seven
wideband filter weights with central weights fixed at one,
and the slope and mean of the psychometric function).
Therefore, it is possible that the increases in R? for the MD
model with respect to the CB model could have resulted
simply from the additional free parameters. To examine this
issue, a MD model was fit to the data an additional 100
times, using randomly-created independent sets of 25 noise-
alone and 25 tone-plus-noise waveforms within each of the
100 fits. Three filters were used for narrowband stimuli and
seven filters were used for wideband stimuli. Central to the
test was the fact that the energy at the output of the filter
centered at the tone frequency was always computed from
the original sets of noise waveforms, while energies at the
adjacent filters were computed from the independent sets of
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random noise waveforms. The independent sets of random-
noise waveforms were not related to those used in the ex-
periment; therefore, any improvement in the fits of the MD
model over that of the CB model for the random sets of
waveforms must be explained by the fact that the MD model
incorporated more free parameters. Using this analysis,
R?-values from the MD model were compared to the R> val-
ues from the 100 fits under narrowband and wideband, NS,
and NS, listening conditions.

It was found that for 397 out of 400 random-noise fits
(for the average subject across all conditions) the R? values
were below the R? value obtained when the MD model was
fit using the original set of waveforms. This result suggests
that the increases in R? for the MD model relative to the CB
model was significant, and that the subjects had indeed used
energy in the frequency regions outside the critical band as a
basis for their decisions about the presence of the signal.

One might attempt to interpret the shape of the MD
model’s weighting function (Fig. 5) in terms of physiological
mechanisms. For example, the combination of central posi-
tive and surrounding negative weights is compatible with a
neural lateral-inhibitionlike mechanism that may be present
in cells with characteristic frequencies (CFs) tuned to fre-
quencies surrounding the 500-Hz stimulus. Consistent with
this interpretation, Kopp-Scheinpflug ez al. (2002) report the
presence of broadly tuned inhibitory inputs to spherical
bushy cells (SBCs) in the AVCN. They propose that these
inputs could be responsible for increased frequency selectiv-
ity seen in SBCs. However, it is possible to obtain a weight-
ing function including both negative and positive weights
with a purely excitatory model. The dashed, black lines in
Fig. 5 show the results of a multiple-detector model fit to a
purely-excitatory model (described in detail in Sec. III F) in
the NS, listening condition. Note that the overall shape is
similar to that produced by the multiple-detector model fits
to psychophysical data. The multiple-detector modeling re-
sults could predict about 49% of the variance in narrowband
and about 65% of the variance in wideband detection pat-
terns generated by the excitatory model. Thus, the shape of
the weighting function cannot be used explicitly to identify
excitatory vs inhibitory mechanisms. The negative weights
for the filters adjacent to the filter centered at the tone fre-
quency may be explained by phase differences (associated
with filter shape) between the central filter and adjacent fil-
ters.

D. AN-count-based models
1. Methods

A physiologically-based energy model was tested using
the Heinz et al. (2001b) AN model and a simple neural-
count-based detection strategy. One motivation for testing
this model was that the relatively broad tuning of AN fibers
at high sound levels may explain the bandwidth effects in the
psychophysical  results.  High-spontaneous-rate  (HSR;
50 spikes/s) and low-spontaneous-rate (LSR; 1 spike/s)
model fibers were tested. For LSR simulations, the param-
eters of the inner-hair-cell-to-auditory-nerve synapse were
set to reproduce the dynamic range of low-frequency LSR
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rate-level functions in response to tones at the fiber’s char-
acteristic frequency (Heinz, personal communication). The
decision variable was the mean discharge rate (count) of the
model fiber, either including or excluding the onset-response
(first 5 ms), such that four models were considered. Models
denoted as steady-state (SS) excluded the first and last 50 ms
of the AN response (onset and offset response). Mean counts
were computed from the AN model’s rate function; no spikes
were generated, and thus the internal noise generally associ-
ated with the Poisson properties of AN fibers was not in-
cluded here.

