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Summary

We present a model for tone-in-noise detection at low frequencies that includes a physiologically realistic mech-
anism for processing the information in neural discharge times. The proposed model exploits the frequency-
dependent phase properties of the tuned filters in the auditory periphery and uses cross-auditory-nerve-fiber
coincidence detection to extract temporal cues. Information in the responses of model coincidence detectors
is quantified and compared to human performance in a masked detection task. The responses of some cross-
frequency coincidence detectors are reduced when a low-frequency tone is added to a noise because of phase
differences between fibers tuned to different frequencies. We refer to this response reduction as “phase oppo-
nency.” For super-critical masker bandwidths, the PO model succeeds in predicting detection of low-frequency
tones in roving-level maskers, a psychophysical task for which the classical energy model fails. The PO model
describes a physiologically realistic mechanism for extracting spatio-temporal information that can be applied to
other sensory systems in which spatially overlapping and partially correlated temporal information is important.

PACS no. 43.64.Bt, 43.66.Ba

1. Introduction

Sensory systems encode information about objects in the
presence of noise. The simple psychophysical task of de-
tecting a pure tone in the presence of a random noise has
been of fundamental importance in the development of au-
ditory theory. Essentially all modern models of auditory
processing include an initial array of narrowband filters,
and for detection of a tone in noise, it is generally as-
sumed that a filter tuned near the frequency of the tone
is used. This model is based on Fletcher’s [1] demonstra-
tion that the detectability of a tone is affected by the band-
width of a masking noise only up to a certain value termed
the “critical bandwidth”; addition of noise energy outside
the critical band does not affect the detectability of a tone.
Moreover, the performance of an energy detector oper-
ating on the output of a single critical-band filter tuned
to the tone frequency (Figure 1a) depends on changes in
signal-to-noise ratio in a manner similar to the perfor-
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mance of human listeners [2]. This critical-band energy-
detector (CBE) model has served as the foundation of nu-
merous empirical and computational investigations of au-
dition.

Despite its prominence, the CBE model fails to predict
several characteristics of detection (reviewed in [3, 4]). For
example, listeners detecting a tone do not ignore masker
information outside the critical band, whether that infor-
mation is useful [5] or detrimental [6]. This evidence sug-
gests that multi-band processing is important for tone-in-
noise detection. Additionally, while the CBE model can
explain the variation in human performance with signal-
to-noise ratio, it cannot explain the finding that detection
is only slightly disrupted when overall stimulus energy is
randomized across intervals (e.g. [7, 8, 9]). In these stud-
ies, a roving-level masker was used; that is, the levels of
both the target and the masker were randomly varied from
interval to interval over a large range (while maintaining a
fixed signal-to-noise ratio). If the listener based detection
of the tone on the energy at the output of the auditory fil-
ter tuned to the frequency of the tone, performance would
be considerably degraded by this stimulus manipulation,
but this is not the case [7, 8, 9]. The CBE model also fails
to explain performance when differences in stimulus en-
ergy across intervals are eliminated [10, 11]. The above
results suggest that stimulus envelope and fine-structure
timing, which typically co-vary with signal-to-noise ratio
but not with overall level, provide important cues for tone-
in-noise detection [12]. However, physiologically realis-
tic mechanisms to extract this timing information have not
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Figure 1. Filter characteristics important for a, the critical-
band energy (CBE) model and for b, the phase-opponency (PO)
model. a, A single filter centered at the frequency of a tone (ar-
row) is the fundamental signal-processing element of the CBE
model. Only the magnitude is shown, since the phase spectrum is
unimportant for the CBE model. b, Magnitude and phase spectra
for two filters that illustrate the operation of the PO model. One
filter is tuned below and one is tuned above the frequency of the
tone. Fourth-order gammatone filters that have a 180° phase dif-
ference at the tone frequency are shown. The filters shown have
CFs of 848.5 and 951.5 Hz and were used for the simulations in
Figures 2 and 3.

been quantified and compared to human performance. In
this report, we present the phase-opponency (PO) model,
which includes a specific temporally based mechanism,
and we demonstrate quantitatively that its properties are
consistent with human performance for the detection of
low-frequency tones in noise. This model applies partic-
ularly to detection of low-frequency tones because it de-
pends upon the phase-locked responses of auditory-nerve
(AN) fibers.

Physiological models of the CBE (also known as the
power-spectrum model) typically depend upon the rep-
resentation of stimulus energy in the discharge rates of
AN fibers, but this representation is not easily imple-
mented in ways that are consistent with available physi-
ological data. Because the majority of AN fibers have a
limited dynamic range, these models depend upon pooling
information across low-threshold, high-spontaneous-rate
AN fibers and high-threshold, wide-dynamic-range, low-
spontaneous-rate fibers (e.g. [13, 14, 15, 16], reviewed in
[17]). The strategy of pooling the information in AN dis-
charge rates across fibers with different spontaneous rates
may be relevant for high characteristic frequencies (CFs).
However, the large dynamic range for low-spontaneous
rate fibers depends upon the amount of cochlear com-
pression, e.g. [18, 19]. Because the degree of cochlear
nonlinearity is relatively small at low CFs, there are not
large differences between the dynamic ranges of low- and
high-spontaneous-rate fibers at low CFs (see discussion in
[20, 21]. Fibers with straight (non-saturating) rate-level
functions have not been observed at CFs below 1500 Hz
in guinea pig [16] and are not observed at any CF in cat
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(e.g. [18, 22]). Although rate-level functions of AN fibers
have not been measured in humans, psychophysical stud-
ies have shown that the amount of cochlear compression in
humans is reduced at low frequencies [23], which is con-
sistent with physiological observations in other species.
Thus, it is reasonable to assume that low-frequency AN
fibers in humans have discharge rates that saturate at mid
to high levels, whether they are low or high spontaneous-
rate fibers. Another strategy to overcome the limitations of
the CBE model is to combine energy information across
filters tuned to different frequencies (e.g. [24]). However,
rate-based physiological models of this approach still re-
quire that the discharge rates of each channel encode en-
ergy, which is not the case at low frequencies due to satu-
ration of AN fibers.

The PO model depends upon comparisons of the tem-
poral response patterns across AN fibers tuned to differ-
ent frequencies, rather than upon the energy of the filter
outputs. The phase properties of filters tuned to different
frequencies enable the filters to encode information about
the stimulus waveform in the spatio-temporal patterns of
a filter-bank response. Spatio-temporal patterns are the
temporal discharge patterns across the population of neu-
rons tuned to different frequencies. The spatial dimension
is frequency and refers to the orderly tonotopic map of
tuned neurons in most auditory nuclei. The general prop-
erties of the spatio-temporal response patterns are robust
to changes in overall stimulus level and to non-linearities,
such as saturation, that are inherent in neural responses
[25, 26]. For the model considered here, the temporal re-
sponse properties of the fibers are most important; there
are not significant differences in the phase-locking proper-
ties of low- and high-spontaneous-rate fibers [27].

