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ABSTRACT
The mechanisms that control cellular pattern formation in the growing vertebrate

central nervous system are poorly understood. In an effort to reveal mechanistic rules of
cellular pattern formation in the central nervous system, quantitative spatial analysis and
computational modeling techniques were applied to cellular patterns in the inner retina of
the adult zebrafish. All the analyzed cell types were arrayed in nonrandom patterns tending
toward regularity; specifically, they were locally anticlustered. Over relatively large spatial
scales, only one cell type exhibited consistent evidence for pattern regularity, suggesting that
cellular pattern formation in the inner retina is dominated by local anticlustering mecha-
nisms. Cross-correlation analyses revealed independence between the patterns of different
cell types, suggesting that cellular pattern formation may involve multiple, independent,
homotypic anticlustering mechanisms. A computational model of cellular pattern formation
in the growing zebrafish retina was developed, which featured an inhibitory, homotypic
signaling mechanism, arising from differentiated cells, that controlled the spatial profile of
cell fate decisions. By adjusting the spatial profile of this decaying-exponential signal, the
model provided good estimates of all the cellular patterns that were observed in vivo, as
objectively judged by quantitative spatial pattern analyses. The results support the hypoth-
esis that cellular pattern formation in the inner retina of zebrafish is dominated by a set of
anticlustering mechanisms that may control events at, or near, the spatiotemporal point of
cell fate decision. J. Comp. Neurol. 471:11–25, 2004. © 2004 Wiley-Liss, Inc.

Indexing terms: pattern formation; development; Danio rerio; retina

The neural retina of vertebrates has long been recog-
nized as a structure with a high degree of spatial order.
Perhaps the most prominent element of the retina’s cellu-
lar organization is the laminar profile of three nuclear and
two plexiform layers (Müller, 1857; Ramón y Cajal, 1893;
Polyak, 1941). Although less commonly recognized, the
neural retina is also highly organized within its tangential
plane. Hannover (1840) described a nonrandom, square-
like pattern of photoreceptors across the fish retina, and
nonrandom patterns of photoreceptors have subsequently
been reported in many species, including teleosts (for re-
views, see Engström, 1963; Ali and Anctil, 1976; Sten-
kamp and Cameron, 2002) and mammals (e.g., Williams,
1988; Wikler and Rakic, 1990). Nonrandom patterns of
other retinal cells have also been reported across the ver-

tebrate subphylum (e.g., Hibbard, 1971; Wässle and Rie-
mann, 1978; Podugolnikova, 1985; Kouyama and Mar-
shak, 1997; for reviews, see Cook and Chalupa, 2000;
Reese and Galli-Resta, 2002). These nonrandom cellular
patterns are believed to be of fundamental importance to
the retina’s ability to process the visual scene.
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In contrast to invertebrates, however (notably the Dro-
sophila eye; for reviews, see Zipursky and Rubin, 1994;
Bonini and Choi, 1995; Kopan and Cagan, 1997), the
mechanisms that underlie cellular pattern formation in
the vertebrate central nervous system are poorly under-
stood. For example, in the vertebrate retina the identity
and spatial profiles of the molecular signals that regulate
cellular pattern formation are mostly unknown, the spa-
tial correlations between the patterns of distinct cell types
are not entirely established, and the long-range spatial
attributes of these cellular patterns have not been fully
characterized. To improve our understanding of the struc-
ture and assembly of cellular patterns in the central ner-
vous system, the present study applied auto- and cross-
correlation spatial analyses, as well as computational
modeling techniques, to the investigation of cellular pat-
terns and pattern formation in the inner retina of the
zebrafish.

We report that cellular pattern formation in the inner
retina of zebrafish seems to be dominated by a set of
homotypic anticlustering mechanisms. With the possible
exception of PKC-positive bipolar cells, there was little
evidence to suggest the operation of spatial organizing
mechanisms that operate across long spatial scales. Evi-
dence for independence between cellular patterns was ob-
served, suggesting that homotypic cellular patterns them-
selves may not provide instructive patterning cues for
other cell types.

A computational model of cellular pattern formation
during zebrafish retinal growth was developed, which fea-
tured a relatively simple, inhibitory mechanism for con-
trolling cell fate decisions during retinal growth. This
model provided good estimates of all the empirically ob-
served cellular patterns, regardless of a cell’s type or in-
trinsic density. These results suggested that cellular pat-
tern formation in the inner retina of zebrafish may be
dominated by a set of homotypic, anticlustering signaling
mechanisms that operate over relatively short spatial dis-
tances and that may control pattern formation at, or prox-
imal to, the spatiotemporal point of cell fate decision.