2. Results and discussion

Results for the low-spontaneous-rate AN-count-based
model are shown in Figs. 3 and 4 [L (low-spontaneous rate);
Lgs (low-spontaneous-rate  steady-state)], while high-
spontaneous-rate AN count based models are shown in Fig. 4
only [H (high spontaneous rate); Hgg (high-spontaneous rate
steady-state]. Predictions for HSR fibers, which saturate at
low SPLs (i.e., have small dynamic ranges), accounted for
only 7%—-18% of the variance in the average subject’s detec-
tion patterns and thus were not included in Fig. 3. HSR-fiber
models produced d’ values ranging from 0.47 to 0.56, well
below the expected value of 1.41, due to effects of rate satu-
ration.

For the narrowband results, the LSR model had d’
=1.31, and for wideband results, the LSR model had d’
=1.24. The LSRgg model had lower sensitivity for both nar-
rowband (d'=1.03) and wideband (d'=1.01) stimuli, indi-
cating that information in the onset response of the fibers is
useful for the detection process. Model LSR fibers predicted
between 44% and 80% of the variance in the average sub-
ject’s narrowband detection patterns and between 54%—69%
of the variance in the average subject’s wideband detection
patterns.

In general, the predictions of LSR AN count-based mod-
els were similar to the CB model discussed in Sec. III B and
the LSRgg model made slightly poorer predictions. Model
predictions based on HSR fibers were barely significantly
better than chance at the p <0.05 level and predictions based
on HSRgg fibers were insignificant in some conditions (see
Fig. 4). In particular, the wider-than-critical-band tuning of
AN fibers at high sound levels did not improve upon the
performance of the critical-band model for describing detec-
tion patterns in response to wideband stimuli. The count-
based detection strategy is essentially a peripheral transfor-
mation of the single-critical-band detector discussed earlier.
However, unlike the critical-band model, the AN-count-
based models are subject to saturation and rate-dependent
variance (Colburn et al., 2003). This characteristic poses
problems for HSR fibers coding high-level stimuli such as
those used here, or for coding stimuli with broad dynamic
range (e.g., when the level is roved). No improvement was
observed using model AN fibers over the CB or MD models.
Thus, it was of interest to determine if temporal models for
tone-in-noise detection could improve upon these predic-
tions.
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E. Envelope-slope model

A number of findings in the literature suggest that sub-
jects can use cues other than energy for detection in noise,
whether or not energy cues are available. For example, Ri-
chards and Nekrich (1993) found that listeners are able to
perform a two-alternative forced-choice tone-in-noise detec-
tion task when no reliable level differences between noise-
alone and tone-plus-noise stimuli are present. Richards and
Nekrich (1993) also measured effects of energy on detection
performance with separate level-discrimination tasks for
noise-alone and tone-plus-noise stimuli. Performance in
these conditions did not fully explain results in which level
cues are present, suggesting the existence of cue(s) that do
not rely on energy. One such cue is derived from temporal
envelope fluctuations in the stimulus waveform and is known
as the envelope-slope statistic (see Fig. 2, ES).

1. Methods

We investigated envelope cues using the following
modified version of the Zhang (2004) envelope-slope statis-
tic, which was adapted from the statistic derived by Richards
(1992),

2, e = A - x|
Eg = (7)

> ]

where x[7] is the Hilbert envelope of the output of a 4th-order
linear gammatone filter centered at the stimulus frequency
(75-Hz ERB), and At is the time step over which differ-
ences were computed (the sampling frequency). The en-
velope of the gammatone filter was computed using a Hil-
bert transform and then low-pass filtered (10th-order
maximally-flat IIR filter with a cutoff of 250 Hz) to en-
sure that any fine structure was removed and that the
model decision variable was based solely on envelope
fluctuations. The statistic was normalized to remove over-
all level and duration effects. When the tone was added to
the noise waveform, the envelope-slope statistic of the
tone-plus-noise complex decreased relative to the
envelope-slope statistic of the noise-alone waveform, in-
dicating tone presence. (A tone has an envelope slope
equal to 0.) This model used no additional parameters
other than the slope and threshold of the ogive fit.