The PO model is expressed in physiological terms and
uses a simple coincidence-detection mechanism to ex-
tract the reliable spatio-temporal cues embedded within
the auditory-nerve (AN) population response. In particu-
lar, the PO model takes advantage of a reduction in the rate
of some cross-frequency coincidence detectors in response
to the presence of the target. This reduction is caused by
the phase differences between fibers tuned to different fre-
quencies (Figure 1b). This feature of the PO model, which
is applied here to monaural masked detection, is similar to
that used in models for binaural detection. The reduction
in the response of binaural coincidence detectors to a tone
that is out-of-phase to the two ears can explain binaural
unmasking [28].

The addition of a tone to a noise systematically influ-
ences the relative timing across filters tuned to different
frequencies. These spatio-temporal patterns can be pro-
cessed by coincidence detectors that are sensitive to the
relative timing of their inputs. We first consider a single
coincidence detector that receives inputs from two filters
tuned to frequencies above and below the tone frequency
(Figure 1b). Because the two filters overlap in the fre-
quency domain, their responses to a wideband noise are
partially correlated, resulting in occasional coincidences
in their outputs. This phenomenon is illustrated in Fig-
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Figure 2. Responses of the two model AN fibers (with fil-
ters in Figure 1b) to a, wideband noise alone and to b, wide-
band noise plus a 900-Hz tone at 65 dB SPL. The noise spec-
tral level was 35dB SPL. The AN model was a linear fourth-
order gammatone filter with equivalent rectangular bandwidth
of 122 Hz, based on the auditory-filter bandwidth for humans
at 900 Hz [29]. The filter was followed by models for the in-
ner hair cell and AN synapse [21, 30]. The curves represent the
time-varying AN discharge rate of the low-frequency (light gray)
and high-frequency (dark gray) model AN fibers. The black ar-
eas represent the regions of overlap that would activate a model
coincidence-detecting cell.

ure 2, in which the instantaneous firing rates of two model
AN fibers are illustrated using two shades of gray; a
coincidence-detecting cell that received these two AN in-
puts would be most likely to discharge when the inputs
overlap (shaded in black). When a tone is added to the
noise at a sufficient signal-to-noise ratio, the tone dom-
inates the temporal responses and “pulls” the filter re-
sponses out of phase with each other (Figure 2b) because
the phases of these two filters differ by 180° at the tone fre-
quency (Figure 1b). The coincidence detector’s response is
reduced when its inputs have opponent phases and thus are
least coincident with each other, even when the inputs are
saturated. The model uses this reduction to detect the pres-
ence of the tone. The response properties required for the
PO model are fundamental properties of any filter bank
with overlapping filters having realistic phase properties,
each followed by a saturating nonlinearity.

Because the PO model uses only relative timing across
neurons, there is no need for the processor to have a priori
knowledge of the tone or noise waveforms by the proces-
sor. As noted above, there are significant difficulties in-
herent in AN rate- or count-based models due to the rate-
saturation observed in most AN fibers. In contrast, tempo-
ral information is robust over a wide range of levels and in
background noise, because AN fibers phase-lock to low-
frequency tones over a wide dynamic range even in the
presence of noise [31, 32, 33].

Several models have been proposed for processing tem-
poral information in the responses of the auditory periph-

336

Carney et al.: Temporal model for masked detection

ery. Previous temporal processing models fall into three
general classes: auto-correlation, cross-correlation, and
lateral inhibition. Auto-correlation models were developed
to extract the periodicities, or stimulus-related inter-spike
intervals, in responses of phase-locked neurons and have
been discussed primarily in the context of pitch process-
ing (e.g. [34, 35, 36, 37]). Models for processing based on
spike intervals have also been investigated for speech and a
variety of other complex sounds (e.g. [38, 39, 40]). Limita-
tions of the auto-correlation-based models include the lack
of anatomical and physiological evidence for the required
delay lines, lack of physiological evidence for the cells that
are performing the auto-correlation, and the absence of
certain psychophysical phenomena related to multi-tonal
stimuli that would be predicted by auto-correlation-based
models (reviewed in [41]). These limitations motivate the
study of cross-correlation models for temporal processing.

Several cross-correlation models have been proposed
that take advantage of the combination of phase-locked re-
sponses and systematic frequency-dependent delays along
the cochlea that are associated with the traveling wave
(e.g. [41], in the context of pitch perception, and [42], in
the context of localization). These models proposed that
cross-frequency correlation takes place in the medial supe-
rior olive, where cells had been previously demonstrated
to be sensitive to small interaural time differences be-
tween their inputs (e.g. [43]). Deng and Geisler [44] pro-
posed cross-channel correlation on the output of a com-
posite auditory-nerve model as a processor for detecting
formants in speech sounds in quiet and in noise. Their re-
sults showed a reduction in the cross-correlation between
neighboring frequency channels that were tuned near spec-
tral peaks due to phase differences between the channels,
a phenomenon that is closely related to the PO model ex-
plored here. Deng and Geisler [44] described the similari-
ties between their cross-correlation mechanism and lateral
inhibition mechanisms, which will be discussed further be-
low.

The PO model includes coincidence-detecting cells that
receive inputs from AN fibers. Physiological studies have
demonstrated that low-frequency cells in the anteroven-
tral cochlear nucleus (AVCN) that receive convergent in-
puts from AN fibers have response properties that are con-
sistent with cross-frequency coincidence detection [45],
which is a form of cross-correlation [46]. Evidence for
cross-frequency coincidence detection in low-frequency
cells in the AVCN was reported to be strongest for highly
phase-locked, or "hi-sync”, cells, for primarylike-with-
notch cells, and for onset cells, as well as for some chop-
per cells [45]. Cochlear nucleus primarylike-with-notch
[47] and onset [48] cells at high frequencies have also
been described as having responses consistent with cross-
frequency coincidence detection. Primarylike-with-notch
response types are associated with globular bushy cells
[49] and also with Type II responses in the AVCN slice
preparation [50]. Further support for these cells behaving
as coincidence detectors comes from the fact the nonlinear
membrane properties of Type II AVCN neurons [51] are
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similar to those of cells in the medial superior olive [52],
which have been demonstrated to be sensitive to coinci-
dences of their inputs [43, 52].