MATERIALS AND METHODS

Tissue processing and pattern analyses

All experiments utilizing zebrafish were approved by
the Committee for the Humane Use of Animals, SUNY
Upstate Medical University. For all experiments retinas
were isolated from light-adapted adult zebrafish (Danio
rerio) that were approximately 2.5 cm in standard length.
The methodology for selectively labeling cells in zebrafish

retinal whole mounts has been described previously (Cam-
eron and Carney, 2000). Briefly, retinas were isolated
from euthanized animals (exposure to 0.2% tricaine fol-
lowed by exsanguination), fixed (4% paraformaldehyde/
0.25% picric acid/0.1 M PO4 buffer; pH 7.2), and processed
for indirect fluorescence immunohistochemistry using two
of the following primary antibodies: anti-PKC (rabbit;
Chemicon, Temecula, CA), anti-serotonin (rat; anti-5-HT;
Chemicon), anti-somatostatin (rabbit; DiaSorin, Stillwa-
ter, MN); anti-substance P (rabbit; DiaSorin), or anti-
tyrosine hydroxylase (mouse anti-TH; Chemicon). Pri-
mary antibody labeling was visualized via secondary
antibody conjugated with a fluorophore (fluorescein iso-
thiocyanate [FITC]- or tetramethylrhodamine isothiocya-
nate [TRITC]-conjugated; Sigma, St. Louis, MO). For
double-labeled retinas the antibodies were selected so that
different fluorophores were associated with the two pri-
mary antibodies (e.g., rat anti-5-HT and mouse anti-TH).
Epifluorescence observation of reacted whole mounts was
performed with a Zeiss Axioskop microscope, and digital
images were collected (e.g., Fig. 6; Metamorph, Universal
Imaging, Downingtown, PA).

For each labeled whole mount, circular fields were se-
lected for analysis (Cameron and Easter, 1993). The sam-
pled fields were digitized, and each cell was assigned a
coordinate position within two-dimensional space (1-�m
resolution). For each sampled field the pattern of labeled
cells was quantitatively analyzed using nearest neighbor
distance (NND), density recovery profile (DRP), and quad-
rat analyses. The NND and DRP analyses were performed
in either auto- or cross-correlation mode, the former in-
volving homotypic cells and the latter involving cells of
two different types. For example, in an auto-NND (aNND)
analysis, the distance to the nearest homotypic cell is
determined, whereas in the cross-NND (cNND) analysis,
the distance to the nearest heterotypic cell is determined.
Details of the attributes, application, and statistical test-
ing of these spatial analysis techniques have been pro-
vided previously (e.g., NND: Cook, 1996; Cameron and
Carney, 2000; DRP: Rodieck, 1991; Cameron and Carney,
2000; Stenkamp et al., 2001; quadrat analysis: Stenkamp
et al., 2001). Quadrat analysis, which provides a profile of
a pattern’s long-range characteristic (regularity, aggrega-
tion, or neither regular nor aggregated), involves sequen-
tially parceling a sampled region into grids of dimension
(N � N), with N ranging from 1 to 10. For each grid, a
dispersion “index” was derived, which was referred to the
expected values for a pattern that was either regular,
aggregated (clumpy), or neither (see p. 62 of Grieg-Smith,
1964). As in a previous study (Stenkamp et al., 2001),
statistical significance (P � 0.05) was observed for all
analyzed cellular patterns, for N � 9 (i.e., abscissas of Fig. 7).

Computational modeling

A computational model of cellular pattern formation in
the inner retina of zebrafish was developed within the
MatLab environment (Math Works, Cambridge, MA). The
foundation of this model is the hypothesis that during
retinal growth in the zebrafish, cellular pattern formation
is regulated, at least in part, by signals that control the
spatial profile of cell fate decisions at the circumferential
germinal zone (CGZ).

The model consists of two “cellular” components that
mimic the cellular organization of the teleost retina: an
annular band of precursor cells (analogous to the CGZ,

Abbreviations

aDRP autocorrelation density recovery profile
aNND autocorrelation nearest neighbor distance
cDRP cross-correlation density recovery profile
CGZ circumferential germinal zone
cNND cross-correlation nearest neighbor distance
DRP density recovery profile
5-HT serotonin
NND nearest neighbor distance
PKC protein kinase C
Som somatostatin
Sub P substance P
TH tyrosine hydroxylase
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from whence new cells are generated and appositionally
added to the retina throughout life; for review, see Powers
and Raymond, 1990), juxtaposed to a central, two-
dimensional field of differentiated cells (Fig. 1). The latter
serves as a “seed” of differentiated cells and is derived
directly from the empirically observed cellular patterns of
this report.