2. Results and discussion

The ES model was slightly more sensitive for wideband
stimuli (d’=1.37) than for narrowband stimuli (d'=1.31).
Figures 3 and 4 (ES) reveal that this decision variable* was
significantly correlated with the psychophysical data across
reproducible maskers for all conditions. Envelope-slope
model predictions approached the critical-band model pre-
dictions for wideband stimuli. The envelope-slope model ac-
counted for approximately 65% of the variance in the aver-
age subject’s wideband detection patterns and approximately
60% of the variance in the average subject’s narrowband
detection patterns. All predictions were significant at the p
<0.05 level.
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F. Phase-opponency model
1. Methods

We also tested a single-cell version of the phase-
opponency model (Carney et al., 2002), which is a
physiologically-based model that takes advantage of the tem-
poral fine structure in AN responses. A block diagram of the
single-cell phase-opponency model is shown in Fig. 2 (PO).
Two model auditory-nerve fibers were used (Heinz et al.,
2001b). The center frequencies of the two fibers were se-
lected (459 and 542 Hz) such that they were symmetrically
spaced around the 500-Hz target frequency and had phase
responses that differed by 180° at the target frequency at the
level used. These AN model outputs were cross correlated.
When the tone was present, both AN fibers tended to syn-
chronize with the 500-Hz tone; and the 180° phase shift be-
tween the fibers made it unlikely that discharges would occur
simultaneously for the two fibers. That is, coincidences were
less likely to occur when the target was present. The
coincidence-detector output counts were approximated with
Eq. (8), which was based on more general expressions for
neural coincidence detector output [e.g., Eq. (2) in Colburn
(1977), Eq. (6) in Colburn (1996); and Eq. (B1) in Heinz er
al. (2001a)], specifically,

Cy= "%ichwf

Tpur

r(t,F)ri(t,F;)dt, (8)

where C), is the monaural coincidence-detector count, r; and
r; are rate functions of AN fibers with differing CFs, ngy, is
the number of AN fiber inputs for each CF, Tpyr is the
interval over which the coincidence detector response is
computed, and Ty is the time window for coincidences.
This equation assumes that the width of the time window
Tcw is narrow compared with the rate of fluctuation in the
rate functions in Eq. (8). As noted above, the current
model did not generate discharge times; thus the internal
noise associated with AN responses was not included.
When the two onset probabilities were multiplied in Eq.
(8), they exceeded realistic levels and did not produce
decision variables correlated to subject data. Therefore,
only the sustained portion of the response was used (i.e.,
the first and last 50 ms of the coincidence detector re-
sponse were excluded). The nébTCW term at the left of Eq.
(8) accounted for the number of fibers at each CF incident
on the coincidence-detector cell [Eq. (4.2) in Zhang,
2004] and for the coincidence-window duration [Eq. (6) in
Colburn (1996)]. Ten identical fibers were incident on
each model coincidence-detecting cell at each CF, and the
coincidence-window duration was 20 us (Carney et al.,
2002). Three parameters [AN center frequencies (2) and
the number of fibers incident on each cell], were used in
this model, in addition to the slope and threshold of the
ogive fit.

2. Results and discussion

The PO model was less sensitive than the other models
described here for narrowband (d'=0.89) and wideband
(d’=0.99) conditions, as well as less sensitive than expected
for a model with no internal noise. As shown in Figs. 3 and
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4 (PO) this model was able to predict 50%-59% of the vari-
ance in the average subject’s narrowband detection patterns,
and about 60% of the variance in the average subject’s wide-
band detection patterns.