In this report, the properties of the cross-frequency
coincidence-detection mechanism and its potential role in
masked detection are explored. After illustrating the na-
ture of the PO mechanism in the context of a single co-
incidence detector, the responses of populations of model
coincidence detectors that receive different combinations
of AN inputs will be studied. In both cases, we will quan-
tify the ability of the proposed mechanism to detect low-
frequency tones in the presence of noise and directly com-
pare the results to human performance. In particular, we
will explore the PO mechanism in the context of a roving-
level paradigm, which has been used in psychophysical
studies to challenge the classical CBE model for detec-
tion. In this paradigm, the signal-to-noise ratio is tracked
in a two-alternative, two-interval forced-choice (2A2IFC)
task while the noise level is randomly varied across inter-
vals.

2. Methods

The methods included generation of stimuli based on
those used in psychophysical studies of masked detec-
tion, computation of the responses of model AN fibers and
coincidence-detecting cells to these stimuli, and simula-
tion of psychophysical tasks based on decision variables
that were computed for each interval of the stimulus. Each
of these steps will be described in this section.

2.1. Stimuli

The noise stimuli were matched to those used in Kidd
et al.’s [7] study of masked detection of a 900-Hz tone.
Specifically, the noise had a spectral level that was either
fixed at 35 dB SPL or randomly varied from interval to in-
terval over a 32-dB range centered at 35 dB SPL. Several
different noise bandwidths were studied as in Kidd et al.
[6]; each bandwidth was geometrically centered about the
tone frequency, which was always 900 Hz. The tone and
noise durations were 250 ms, with 20-ms rise/fall times.

2.2. Computation of Responses of Model AN Fibers

The model AN responses for the results presented here
were all produced using a recently developed model for
the auditory periphery in human [21]. This model is an
extension of a nonlinear model for the responses of AN
fibers in cat [30], modified to have bandwidths for hu-
man listeners [29] as well as fibers with different spon-
taneous rates and thresholds. The nonlinear model with
compression and suppression (Model #1 in [21]) for high-
spontaneous-rate fibers was used for all simulations pre-
sented here. Qualitatively similar results were obtained us-
ing linear gammatone filters followed by models for the
inner-hair-cell (IHC) transduction and IHC-AN synapse
(not shown). The output of the AN model is an estimate
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of the instantaneous firing rate as a function of time dur-
ing the stimulus. The steady-state portion of the responses
were used for all results presented here.

2.3. Computation of Responses of Model
Coincidence-Detecting Cells

Two models involving coincidence-detecting cells will
be considered here: a single-channel model and a multi-
channel model. In both cases, each model coincidence
detector received two AN inputs, for simplicity. In the
case of the single-channel model, which will be illustrated
first, the coincidence detector received one AN input with
CF below the tone frequency and one AN input with CF
above the tone frequency. These two AN CFs were cho-
sen such that the phases of their fourth-order gammatone-
filter transfer functions (with human bandwidths appropri-
ate for the noise levels used) differed by approximately
180° at the frequency of the stimulus tone and at the mean
level of the stimulus ensemble!; e.g., CFs of 848.5Hz and
951.5Hz were chosen for the 900-Hz stimulus tone. This
choice of input CFs yielded a coincidence cell with maxi-
mal phase opponency.

The multi-channel model considers the responses of
a population of coincidence detectors, each receiving a
pair of convergent AN inputs. Given a set of AN fibers
tuned to a range of CFs, coincidence-detecting cells in-
cluding all possible pairwise combinations of the set of
AN fibers were included in the multi-channel model. The
multi-channel-model simulations presented here were all
based on a set of 27 model AN fibers, with logarithmically
spaced CFs ranging from 625 Hz to 1295 Hz; the range
of CFs was chosen to be geometrically centered on the
tone frequency, to encompass the range of CFs that had
the greatest impact on the detection task, and to include
the coincidence-detecting cell used for the single-channel
model. The central (14th) fiber in the population was tuned
to the frequency of the 900-Hz tone.

Based on the responses of the model coincidence-
detecting cells, a decision variable was computed to al-
low simulation of the masked-detection task. This deci-
sion variable will be described here for both the single-
and multi-channel models. We investigated both the case
for which only the external noise due to the variability of
the masker stimuli was included in the decision variable
and the case for which internal noise due to the variabil-
ity of neural discharge counts was also included. The re-
sults with no internal noise represent a lower bound for
thresholds that could be obtained with a very large num-
ber of identical model cells, because the combination of
responses across independent cells reduces the effect of
the internal noise. After describing the calculation of the

1 Because the AN model fibers included nonlinear peripheral filters with
level-dependent bandwidth, the AN response phases varied with sound
level. However, the phase-opponency mechanism was robust to these
changes for wideband noise maskers, even over the 32-dB range of lev-
els included in the roving-level paradigm. That is, the AN responses do
not have to be perfectly 180° out of phase with each other to result in a
reduction of discharge count of the coincidence detecting cell.
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decision variable for each of these cases, the use of the
decision variables in a tracking algorithm to simulate psy-
chophysical results will be described. The decision vari-
ables used here were all based on the statistics of the dis-
charge counts of model coincidence-detecting cells, which
were computed using the theory developed for binaural
cross-correlators [53]. Details of this theory were pre-
sented in a recent study of monaural cross-frequency co-
incidence detection related to intensity discrimination for
tones in quiet [20]. Briefly, the instantaneous firing rate of
the coincidence detector is proportional to the product of
the instantaneous firing rates of the model AN fibers. The
average rate of a model coincidence cell depends upon the
size of the coincidence window; the size of the window
must be small with respect to the period of a tonal input for
this simple description of the coincidence cell’s response
to be appropriate [20, 53].

The expected value of the discharge counts given the
stimulus waveform was computed for each stimulus in-
terval. This value varies across noise samples (i.e. the
“external noise”) but does not include the variability as-
sociated with the random nature of the neural discharge
patterns (i.e. the “internal noise”). For all of the results
presented here, 20 independent Gaussian noise samples
were used to compute the means and variances of the dis-
charge counts that were used to derive the model decision
variables. Thus, simulations that used this conditional ex-
pected value of the discharge counts as a decision vari-
able provide an estimate of the limitations of performance
based on the stimulus variability alone. Additional sim-
ulations that included the variability of neural discharge
counts from trial to trial provide an estimate of thresholds
based on a limited number of neurons with realistically
variable discharge counts.