The dynamic growth aspect of the model is as follows.
Along an arc of the precursor cells, individual cells either
will, or will not, become the same cell type as in the central
seed. (For computational simplicity, the current model
was restricted to the generation of a single type of cell.) As
time progresses the band of precursors grows outward,
away from the seed, leaving a two-dimensional distribution
of newly differentiated cells in its wake. These precursor
cells are arrayed in a random spatial pattern—which in
terms of this study represents a worst-case, but analytically
well-defined, scenario—but any two-dimensional pattern
can be imposed. The rate of outward vectorial growth is a
model variable, and we note that the amount of retinal area

added per unit time in vivo may be a constant (Cameron,
1995). To mimic the geometry of actual retinal growth, the
model operates within polar coordinates.

Independent model parameters were estimated from
histological observations of adult zebrafish retina. These
parameters were the density and distribution of undiffer-
entiated precursor cells (the former was estimated from
inspection of cryosections through adult zebrafish retinas
to be approximately 5,100 cells/mm2, and values above
this did not affect the results), and the width of the band
of undifferentiated precursors (set at 50 �m). Simulations
indicated that these are critical parameters in the model:
large-scale alterations to these anatomy-based parame-
ters could hinder the model’s ability to recapitulate cellu-
lar patterns (e.g., CGZ widths of greater than 200 �m, or
densities of precursor cells that were too low.). Because
such alterations are poor representations of the retinal
organization in situ, they are not discussed in detail in
this report.

In the current model the signal that controls cell fate
decision is derived directly from differentiated cells and
functions to inhibit the precursor cells’ acquisition of the
homotypic cell fate (Fig. 2). The spatial profile of the signal
is a first-order decaying exponential that originates from
each seed cell (with amplitude at the source defined as
�1.0). The mean and variance of the exponential func-
tion’s space constant (�i) are independent variables, set
prior to each simulation; for the simulations in this report,
the standard deviation was set to 10% of the mean. Vari-
ation in the spatial profile of the signaling mechanism was
included in the model because of the recognized complex-
ity (nonlinearity) of the spatial profiles of signaling mech-
anisms in situ (Strigini and Cohen, 1999; Vincent and
Dubois, 2002). Lateral movements of differentiated cells
(e.g., Diaz-Araya and Provis, 1992; Robinson and Hen-
drickson, 1995; Reese et al., 1995, 1999; Eglen et al., 2000;
Eglen and Willshaw, 2002) are allowed by the model but
were not invoked in the current study because they did not
significantly affect the outcome (see Results).

The model operates in the following manner. Along the
band of precursor cells in the CGZ (limited to an arc of
120° to reduce computational time), a cell within 50 �m of
a differentiated cell is randomly selected. The summed
amplitude of the inhibitory signal, which emanates from
all the differentiated cells in the sample, is then calculated
for that location (Fig. 2). If the signal amplitude is above
some threshold value (an independent variable that is set
relative to the signal amplitude at an individual source
cell), the precursor cell is “inhibited” and remains undif-
ferentiated. Another precursor cell in the CGZ is then
randomly selected, and the process is repeated. If the
signal amplitude is below the preset threshold value, the
precursor cell acquires the cell fate of the seed and imme-
diately begins to emit the inhibitory signal with space
constant of �i at the preset mean and standard deviation.
Note that for all subsequent evaluations, the inhibitory
signal arising from this new “differentiated” cell contrib-
utes to the overall spatial profile of the inhibitory signal
across two-dimensional space. The process of randomly
selecting precursor cells within 50 �m of the seed is re-
peated until all cells have been sampled, at which point a
new set of randomly positioned CGZ cells is appositionally
added to the periphery—that is, the model retina is driven
to grow outward—and the process of precursor cell eval-
uation is repeated. For each simulation, the number of