The PO panels in Fig. 4 show that the phase-opponency
model predicted less variance in the psychophysical data
than the multiple-detector, envelope-slope and critical-band
models. A population version of the PO model (Carney et al.,
2002) was also tested, but showed no improvement over the
single-cell version for these conditions.

G. Effects of roving stimulus level in a 2-interval
detection task

Model predictions were also considered under condi-
tions in which stimulus levels were roved within trials in a
2-interval, 2-alternative forced-choice detection task using
random maskers (i.e., not reproducible-noise maskers). Al-
though no psychophysical data were obtained in this study
for the roving-level condition, there is little doubt about the
nature of these results and that they have important implica-
tions for models of detection.

Although both the CB and MD models were able to
account for a large amount of variance in the reproducible-
noise psychophysical data, these models (in their current
implementations) did not correctly predict published thresh-
olds in a roving-level task. For example, Kidd et al. (1989)
reported psychophysical roving-level data that do not match
threshold predictions for a critical-band model. The MD
model requires that the negatively-weighted filters be excited
in order to be robust to the roving-level paradigm. That is, in
the case of a wideband stimulus, the random amount of en-
ergy contributed by the noise to the filter at the tone fre-
quency can be effectively removed by adjacent filters that
encompass only noise and have approximately equal but
negative weights. However, if the stimulus bandwidth is nar-
row enough that negatively-weighted filters are effectively
not stimulated, the MD model shows an increase in threshold
that is similar to the critical-band model. Since the current
form of the MD model incorporated only the weights derived
in this work, it would not be expected to describe this
roving-level experiment. The MD model could be improved
to make better predictions using roving-level stimuli. That is,
the detection mechanism could be modified to adjust either
the number of filters and/or their bandwidths for each stimu-
lus bandwidth, or adjust the weights of a fixed set of filters
for each stimulus bandwidth, such that the scaled output of
the negatively-weighted filters effectively cancels the noise
energy at the filter centered at the tone frequency.

Counts of AN fibers are monotonically related to energy;
therefore, like the critical band model, the AN models cannot
successfully predict thresholds for a roving-level task. If the
AN model were expanded into a population model (i.e., that
incorporated some sort of weighted sum of AN outputs,
analogous to the MD model), its ability to explain results for
the roving-level task would involve the same constraints as
the MD model (i.e., inaccurate predictions if the bandwidth
of the noise was insufficient to excite negatively-weighted
filters, and the requirement to readjust weights for each
stimulus bandwidth), in addition to rate-saturation problems.
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The ES model was unaffected by roving the stimulus
level until very narrow noise bandwidths (10 Hz), for which
there was an increase in threshold that was greater than that
observed in psychophysical data (Kidd et al., 1989).

Carney et al. (2002) showed that a phase-opponent de-
tection mechanism can successfully explain results (within
3 dB) for the roving-level detection task for maskers with
bandwidths of at least 300 Hz. Further, Zhang and Carney
(2004) and Zhang (2004) have shown that a more general
cross-frequency coincidence-detection model can explain
thresholds in a narrowband condition with roving-level
maskers. The general coincidence-detection model is capable
of predicting detection thresholds within 3 dB of human lis-
teners in conditions with a 32-dB rove and a 100-Hz stimu-
lus bandwidth, and does so using only HSR fibers. Recall
that HSR fibers cannot explain thresholds based on average
discharge rate due to saturation, and that HSR fibers com-
prise the majority of AN fibers.

Thus, it appears that the multiple-detector, phase-
opponency, and envelope-slope models are capable of for
predicting results from roving-level tasks with wideband
noise, however each of these models breaks down when the
bandwidth of the stimulus becomes narrow [bandwidth
<300 Hz for the single cell PO model, <75 Hz (1 critical
band) for the MD model, and <10 Hz for the ES model].