For the simulations that included internal noise, the de-
cision variable was a random deviate generated from a
probability distribution chosen to match the observed dis-
tributions of spike counts from AN fibers and AVCN cells.
The simplest description of the spike counts of auditory
neurons would be a Poisson distribution; however, this de-
scription has been shown to significantly over-estimate the
variance of the counts (e.g. [14, 16]). For the results shown
here, the distribution of the coincidence-detecting cells
was assumed to be Gaussian with a variance calculated
from the expected value using a formula derived from em-
pirical AN data by Winter and Palmer [16]. This assump-
tion was based on the fact that many AVCN cells (e.g., pri-
marylike and transient chopper response types) have count
variance similar to that of AN fibers, and other AVCN cells
types (e.g., sustained choppers) have even lower variances
[54].

To use this count-dependent description of the vari-
ance, it was important that the model counts were simi-
lar to those of relevant auditory neurons. The simple, two-
input coincidence detector model with a small coincidence

2 Winter and Palmer’s [16] expression for the standard deviation, %, of
count as a function of count, z, is y = 0.8570-343,
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window resulted in very low average discharge rates. To
achieve average discharge rates more consistent with those
typical of auditory neurons, 10 identically driven inputs
from each AN CF converged on each model coincidence-
detecting cell in both the single-channel and multi-channel
models. The 10 identically driven AN inputs were as-
sumed to be statistically independent, consistent with the
analysis of AN data by Johnson and Kiang [55]. In addi-
tion, for the simulations that included internal noise, 10
identical coincidence-detecting cells were simulated and
the decision variable used for the task was an equally
weighted combination of the 10 cells. The combination of
the responses of the 10 cells reduced the effect of the inter-
nal noise to provide threshold estimates that were compa-
rable to human thresholds. The term single-channel model
will be used to refer to the model consisting of 10 identi-
cal coincidence-detecting cells, each of which receives 10
inputs from each of two AN CFs. The choice of 10 cells
for this “unit” coincidence-detection model was based on
the comparison of preliminary estimates of threshold for
the 10-cell version of the single-channel model to hu-
man thresholds for detection of a tone in a 3kHz band-
width, 35dB SPL spectrum-level fixed-level masker [7].
The multi-channel model is comprised of a population of
these single-channel models.

The 20-ps coincidence-window duration was matched
to the temporal resolution of the stimulus waveforms used
in the simulations, which was convenient for computa-
tions; this window size was also comparable to the 10-
ps coincidence window used in Colburn’s binaural model
[53]. The choice of the coincidence-window duration in-
fluences the estimated threshold in a complex manner; pre-
liminary investigations of window sizes both smaller and
larger than the 20-us window used here were performed,
and it was verified that threshold was not a strong function
of window size at these durations.

For the simulated thresholds of the single-channel
model, either the expected value of count (no internal
noise case) or a random deviate based on the set of 10
identical cells (case with both external and internal noise)
was compared across stimulus intervals; the interval with
the lower count was chosen as the interval with the tone. In
this case, a particular cell was chosen that had AN inputs
with CFs that were optimal for the PO mechanism.

For the multi-channel model, the information in the re-
sponses of cells with different input CFs was combined
in order to derive a decision variable. Assuming that the
response counts could be described by Gaussian distribu-
tions, the optimal combination scheme for a population
of statistically independent cells is a weighted sum of the
counts, where the weight for each cell is the difference in
mean counts across stimulus intervals divided by the vari-
ance of the count [56]. The weights are computed as

Cryn —Cn

Wy= —"7—-—.
T Vren + V) /2
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where C' represents the expected value of the count for
either the tone-plus-noise or noise-alone interval, and V'
represents the variance. Each variance is computed, based
on the assumption of Poisson discharge statistics, as V' =
C + var(C), where the first term represents the inter-
nal variance due to Poisson variability (equal to the mean
count across the noise samples used) and the second term
represents the external variance in the counts across the
set of noise samples. The simulations of the multi-channel
model shown here were either based on the expected val-
ues of counts or on simulated counts computed in the same
way as described above for the single-channel model; each
coincidence-detecting cell in the population was repre-
sented by a set of 10 identical and statistically independent
cells, similar to the single-channel model simulations that
included internal noise.

For the case of a wideband stimulus, the responses of
a population of model coincidence cells that receive dif-
ferent AN inputs that have overlapping filters would not
be statistically independent. In this situation, the weighted
sum described above is non-optimal but is still a reason-
able scheme for deriving a single decision variable from
the population response. The optimal scheme would re-
quire use of the cross-covariance matrix [56], which is
an avoidable complication. Results presented here for the
multi-channel model are all based on the non-optimal
weighted-sum decision variable described above.

The multi-channel model weights for each stimulus
condition were derived from responses to 20 independent
noise samples using a tone level 6 dB higher than the
single-channel threshold with internal noise. This choice
of tone level was based on examination of the patterns of
weights across the population (see below). At threshold,
the patterns were relatively noisy, as expected; the 6-dB
increase in tone level above threshold resulted in a rela-
tively clean set of weights that was qualitatively consistent
with the weight pattern at lower levels.

2.4. Simulation of Psychophysical Tasks

To determine the masked threshold for tones in either the
fixed-level or roving-level noise, the two-interval, two-
alternative, forced-choice (2IAIFC) tracking paradigm
used by Kidd er al. [7] was simulated. Model threshold es-
timates were based on simulations of a two-down, one-up
track with tone level varied in 2-dB steps, with the levels at
the last 12 reversals of a 16-reversal track averaged to es-
timate the threshold for each track. Forty-two tracks were
simulated to match the number of estimates in the human
study [7] (6 repetitions x 7 subjects). Independent samples
of Gaussian noise were generated for each stimulus inter-
val of the simulated tracks. For the single-channel model
without internal noise, the expected value of the count for
the coincidence detector was used as the decision vari-
able for the PO model to determine which stimulus inter-
val contained the tone. For the single-channel model with
internal noise, the decision variable was based on the aver-
age of 10 random deviates representing identical individ-
ual cells. For the multi-channel model, the weighted sum
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of either the expected values of count or of the simulated
counts was used as the decision variable.

The use of simulated tracks to estimate the model detec-
tion threshold provided predictions that could be directly
compared to experimental results (e.g. [57, 58, 59]). In ad-
dition, the use of tracking, instead of directly estimating
a value for d’, eliminated the difficulty of calculating the
variance of the population response for cells that lacked
independence due to the noise masker (see [60]). Also,
the use of the tracking paradigm to estimate thresholds al-
lowed the inclusion of random level variation across inter-
vals in the same manner as in the experimental paradigms
without requiring an extension of the analytical approach
(e.g., see [61]).