Fig. 1. Schematic of retinal growth in the computational model.
The model starts (top) with an empirically derived seed of a two-
dimensional cellular pattern, illustrated by the open circles (in this
case, TH-positive cells) juxtaposed to an encircling band of undiffer-
entiated cells (i.e., a model CGZ), illustrated by the filled symbols
(symbols are not to scale). For simplicity, only a hemicircle of retina is
illustrated. The outward-going, spoke-like dotted lines indicate de-
grees, and the annular dotted lines (500 and 1,000) indicate radial
distance in micrometers. Like the situation in vivo, the model retina
“grows” outward (arrows) by adding new cells to the retinal margin
(crossed circles, bottom). These new cells are derived directly from
CGZ cells that differentiate into that particular cell type, without any
subsequent lateral movement. New CGZ cells are added to the pe-
riphery of the CGZ in a random two-dimensional pattern, and the
process continues. The signaling mechanism(s) that controls whether
or not a particular CGZ cell differentiates is presented in Materials
and Methods.
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CGZ additions (i.e., the absolute radial distance of retinal
growth) is set.

The current model has several features that distinguish
it from earlier models of cellular pattern formation in the
teleost retina (e.g., Takesue et al., 1998; Tohya et al.,
1999). These features include operating within polar coor-
dinates to mimic the geometry of actual retinal growth (as
opposed to the rectilinear coordinates of earlier models),
the lack of a pre-existing nonrandom lattice of compart-
ments within which differentiated cells are forced to re-
side, and the allowance of signaling mechanisms that
extend beyond that of direct soma-to-soma contact (e.g., a
diffusible signaling mechanism, or a dendrite-like cell con-
tact mechanism). The latter attribute of the model is par-
ticularly important because, for example, diffusible agents
have been implicated in vertebrate retinal development,
including zebrafish (e.g., retinoic acid, Hyatt et al., 1996;
sonic hedgehog, Stenkamp et al., 2000; Neumann and
Nuesslein-Volhard, 2000).

RESULTS

The labeled cells in this report are designated as belong-
ing to a certain cell type, with the word “type” signifying
only the positive immunohistochemical labeling. Five dif-
ferent inner retinal cell types were analyzed for this study,
and all labels were non-overlapping. The somata of all
these cell types were located within the inner nuclear
layer. Based on earlier investigations of fish retina (Mar-
shak et al., 1984; Yazulla et al., 1985; Dowling, 1987;

Yazulla and Zucker, 1988; Suzuki and Kaneko, 1990;
Cameron and Carney, 2000), the cells were identified as
subsets of the amacrine (5-HT-, somatostatin-, and sub-
stance P-positive), interplexiform (TH-positive), and bipo-
lar (PKC-positive) cell classes.

Fig. 3. Representative cellular patterns and NND and DRP anal-
yses. Top row: Examples of cellular patterns from double-labeled
zebrafish retinas. The indicated cell types are immunopositive for
antibodies against tyrosine hydroxylase (TH), somatostatin (Som), or
serotonin (5-HT). Second row: Nearest neighbor distance (NND)
results for the patterns illustrated in the top row. For each cell type
the plots indicate the fraction of the total number of cells within that
type that have a particular NND value. Autocorrelation NND results
are indicated by the solid and dashed lines; cross-correlation NND
results are indicated by the solid and open bars, with the “direction”
of analysis indicated in the key. Third row: The autocorrelation
density recovery profile (aDRP) results of the same patterns, with the
solid and open bars assigned to the indicated cell types. The horizon-
tal solid line indicates the overall density of the cell type assigned to
the white bars, and the horizontal dashed line indicates the overall
density of the cell type assigned to the solid bars. In DRP analysis,
each analyzed cell in a pattern was assigned to abscissa value 0, and
the “recovered” density of like-type cells was plotted as a function of
annular distance away from each analyzed cell (as in Rodieck, 1991).
Bottom row: The cross-correlation DRP (cDRP) results of the same
patterns. The solid and open bars correspond to the indicated “direc-
tion” of analysis; for example, TH � Som denotes that TH-positive
cells were the starting points of analysis, and the target cells were
somatostatin-positive. The solid and dashed horizontal lines in the
cDRP plots thus correspond to the density of the same target cell type
as in the corresponding aDRP plot.