IV. SUMMARY AND FUTURE DIRECTIONS

This study measured detection in monotic and diotic
masking conditions with reproducible noise waveforms.
Measurements showed that using either monotic or diotic
conditions resulted in similar distribution of performance
over the individual waveforms. This result adds to the evi-
dence that these conditions involve the same decision pro-
cessing.

Predictions of energy-based, auditory-nerve, envelope,
and phase-opponent cross-frequency coincidence-detection
models were evaluated by comparing model decision vari-
ables and subject detection patterns. Results showed that the
multiple-detector model could explain the most variance in
subject detection patterns followed by the critical-band
model. The critical-band model, however, cannot explain
performance in a roving-level paradigm. The multiple-
detector model will require a mechanism to adapt its filters
and/or filter weights to specific stimulus conditions in order
to predict thresholds under conditions where the stimulus
level is roved. The phase-opponency and envelope-based
models, although explaining less variance in the subject’s
detection patterns than energy-based models, are robust to
changes in stimulus level. In contrast to the temporal models,
HSR AN-count-based physiological implementations of
energy-based models saturate, preventing accurate prediction
of detection patterns. LSR AN-count-based models accu-
rately predicted subject detection patterns, but were unable to
explain performance in a roving-level task. In general, these
results suggest the need to consider alternative temporal
models for tone-in-noise detection, as well as to pursue the
multiple-detector model’s potential to describe roving-level
results. Ongoing studies designed to manipulate specific de-
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tection cues will help direct future temporal-modeling ef-
forts. The energy-based multiple-detector model will also be
explored further.
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APPENDIX: PREDICTABLE VARIANCE FOR
INDIVIDUAL-SUBJECT FITS

Extending the analysis presented in Sec. II B 7, it is pos-
sible to derive the expected proportion of predictable vari-
ance available when fitting models individually to each sub-
ject’s data, as compared to fitting models to data that have
been averaged across subjects, as is the emphasis in this
paper. To obtain an estimate of the error variance that is
separate from the waveform by subject interaction, the data
were rearranged as follows: NS, and N, S,, data were com-
bined (to increase the number of trials in the analysis; this
decision is justified because the differences between the two
conditions are small), and the 192 trials obtained for each
combination of waveform and bandwidth were randomly
grouped into 12 blocks of 16 trials. Separate Waveform
X Subject X Block random-effects ANOVAs were performed
for each bandwidth. Working from the expected values of the
Mean Squares, as described by Kirk (1995, p. 462), and
combining terms appropriately, we obtained separate esti-
mates for the variances associated with the effect of wave-
form (a'ZW), subject (oﬁ), block (0',23), the interaction between
waveform and subject (o), the interaction between wave-
form and block (0%,), the interaction between subject and
block (o‘éB), and the interaction among waveform, subject,
and block combined with error (oggs+07). This procedure
lead to some negative variance estimates (which, for our
data, were small in magnitude) that were set to zero, as is
common practice (e.g., Maxwell and Delaney, 2004, p. 487).
For the case in which the models were fit to data averaged
across subjects, as in the current study, the proportion of
predictable variance is given by

) 2
(TP O'W
— = , (A1)
02T 2 O%VS 0'%A/B O%VSB‘HTz
oyt ——t+——+—>—=
Ng  Np NgNg

where o% is the predictable variance in the average detection
pattern,o% is the total variance in the average detection pat-
tern, Ny is the number of subjects, and Np is the number of
16-trial blocks combined to estimate each value in the detec-
tion pattern. For the case in which the models were fit sepa-
rately to the data of individual subjects, predictable variance
is given by
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TABLE VI. Estimated proportion of predictable variance in P(Y|W) values
averaged across the NS, and NS, stimulus configurations under both
narrow and wide stimulus bandwidths. Results are presented for Eq. (A1)
which estimates the proportion of predictable variance for the average sub-
ject, and equation Eq. (A2), which estimates the proportion of predictable
variance for the case in which models are fit to the data of individual sub-
jects. Results are also presented for Eq. (4) using the subject data that was
combined across the N,,S,, and NS, stimulus configurations (see text).