3. Results

3.1. Single-channel model

Simulations were performed to estimate the threshold of
the model based on a coincidence detector that received in-
puts from two AN CFs, as illustrated in Figure 1b (Table I).
The threshold for the single-channel model without inter-
nal noise for a 900-Hz tone in a fixed-level noise with a 3-
kHz bandwidth and a 35-dB-SPL spectral-level (Ng) was
17.83 dB re Ny. This threshold is comparable to the thresh-
old reported for human listeners of 17.04 dB re Ny [7]. The
threshold for the same stimulus conditions for the model
with internal noise was 19.36dB re Ny. As expected, this
threshold estimate, based on 10 identical statistically inde-
pendent cells, is elevated with respect to the model with
no internal noise®. When the simulations for these models
were repeated with the masker level randomly roved over
a 32-dB range, the threshold for the model with no internal
noise increased to 19.82 dB re Ny, which is comparable to
the human threshold for this paradigm of 18.96dB re Ny
[7]. The roving-level threshold for the model with inter-
nal noise was 20.36dB re Ny, representing only a 1-dB
increase in threshold with respect to the non-roving con-
dition. As has been reported in previous studies, the CBE
model cannot explain the similar thresholds for the rov-
ing and fixed-level paradigms (e.g. [7, 8, 9]. For example,
the CBE model would predict an increase in threshold of
approximately 7.5 dB, assuming the energy in the 100-Hz
band centered on 900-Hz was used as the decision variable
[7].

These simulation results (Table I) indicate that estimates
of threshold based on a single coincidence detector chan-
nel with well-chosen inputs can detect tones in the pres-
ence of fixed-level or roving-level wideband maskers at
levels comparable to those just detectable by human lis-
teners. The coincidence-detecting cell in this model was
chosen to have AN inputs tuned to frequencies that max-
imized the phase opponency between the two inputs, re-
sulting in sensitive detection of the tone. It is more realis-

3 Note that the use of ten identical cells only affects the simulated thresh-
old in the case with internal noise.
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Table I. Thresholds for detection of 900-Hz tone in 3 kHz bandwidth noise. Fixed-level results are for a 35-dB SPL spectrum level noise
(No = 35dB SPL); roving level results are for a 32-dB rove of masker level centered about 35 dB SPL. Mean threshold +/- standard
deviation in dB re NNy is shown for each case. For the human listeners [7] and for each model, means were based on 42 estimates of
threshold. Models with no internal noise were based on expected values of coincidence-cell counts; models with internal noise were
based on the responses of 10 identical cells for each coincidence-detecting cell in the population.

Human Listeners [7]

Single-channel model

Multi-channel model

Fixed-level masker 17.04 +/- ~2

Without internal noise: 17.83 + 1.98,
with internal noise: 19.36 &+ 2.00

Without internal noise: 18.37 & 2.33,
with internal noise: 18.03 & 2.13.

Roving-level masker 18.96 +/- ~2dB

Without internal noise: 19.82 + 1.73,
with internal noise: 20.36 £ 2.20

Without internal noise: 17.86 4 1.84,
with internal noise: 18.06 & 2.11

tic to consider a population of cells that receive convergent
input from an array of AN fibers tuned across a range of
frequencies, as shown in the next section.

3.2. Multi-channel model

A population of model coincidence-detector cells was
used in the following multi-channel model simulations.
Each cell received two AN inputs; all possible pair-wise
combinations of the set of 27 model AN fibers were in-
cluded in the population of coincidence-detector cells,
including cells with inputs that had matched CFs. All
possible combinations of these fibers were included in
the multi-channel model so as not to make any assump-
tions about which combinations of fibers would con-
tribute to the detection task. The contributions of each
coincidence-detecting cell were weighted in the decision
variable and are illustrated below. As described above,
the multi-channel model simulations were done with and
without including the effects of internal noise. When inter-
nal noise was included, each combination of AN CFs was
represented by 10 statistically identical and independent
model coincidence-detecting cells. The weighted sum of
the counts was used as the decision variable in determining
simulated thresholds with the multi-channel model (see
Methods). Using this strategy, the threshold for the multi-
channel model without internal noise for detection of a
900-Hz tone in a 3-kHz wideband noise with a fixed spec-
tral level of 35 dB SPL was 18.37dB re Ny (Table I). The
multi-channel model with internal noise had a threshold of
18.03dB re Ny. These model thresholds are comparable
to the human threshold of 17.04 dB re /Ny for this stimulus
[7], and to the single-channel model threshold (Table I).
Simulations for the multi-channel model with no internal
noise for a masker level that roved over a 32-dB range
centered at 35dB SPL resulted in a threshold of 17.86 dB
re Ny. The roving-level threshold for the multi-channel
model with internal noise was 18.06dB re /Ny, which is
comparable to the human threshold of 18.96dB re Ny [7].
Note that for both the fixed- and roving-level paradigms,
simulations based on a small set of coincidence-detecting
model cells, with inputs chosen to yield maximal phase op-
ponency, provided a reasonable estimate of the threshold
based on the population response (Table I). For the single-
channel and multi-channel models, both absolute thresh-
old and the robustness of the thresholds in the presence of
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Figure 3. a) Differences in mean counts between the stimulus in-
terval with a tone plus noise and the interval with noise alone
for a population of coincidence-detecting cells. Dark shades rep-
resent a reduction in count upon addition of the tone to the
masker, and light shades represent an increase in count upon ad-
dition of the tone to the masker. b) Weights for the population of
coincidence-detecting cells (see Methods). Dark-shaded weights
are negative, indicating cells that have reduced counts upon addi-
tion of the tone, and light-shaded weights are positive, indicating
cells that have increased rates upon addition of the tone. These
weights were derived from the same simulations as in Figure 3a;
the weights include normalization by the variance of the differ-
ence in mean counts across intervals and thus provide an indi-
cation of the statistical significance of the changes in the count
differences shown in Figure 3a.

roving-level wideband maskers are well explained by the
PO model.

Figure 3a illustrates the differences in mean counts
across intervals used for the multi-channel model pre-
dictions above; the counts are shown for a tone level
6dB above the single-channel model threshold (as de-
scribed above). In this plot, each circle represents a model
coincidence-detecting cell, with the shade of the circle rep-
resenting the difference in mean counts for a cell between
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the stimulus interval with the tone plus masker and the in-
terval with masker alone (Figure 3a). The abscissa rep-
resents the CF of the model cell, which was computed
as the geometric mean of the two AN CFs that provided
the inputs to each coincidence-detecting cell. The ordinate
represents the ratio between the two input CFs*. A subset
of the total population of coincidence-detecting cells, cen-
tered about the tone frequency of 900 Hz, is illustrated in
the plot. This plot illustrates the differences in mean counts
across intervals based on an average across 20 independent
samples of Gaussian noise.