Fig. 2. Schematic of the signaling mechanism used in the compu-
tational model of cellular pattern formation. Each differentiated cell
of a particular type is the source of a signal (dark color) that decays
exponentially over distance with some space constant (�i; eight differ-
entiated cells are shown, which appear as the darkest profiles in the
bottom half of the figure). This signal, when present at suprathreshold
levels, inhibits precursor cells within the CGZ from acquiring the fate
of the source cells. (Seven precursor cells are shown, indicated by

black diamonds.) An arbitrarily chosen threshold level is illustrated
as the thick contour line running from left to right on the figure. The
precursor cells below this line (n � 2 in this example) are inhibited,
whereas those above the line, given the current distribution of the
inhibitory signal, could acquire the fate of the source cells. By select-
ing the appropriate values of �i and threshold, the model generated
good estimates of all the empirically observed cellular patterns (see
Results and Figs. 9 and 10).
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Figure 3



Fig. 4. Representative cellular patterns and NND and DRP analyses. The layout and attributes of the
figure are identical to those of Figure 3. In this case, the displayed and analyzed cell types are
immunopositive for antibodies against 5-HT, Sub P, and PKC. For abbreviations, see list.



Autocorrelation analyses of
cellular patterns

Representative examples of eight cellular patterns from
four retinas are presented along the top row of Figures 3
and 4. The aNND (autocorrelation NND) distribution for
each of the displayed examples is provided immediately
below each pattern (solid lines, second row of Figs. 3 and
4). The NND distribution for a random set of points would
follow a Rayleigh distribution (Wässle and Riemann,
1978), and the normal distribution of the aNND data
suggested that the patterns were therefore not random.
The aNND data were always significantly different (P �
0.05, independent t-test) from the NND derived from sim-
ulated random patterns that were “matched” to the data
by having the same number of non-overlapping cells
within the same two-dimensional area. This statistical
difference was confirmed by the conformity ratio analysis
of Cook (1996): each cell type was arrayed in a two-
dimensional pattern that was significantly different (at
P � 0.05) from the value expected for a random distribution
(cf. open symbols and horizontal line of Fig. 5A; Table 1).

For each cell type the effective radius values derived
from the aDRP analysis revealed that anticlustering was
a dominant characteristic of the patterns (open symbols of
Fig. 5B; Table 1), that is, for each soma of a given cell type
the surrounding two-dimensional space consisted of a rel-
atively large area that was free of somata of homotypic
cells. These exclusion zones—graphically evident as an
absence of “recovered” density at low abscissa values in
the aDRP plots of Figures 3 and 4 (third row)—were on the
order of 3–10 times larger than the diameters of individ-
ual somata (Cameron and Carney, 2000; cf. the effective
radius values of Table 1 with the somata pictured in Fig.
6). This result indicated that the anticlustering phenom-
ena could arise from signaling mechanisms with spatial
profiles that extend beyond that mediated by direct soma-
to-soma contact, e.g., signals that are diffusible or are
delivered via cellular projections such as dendrites. Fur-
thermore, because the cellular patterns at the peripheral
retina (from whence new retinal cells are generated and
appositionally added to the teleost retina throughout life)
and more central regions are similar (Fig. 6), it was con-
cluded that the observed two-dimensional patterns are
established proximal to the point of cellular differentia-
tion, with minimal subsequent modification by “second-
ary” patterning mechanisms.

Quadrat analysis provided a statistical evaluation of the
long-range pattern characteristics of each cell type, in
which the long-range profile of a two-dimensional pattern
was judged to be either regular, aggregated (clumped), or
neither regular nor clumped (e.g., random; David and
Moore, 1954; Ripley, 1981; Stenkamp et al., 2001). For
each analyzed pattern, the statistical significance of each
dispersion “index” value was determined (see Materials
and Methods). In approximately 70% of the analyzed pat-
terns (16/23, Table 1), quadrat analysis revealed no sta-
tistically significant evidence for a nonrandom pattern
characteristic, either regularity or aggregation (P � 0.05,
�2 distribution; Fig. 7 and Table 1), rather, most patterns
exhibited long-range profiles that were indistinguishable
from those expected for a randomly distributed set of
points (i.e., most functions fall within the gray fields of
Fig. 7). These results indicated that the nonrandom mech-
anisms that regulate cellular pattern formation over rel-