Eq. (4)
Bandwidth Eq. (A1) Eq. (A2) Combined
NB 0.944 0.989 0.945
WB 0.982 0.991 0.982
o T+ 05+ Ty
2 Py Py Pagr D
T 0-%/V+G§+O'%vs+ WB+ SB+ WSB e
N N,
B B B

where o7 is the predictable variance in the individual detec-
tion patterns, and 02T is the total variance in the individual
detection patterns.

The estimated proportions of predictable variance for
Egs. (A1) and (A2) are shown in Table VI (columns 1 and 2)
for the two bandwidth conditions, with Ng=4 and Nz=12.
Note that both Eq. (A1) and Eq. (4) estimate the proportion
of predictable variance for the case when models are fit to
data averaged across subjects. The values shown for Eq.
(A1) (Table VI, column 1) are slightly larger than those
shown for Eq. (4) (Table V, column 4). This difference oc-
curred because the analyses in Table VI were based on 192
trials per waveform (i.e., the data were combined across the
N,.S,, and NS, conditions), whereas the analyses in Table V
were based on 96 trials per waveform. To allow a direct
comparison between Eq. (Al) and Eq. (4), Eq. (4) was ap-
plied to the results of data that had been combined across
binaural conditions, such that 192 trials per waveform oc-
curred; these results are shown in Table VI (column 3) and
are in agreement with the results of Eq. (Al).

Comparing results from Eq. (A1) and Eq. (A2) (shown
in the first two columns of Table VI), we see, as expected,
that fitting the models to individual subjects increased the
proportion of predictable variance. This was particularly true
for the narrow bandwidth case, because there was greater
across-subject variability for that stimulus condition.

'0One model not considered here is that of Dau ef al. (1996). We were unable
to meaningfully apply their model’s structure to our single-interval
reproducible-noise task.

2Although no MLD was found in this study, others have found an NS,
—NpSy MLD, presumably only at low masker levels. Dolan (1968) ob-
served increasing NS, —NySy MLD for 150-Hz and 300-Hz tones as the
spectrum level of a 1000-Hz low-pass filtered noise masker was lowered
from 65 to 20 dB SPL. MLDs were less than 1 dB for the 65 dB SPL
spectrum level noise and up to 4 dB for the 20 dB SPL spectrum-level
noise. Diercks and Jeffress (1962) found a small NS, —N;S, MLD
(2.8 dB) for a 250-Hz tone, but the masker levels for which this result was
achieved were unpublished. Shaw ef al. (1947) also found an NS,
—NySy; MLD of 5.8 dB; however masker levels were also unpublished in
that work. It is assumed that the latter two studies used relatively low noise
spectrum levels in accordance with the results of Dolan (1968). Thus, if this
experiment were repeated at lower masker levels that yielded MLDs, it is
possible that detection patterns would differ between the two conditions.
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*We also computed internal-to-external noise ratios for the Evilsizer et al.
(2002) study. In that study, NS, noise ratios were larger than diotic noise
ratios, with the exception of S7, who had the largest estimated noise ratios
(ranging from 2.6 to 3.6 in narrowband NS, and NS . conditions, respec-
tively) and had the lowest first-half, last-half correlations [ranging from
0.52 to 0.76; see Table I of Evilsizer e al. (2002)]. This finding indicates
that this subject may have changed strategies, thereby increasing internal
noise estimates.

‘An envelope-slope based model was also considered with the basilar-
membrane and inner-hair-cell portions of the Heinz er al. (2001b) AN
model. Results are not presented here because predictions were not signifi-
cantly different from the envelope-slope model incorporating a gammatone
filter. A model based on the standard deviation of the envelope (Richards,
1992) was also considered, but was not included here because predicted
detection patterns were not correlated to the psychophysical data.
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