Dark circles indicate cells that decreased their mean
count when the tone was added; light colors indicate cells
that increased their mean count when the tone was added
to the masker noise. In this plot, it is clear that a number of
coincidence-detector cells receiving a range of AN CFs are
influenced by the PO mechanism. Thus, the careful selec-
tion of the single optimal cell (as was done above) is not
a critical factor for this model because perfect phase op-
ponency is not required to yield significant reductions in
mean count upon addition of the tone to the masker. Also,
the range of AN CFs in Figure 3a was selected to illus-
trate results for a population of cells tuned to frequencies
near the 900-Hz tone; however, this plot of the differences
in mean counts shows that the PO mechanism would allow
identification of a tone with unknown frequency added to a
masker, based on the location of cells with depressed rates
within the tonotopic population.

The weights used to compute the multi-channel model
decision variable that were derived from the responses in
Figure 3a are illustrated in Figure 3b. Each model cell’s
weight was computed as the difference in mean counts
across the intervals (as shown in Figure 3a) divided by
the variance of the counts for that cell (see Methods). The
most striking feature in this illustration of the weights is
the dark region indicating negative weights (i.e. the deci-
sion variable increases when the output of these cells de-
creases) for cells that are influenced by phase opponency
(AN CF ratio = 1.15). This region is centered on cells
that receive one AN input tuned below the tone frequency
and one tuned above it. Another important feature of the
weight pattern is that the cells lying along the lowest row
in the population, which receive matched-CF inputs (AN
CF ratio = 1), have weights near zero. Because the dis-
charge rates of the model AN fibers are saturated by the
noise masker, these cells do not convey statistically sig-
nificant information about the addition of the tone in their
discharge rates. Cells that receive inputs tuned to different
CFs can be sensitive to the addition of the tone because
of the relative changes in the temporal patterns of their in-
puts.

4 The CFs of the two AN inputs to each coincidence-detecting model cell
can be computed as follows:

ANgr1 = CDcr/VR, and ANgrs = CDorxVR,
where R is the ratio the two ANCFs, R = AN¢p1/ANcr2, and
CDcp, the CF of the coincidence-detecting cell, is computed as the ge-
ometric mean of the two input CFs.

ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 88 (2002)

a Quiet b No=0
1 A0 S AN 05
0 Tsk o000000000000000
2 N ey 0000004000000
S L, ONNONNE O3 0000000000000
=3 (LTI 000000000000 000¢
N LI 0
o 1 {H00NN00N00000000
= LON000000000000 0.5
o 1} 000
G B
(1]} 05
725 900 1125 725 900 1125
CF (Hz) CF (Hz)
c No =30 d No = 60
1 SOOI NN
e LT ) CON00000000000008 |
o T TP 000NN || (¢
Z 1 2NN S
I (T OO OE
i)
T
o

Figure 4. Multi-channel model weight patterns for tones in quiet
(a) and for three different masker levels,b) 0, ¢) 30, and d) 60 dB
SPL spectral level. Tone levels were set to 6dB SPL in quiet and
to 24 dB re Ny for the three maskers. Note that the grayscale axis
values vary across plots.

Changes in the response variance across the population
of coincidence cells also influence the weight pattern. As
a result, the positive weights of some of the cells that have
increased response counts upon addition of the tone (e.g.,
model cells on the right-hand side of Figure 3b) are rela-
tively low compared to the negative weights in the phase-
opponent (dark) region. When thresholds were estimated
for the multi-channel model, all cells were included, re-
gardless of the sign or magnitude of their weights. How-
ever, for the wideband masker at 35 dB No (Figure 3b), the
reduction in the responses of the phase-opponent cells was
a more statistically reliable feature than was the increase
in rate of the model cells with positive weights.

The details of the weights are influenced by several
factors, including noise level, bandwidth, and tone level.
The stimulus level influences the bandwidth of the non-
linear AN model, and changes in bandwidth are associ-
ated with changes in the phase properties of AN fibers
(e.g. [20, 62, 63]). Thus, the locus of the strongest phase-
opponent cells in the population shifts with changes in
stimulus level (Figure 4). At low sound levels, the PO cells
receive inputs with more similar CFs (AN CF ratio closer
to 1), and at high sound levels, the locus shifts upwards
toward cells that receive AN inputs with more widely sep-
arated CFs. In response to higher sound levels, for which
the bandwidths of AN fibers are broad and phase functions
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are shallow, more distant CFs must be combined to yield
the strongest phase opponency.

The masker bandwidth also influences the weight pat-
tern. The patterns shown in Figure 5 are for several masker
bandwidths, with spectral level fixed at Ny = 35dB SPL
and fixed tone levels 6 dB above the multi-channel model
threshold for each bandwidth. For narrowband maskers,
less masking is produced with the fixed spectral level (as
expected), and the PO mechanism begins to break down.
This change can be seen in the weight pattern for the nar-
rowest band masker (e.g. Figure 5a) by the strong posi-
tive weights for cells tuned near the tone frequency. Be-
cause the narrowband masker noise does not saturate the
AN fibers, addition of the tone results in an increase in
the response count for many coincidence detector cells.
Note that the cells with the strongest positive weights are
still not those that receive matched-CF inputs, but rather
are those which receive inputs that are tuned to slightly
different frequencies, with a ratio of about 1.1, centered
about the tone frequency. Upon addition of the tone to the
noise, there is an increase in the correlation of the tempo-
ral responses of the AN inputs to these cells. Coincidence-
detecting cells that receive inputs tuned to slightly differ-
ent frequencies can have wider dynamic ranges than AN
fibers because they can take advantage of nonlinear phase
cues [20, 63]; these cells can encode increases in stimulus
energy at levels for which the AN fibers (and cells with
matched-CF inputs) are saturated. In the limiting case of
detection of a tone in quiet, the strategy would be to detect
an increase in the responses of the most sensitive cells in
the population, which are the cells along the lowest row
that receive AN inputs with matched CFs. This is a classi-
cal energy-based strategy for detection.

As masker bandwidth increases to the point that cells
tuned to 900 Hz are saturated, the PO mechanism begins
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to outperform the energy-based strategy, as indicated by
the strong negative (dark) weights (Figure 5b—f). In this
case, the strategy becomes detection of a reduction in the
response of the phase-opponent cells.