Fig. 5. Summary of NND and DRP analyses. A: Conformity ratios
(mean 	 SD) derived from aNND and cNND analyses (conformity ratios
are [mean/SD] of each NND), pooled for each cell type and cell-type
pairing. For the latter, the denoted cell type is the “target” of the cNND
analysis. Autocorrelation analyses for each cell type (open symbols) had
pooled conformity ratios that were significantly different (see Table 1) from
that expected for a random distribution of points (approximately 1.9, solid
line; Cook, 1996). In contrast, analyses of distances between two cell types
had pooled conformity ratios that were not significantly different from that
expected for random distributions (see Table 2). B: The pooled values of
effective radius (mean 	 SD; Rodieck, 1991) derived from aDRP and cDRP
analysis of each cell type or cell-type pairing, as in A. In the aDRP conditions
(open symbols), each cellular pattern was characterized by a relative large
area encircling each soma that was devoid of homotypic somata. This result
was graphically evident as near-zero “recovered” density at low values along
the abscissa of the aDRP plots of Figures 3 and 4 (see also Table 1). In
contrast, for each target cell type the effective radius values in the cDRP
conditions (solid symbols) were always smaller, indicating a comparative
lack of cellular exclusion between the somata of different cell types. For
abbreviations, see list.
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atively short distances—inferred from both the aNND and
aDRP analysesdo not typically manifest any significant
nonrandom pattern characteristics over relatively long
spatial scales. Additionally, although such mechanisms
could not be formally ruled out, the operation of long-
range spatial organizing mechanisms during pattern for-
mation was not evident.

An exception to this general rule was consistently ob-
served. PKC-positive cells, likely to be ON-type bipolar
cells (Suzuki and Kaneko, 1990), were always arrayed in
patterns that were regular over long spatial distances (i.e.,
the quadrat analysis functions always fell below the gray
field in Fig. 7). It was thus not possible to rule out the
possibility that long-range signaling mechanisms control
cellular pattern formation for this cell type, although the
requirement of such a mechanism is not formally required
for any regular pattern. The quadrat analysis profiles of
the PKC-positive bipolar cells were reminiscent of those
determined for the cone photoreceptor patterns of normal
goldfish retina (Stenkamp et al., 2001).

Cross-correlation analyses of
cellular patterns

Visual inspection revealed no overt spatial correlations
between the patterns of different cell types (top row of
Figs. 3 and 4). This qualitative observation was supported
by objective, quantitative analyses. The cNND (cross-
correlation NND) distributions were consistently shifted
to lower values in the distance dimension than the aNND
distributions (cf. histogram and line graphs of the NND
plots, second row of Figs. 3 and 4), implying a decrease in
the size of the cellular exclusion zones. Conformity ratio
analysis (Cook, 1996) of the cNND distributions revealed
values that were significantly lower than those for the
aNND condition (P � 0.03, independent t-test; Fig. 5A).

Conformity ratio analysis of the cNND pairings also re-
vealed that greater than 60% of the pairings were arrayed
in patterns that were statistically independent of one an-
other (P � 0.05; values denoted with asterisks in Table 2);
for example, for each cell the somata of a heterotypic cell
were not excluded from the local area.Most of the remain-
ing cell pairings, which had sample sizes too low for sta-
tistical evaluation (italicized values in Table 2), had con-
formity ratios that were consistent with independence
between the cellular patterns (cf. solid symbols and dotted
line of Fig. 5A; Cook, 1996).

The inference of independence between the patterns of
heterotypic cells was supported by the cDRP analysis (bot-
tom row of Figs. 3 and 4). The effective radius values in
the cDRP condition were consistently lower than those
observed for the aDRP condition (Fig. 5B; Tables 1, 2).
These differences were statistically significant for all an-
alyzed cell-type pairs (P � 0.004; independent t-test). Rel-
ative to the aDRP condition, the cDRP plots consistently
revealed a lower distance along the abscissa at which the
heterotypic cell’s density (as opposed to the homotypic
cell’s density) was recovered (cf. the exclusion zones of the
corresponding aDRP and cDRP plots of Figs. 3 and 4).
Because both the conformity ratio and effective radius

Fig. 6. Evidence for the establishment of inner retinal cell pat-
terns proximal to the point of cellular differentiation. For serotonin
(5-HT)-positive cells (top) and somatostatin-positive cells (bottom),
there is little difference in the two-dimensional patterns of cells in
central (to the right of each panel) or peripheral retina, right up to the
retinal margin (white arrows). Similar observations were made for
each of the other cell types analyzed in this report. These pattern
characteristics suggested that the observed two-dimensional patterns
are established near the point of cell fate decision, with minimal
subsequent modification. Scale bar � 100 �m.

TABLE 1. Autocorrelation Spatial Analysis Results for Cells in the Inner
Retina of Adult Zebrafish1

Cell type

Nearest
neighbor

(�m; mean
	 SD, n)

Conformity
ratio2

(mean/SD
of NND)

Effective
radius

(�m; from
aDRP)

Quadrat
result3

PKC-positive 18.7 	 3.5 (63) 5.3 14.9 Regular
19.6 	 4.2 (522) 4.7 15.8 Regular
13.3 	 2.3 (281) 5.8 11.5 Regular

5-HT–positive 53.3 	 15.6 (275) 3.4 40.6 Regular
45.7 	 12.9 (46) 3.5 39.5 Random
44.9 	 13.3 (180) 3.4 36.5 Random
42.2 	 11.5 (49) 3.7 44.1 Regular
46.0 	 19.5 (39) 2.4 32.3 Random

Som-positive 101.6 	 37.8 (25) 2.7 58.8 Random
87.6 	 18.0 (16) 4.9 82.7 Random
78.8 	 22.4 (18) 3.5 70.9 Random
73.2 	 14.6 (24) 5.0 56.7 Random
67.7 	 8.8 (18) 7.7 63.3 Random

Sub P-positive 102.7 	 28.3 (12) 3.6 103.6 Random
81.2 	 25.9 (14) 3.1 45.9 Random
83.1 	 27.6 (10) 3.0 54.9 Random

109.8 	 24.4 (10) 4.5 69.2 Random
90.2 	 26.6 (11) 3.4 71.2 Random

TH-positive 78.0 	 21.4 (173) 3.6 69.4 Random
53.5 	 19.5 (8) 2.7 29.5 Random
79.1 	 15.3 (67) 5.2 75.2 Random
61.0 	 14.8 (29) 4.1 53.4 Regular
58.8 	 13.2 (31) 4.5 45.3 Regular

1For abbreviations, see list.
2Italicized conformity ratio values, because of low sample size, cannot be judged as
being different from a random distribution (Cook, 1996).
3The term “random” indicates a pattern that is neither aggregated nor regular. Pattern
type and statistical significance of the analysis were determined as previously described
(Stenkamp et al., 2001).
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values in the cross-correlation analyses were independent
of the direction of cell-to-cell analysis (i.e., measuring from
cell type “A” to cell type “B,” and vice versa), it was
concluded that differences in cellular densities did not
introduce artifactual, positive correlations between cell
patterns (Table 2). The quantitative, cross-correlation
analyses thus supported the hypothesis that the different
inner retinal cell types analyzed in this study were ar-
rayed in spatial patterns that were independent of one
another (Rockhill et al., 2000).

Computational modeling

To evaluate further the hypothesis that anticlustering
mechanisms account for cellular pattern formation in the
inner retina of zebrafish, a computational model of cellu-
lar pattern formation during retinal growth was devel-
oped. This model attempted to mimic the geometry of
life-long retinal growth in zebrafish, with cellular patterns
formed across two-dimensional space from a band of pre-
cursor cells at the retinal margin (Fig. 1; see Materials

Fig. 7. Summary of quadrat analyses. In each panel the quadrat
number (i.e., the total number of square parcellations superimposed
upon each sampled region; (N � N) from Materials and Methods) is
plotted as a function of the dispersion “index” (actually a statistic)
derived for each analyzed pattern of that particular cell type, as in
Stenkamp et al. (2001). Statistical significance was observed for all
quadrat numbers � 9 (Grieg-Smith, 1964). In each panel, the func-
tions for individual cellular patterns are indicated by the solid lines,
and the gray field is that region within which dispersion index values
for nonregular or nonaggregated (e.g., random) patterns would be

expected. For PKC-positive cells, every analyzed pattern was statis-
tically regular (i.e., the functions were all below the grey field). For
TH- and 5-TH–positive cells, most patterns were nonregular and
nonaggregated, that is, most functions were completely within the
gray field. For somatostatin-positive cells (and substance P-positive
cells; data not shown) all the analyzed patterns were nonregular and
nonaggregated. These results suggested that with the exception of
PKC-positive cells, over large spatial extents most cellular patterns
were not statistically different from random patterns. For abbrevia-
tions, see list.
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and Methods). A relatively simple, lateral inhibition rule
of cell fate acquisition was chosen for the initial modeling
work. This inhibitory signal was released from all differ-
entiated cells within the seed, and it inhibited precursor
cells within the CGZ from acquiring the same fate as the
seed cells (Fig. 2). Because the intrinsically low planimet-
ric density limited the statistical significance of quantita-
tive pattern analyses (Tables 1, 2), the patterns of sub-
stance P-positive cells were not utilized in the modeling
work.