The variation in threshold as a function of masker band-
width is an important property of any masking model. The
CBE model is based on the systematic increase in thresh-
old as bandwidth increases (with fixed spectral level) up
to a critical band, beyond which thresholds are stable [1].
The same general trend is expected for the PO model; de-
tection thresholds increase as bandwidth is increased for
narrowband maskers. Once the masker bandwidth (and
level) results in saturated responses of the inputs to the
coincidence detectors, the detection threshold remains sta-
ble. The thresholds across a range of bandwidths for the
multi-channel model with internal noise are illustrated in
Figure 6. For each bandwidth, the population weight pat-
tern for that bandwidth (see Figure 5) was used to compute
the decision variable during the simulated tracking algo-
rithm. The thresholds for the multi-channel model without
internal noise (not shown) are very similar to the thresh-
olds with noise; this result is expected because the multi-
channel model combines responses across a substantial
number of model cells, which reduces the effects of in-
ternal noise on the threshold estimates.

For fixed-level maskers at super-critical bandwidths, the
model thresholds (open triangles) are comparable to hu-
man thresholds (filled triangles, Figure 6) [7]. In addition,
at these bandwidths the model’s thresholds are not influ-
enced by roving the masker level (open squares), similar
to results for human listeners (filled squares, Figure 6).
The change in model threshold as a function of masker
bandwidth demonstrates a critical-band-like effect for the
fixed-level maskers (open triangles); thresholds remain
stable for masker bandwidths greater than approximately
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Figure 6. Simulated thresholds for the multi-channel model with
internal noise as a function of masker bandwidth for fixed-level
(0 dB rove) maskers at 35 dB SPL spectral level (open triangles),
and for masker levels roved over a 32-dB range centered at 35 dB
SPL (open squares). For comparison, thresholds of human listen-
ers from Kidd ef al. [7] are also shown for the 0-dB rove (filled
triangles) and the 32-dB rove (filled squares) conditions.

50-100Hz. This effect is not clear for the roving-level
maskers (open squares), because the model thresholds for
narrow (sub-critical band) maskers are strongly affected
by roving the level of the masker. For sub-critical band-
width maskers, for which AN fibers are not saturated, the
model does not account for the human thresholds (filled
squares), especially for roving-level maskers. Sub-critical
band maskers are also the conditions for which human lis-
teners are most affected by roving the masker level (Fig-
ure 6) (e.g. [7, 8]).

4. Discussion

The PO model demonstrates the successful application of
a realistic temporal processing mechanism to the problem
of masked detection. Responses of the model were directly
compared to human performance in detection of a 900-Hz
tone in noise. The first example focused on a simple case
for the purpose of illustration: the use of a single-channel
coincidence-detector model that received inputs from two
model AN fiber CFs. The PO model was then extended to
a multi-channel model using a weighted combination of
model cell responses as a decision variable for simulations
of the psychoacoustical task. The multi-channel model in-
cluded the contributions of cells that had both negative and
positive changes in response counts upon addition of the
tone to the masker. For wideband maskers, the most statis-
tically significant contributions to the population response
were the reductions in response of the phase-opponent
cells. For narrowband maskers, or for very low-level wide-
band maskers, cells with increased rates contribute more
substantially.
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4.1. Limitations of the PO Model

The detection thresholds for both the single-channel and
multi-channel models are similar to those reported for hu-
man listeners in many respects. For super-critical band
maskers, the absolute thresholds of the model are close
to those of human listeners, both for the fixed-level and
roving-level conditions. For a 3-kHz masker, thresholds
were comparable to those of human listeners for roving-
and fixed-level conditions for both the single-channel and
multi-channel models (Table I). In the narrowband con-
dition, the PO mechanism breaks down because the AN
fibers tuned near the tone frequency are not saturated. In
this condition, the most significant changes in the response
of the multi-channel model were increased rates of coinci-
dence cells that received AN inputs tuned to slightly dif-
ferent frequencies (e.g. Figure 5a). However, the encoding
of the added tone by the increased rates of these cells is not
robust to the roving-level paradigm, as seen in the model
results for the roving-level condition at narrowbands (Fig-
ure 6). In order to make use of the increased rates of these
cells, an independent estimate of masker level would be re-
quired. A more sophisticated model that varied the weights
as a function of level during the course of the roving-
level paradigm could make use of the combination of in-
creased and decreased rates across the population of cells;
such a model would be expected to show improved per-
formance for the roving-level narrowband maskers. Nar-
rowband stimuli also contain significant envelope fluctu-
ations that are not taken into account by simple schemes
based on rate cues. These envelope fluctuations influence
the temporal responses of AN fibers because of cochlear
nonlinearity; however, the PO mechanism alone cannot
effectively take advantage of these cues for narrowband
maskers because the AN fibers are not saturated. More
complex models based on a combination of energy cues
and cross-frequency temporal cues should be explored to
test their ability to explain detection of tones in narrow-
band maskers.

The model thresholds provided reasonably accurate pre-
diction of human performance except for the narrowband
roving-level conditions (Figure 6). It is important to point
out that none of the model parameters were adjusted to
match the human thresholds. For example, no internal
noise was added to adjust baseline thresholds, as is of-
ten done in psychophysical models (e.g. [24, 58, 59]). In
this model, the internal noise was represented by statis-
tics based on the discharge counts of actual auditory neu-
rons (e.g. [14, 16, 54]). In addition to the internal noise,
the most important model parameters for threshold deter-
mination were the size of the coincidence window (dis-
cussed above) and the bandwidth of the AN filters. These
bandwidths were based on estimates of human auditory
filters at appropriate noise levels [29] which are incorpo-
rated into the AN model used here [21]. It is likely that
these psychophysically derived estimates of auditory-filter
bandwidths are relatively broad as compared to physio-
logical measures of AN tuning due to the influence of
cochlear nonlinearities (see [60, 64, 65]). However, es-

343



ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 88 (2002)

timates of filter bandwidths based on the notched-noise
masking paradigm seem to provide appropriate “effective”
bandwidths for use in modeling studies of masked detec-
tion (see [66]).

4.2. Extension of the Model to other Masking Phe-
nomena

Further tests of this model for masked detection at low fre-
quencies should explore its ability to generalize to other
phenomena involving noise maskers, such as critical ra-
tios [1, 67], critical bands [68], and notched-noise masked
thresholds (e.g. [69]). The model should also be tested
with masking experiments that have been designed to
quantify the relative contributions of different stimulus as-
pects on detection, such as manipulation of energy cues
and/or temporal cues related to either fine-structure or en-
velope fluctuations (e.g. [8, 9, 10]. In addition, the model
should be tested for detection tasks using non-Gaussian
noise (e.g. [70]). Preliminary tests of the model’s perfor-
mance in predicting results for detection of tones in repro-
ducible noise have been reported [71].

The multi-channel model could be extended to study
masked detection of a tone at an unknown frequency based
on identification of a localized reduction in the response of
a population of coincidence cells to the wideband stimu-
lus. For fixed-level maskers, a reduction in rate indicates
the presence of a narrowband signal, and the place of the
reduced response within the tonotopic map indicates the
frequency of that signal. Human detection thresholds in
repeatable noise with signal-frequency uncertainty are el-
evated by approximately 2—5 dB over fixed-frequency de-
tection thresholds [72]. For a fixed-level masker, an es-
timate of masker level would provide the observer with
information that could focus attention on a subset of the
cells in the population. In contrast, detection of a roving-
frequency tone in a roving-level masker paradigm would
require monitoring of the entire population to identify
the added tone, because the cells within the coincidence-
detection population that provide the reduced response
would vary with overall masker level due to cochlear non-
linearity (Figure 4).

In previous studies, we have used cross-frequency co-
incidence detectors to extract temporal information from
AN responses to tones in quiet over a wide range of tone
levels at both low and high frequencies [20, 63]. The
coincidence-detection mechanism is quite general in that
it provides a realistic processor that is sensitive to changes
in temporal responses as well as to changes in average dis-
charge rate [20]. Strategies for interpreting the responses
of coincidence-detecting cells vary with the CFs of the AN
inputs. These different strategies introduce an important
distinction between the role of coincidence detection in the
model for level discrimination of tones in quiet [20] and
the model presented here for detection of tones in noise.
Coincidence detectors that receive inputs with the same
CFs are most sensitive to tones in quiet, which are detected
by an increase in the response of the cell. Coincidence de-
tectors that receive inputs of similar, but not identical, CFs
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are able to encode changes in tone level over a wide dy-
namic range based on the increase in cross-frequency cor-
relation as level increases, which is due to changes in the
phase of AN fibers with sound level [20]. These model
cells were the most important coincidence-detecting cells
in our model for level-discrimination of tones in quiet. As
shown here, in the presence of a masking noise that sat-
urates the rates of AN fibers tuned near the frequency of
the tone, the most sensitive detection is based on a drop in
the response of coincidence detectors that receive inputs
with CFs that are well separated in frequency, the phase-
opponent cells.

4.3. Physiological Evidence for Coincidence-
detecting Cells

Physiological evidence for phase-opponent coincidence-
detecting cells in the auditory brainstem is a topic for fur-
ther study. Several of the elements suggested in these sim-
ulations have been observed in recordings from the AVCN.
There is a diversity of rate-level functions in the AVCN in
response to pure tones (e.g. [73, 74]); this diversity is ex-
pected for coincidence-detectors receiving different com-
binations of CF inputs from AN fibers. The sensitivity of
AVCN cells to manipulations of the phase spectrum of
transient stimuli (Huffman sequences, in [45]) varies from
cell to cell, consistent with different cells receiving differ-
ent combinations of CF inputs. Finally, in the gerbil, some
cells in the AVCN that respond well to wideband noise
show a decrease in response rate when a tone is added to
the stimulus, which is appropriate for phase-opponent cells
(unpublished observation). A comprehensive study of the
properties of these cells in the context of this model has
not yet been completed. It is clear from the variation of
model thresholds as a function of bandwidth that results
consistent with the critical-band interpretation of masked-
detection data can be obtained by models, such as PO, that
are based on comparisons of responses across different au-
ditory filters as opposed to the response of a single audi-
tory filter.

4.4. Extension of the Model to Higher Frequencies

The PO model can be extended to high frequencies, for
which the temporal responses of AN fibers convey in-
formation about the envelope of complex sounds rather
than their fine-time structure (e.g. [75]). Similar to low-
frequency tone detection, thresholds for detection of high-
frequency tones in wideband noise are not affected by rov-
ing the masker level [76]. A high-frequency model for de-
tection must take into account not only the information
carried in the temporal responses that are phase-locked
to the envelope, but also the information carried in the
average rate. The discharges of low-spontaneous-rate AN
fibers are less effected by rate saturation at high CFs than
at low CFs.

In addition, high-frequency extensions of this model
should consider the potential role of lateral inhibition.
Deng and Geisler [44] discussed the close relationship of
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their cross-correlation model to the lateral inhibition net-
work (LIN) scheme proposed by Shamma [77]. Lateral in-
hibition can be represented as a cross-channel differencing
operation; thus, spectral peaks that produce a reduction in
the output of cross-channel correlation produce a peak in
the output of an LIN operation. Physiological evidence for
lateral inhibition in the cochlear nucleus has been obtained
mainly at high frequencies (e.g. [78, 79]). Based on extra-
cellular recordings of responses to tones masked by noise,
Rhode and Greenberg [78] reported that evidence for lat-
eral inhibition was most clearly present in the responses of
AVCN choppers and cells in the dorsal cochlear nucleus.
However, Caspary et al. [79] used pharmacological tech-
niques to show that the inhibitory responses of both chop-
per and primarylike cells in the AVCN were centered at the
excitatory best frequency, as opposed to being strongest
at frequencies lateral to CF. As they point out, this find-
ing is consistent with anatomical and physiological obser-
vations related to the inhibitory inputs onto AVCN cells.
The changes in the nature of temporal information and
the relative importance of temporal and rate information
at low and high frequencies may lead to the use of differ-
ent neural mechanisms at different frequencies, e.g., co-
incidence detection, lateral inhibition, or combinations of
these mechanisms.

4.5. Implications for Understanding Hearing Im-
pairment

There may be implications of this model for understanding
hearing impairment; damage to the auditory periphery not
only affects the sensitivity of the ear, but also affects its
frequency selectivity [80] and therefore the phase proper-
ties of its responses. Thus, neural processing mechanisms
that involve spatio-temporal encoding schemes are likely
to be influenced by hearing impairment. Models for detec-
tion and discrimination in noise are of particular interest
as the difficulties of hearing-impaired listeners are most
pronounced in noisy environments [80].

The PO model may also provide insight into the dif-
ficulty of noisy environments for cochlear-implant users
(e.g. [81, 82]). Cochlear implants directly stimulate the
AN with electrical current pulses, thus bypassing the dam-
aged auditory periphery. Electrically stimulated AN fibers
are extremely well synchronized [83] and do not contain
the phase delays normally associated with the filters in
the auditory periphery. Thus, although implanted ears have
temporal information that might be considered superior to
that of the healthy ear, they do not have normal spatio-
temporal patterns. In particular, implant responses com-
pletely lack the phase delays critical for a mechanism such
as phase opponency that takes advantage of the informa-
tion in the spatio-temporal discharge patterns of the AN.
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