The initial modeling tests were aimed at determining
whether model patterns could be generated with NND
values that matched that of the corresponding seed. The
results of these tests are presented in Figure 8, in which
one of the free variables, �i or threshold, was varied as the
other was held at a constant value. (All other model pa-
rameters were held constant across all simulations pre-
sented here.) For every seed pattern that was analyzed,
values of �i and threshold were found for which the dif-
ference of the mean NND values for the seed and model
patterns was estimated to be zero. When �i was repre-
sented as a normalized value relative to the NND of the
individual data sets (i.e., �i/NNDdata), and threshold was
held constant at 1.0, no statistically significant differences
were found between cell types, with the pooled values of
(�i/NNDdata) being 1.14 	 0.09 (mean 	 SD; Fig. 8A).
When threshold was similarly analyzed with (�i/NNDdata)
held constant at 1.0, there was again no significant differ-
ence between cell types, with the pooled threshold values
being 0.89 	 0.24 (Fig. 8B).

These results indicated that for all of the analyzed cel-
lular patterns, and across the different cell types, NND
matches could be achieved between data and model pat-
terns using a common set of threshold and (�i/NNDdata)
values. This cell-type–independent feature was based on
the model’s hypothesized anticlustering signaling mecha-
nism, represented by �i, being spatially correlated with

Fig. 8. Determination of optimal nearest neighbor distance
(NND) matches between empirical and model cellular patterns.
Either �i or threshold was varied (while the other was held con-
stant), in an effort to determine whether the model could generate
good matches between the data and model patterns, as defined by
a difference between the respective mean NNDs (
NND) that was
zero. Successful matches were determined for all the analyzed
patterns, estimated by linear regression of each data file’s 
NND
function. Note that in all cases, model patterns that were either too
dense, or too sparse, could also be generated as a result of inap-
propriate values of �i and/or threshold. A: With threshold held at
unity, a value of �i was inferred for each data file at which 
NND
was zero (to simplify graphical comparison across different data
files and cell types, �i and 
NND are plotted normalized to NND-
data, the mean NND of the relevant seed). Across all cell types, the
pooled values of (�i/NNDdata) at which (
NND � 0) was 1.14 	 0.09
(mean 	 SD), with no statistical differences observed between
cell types (independent Student’s t-test). B: With (�i/NNDdata)
held at unity, a threshold was inferred for each data file as above.
Across all cell types, the pooled values of threshold at which
(
NND � 0) was 0.89 	 0.24, estimated as above. For both panels:
circles, PKC-positive cells; squares, TH-positive cells; upward tri-
angles, somatostatin-positive cells; downward triangles, serotonin-
positive cells.

TABLE 2. Cross-Correlation Spatial Analysis Results for Cell-Type Pairs in
the Inner Retina of Adult Zebrafish1

Cell type pair2
Nearest neighbor

(�m; mean 	 SD, n)

Conformity
ratio3

(mean/SD
of NND)

Effective radius
(�m; from

cDRP)

PKC 3 Sub P 82.5 	 46.1 (522) 1.8* 7.8
PKC 3 TH 32.2 	 13.9 (63) 2.3* 12.6
5-HT 3 Sub P 75.3 	 44.1 (46) 1.7* 18.3

61.3 	 27.5 (49) 2.2* 8.5
5-HT 3 TH 50.3 	 22.5 (275) 2.2 17.9
Som 3 Sub P 57.7 	 30.5 (16) 1.9* 18.4

54.6 	 24.4 (18) 2.2 23.7
Som 3 TH 47.6 	 20.7 (25) 2.3* 19.6

33.7 	 16.9 (18) 2.0 10.1
36.9 	 17.8 (24) 2.1* 9.4

Sub P 3 PKC 12.1 	 4.1 (12) 3.0 11.7
Sub P 3 5-HT 29.9 	 11.6 (10) 2.6 46.5

28.4 	 19.4 (10) 1.5 8.5
Sub P 3 Som 48.4 	 19.2 (14) 2.5 18.4

44.3 	 20.1 (11) 2.2 23.7
TH 3 PKC 13.7 	 1.6 (8) n/a 12.6
TH 3 5-HT 51.1 	 36.8 (173) 1.4* 16.0
TH 3 Som 88.6 	 48.4 (67) 1.8* 19.6

43.5 	 23.3 (29) 1.9* 10.1
38.2 	 16.3 (31) 2.3 9.4

1For abbreviations, see list.
2The “direction” of analysis (e.g., measuring NND from PKC-positive to substance
P-positive cells) is indicated.
3Conformity ratio values denoted by an asterisk are not significantly different from
those expected for uncorrelated patterns (at P � 0.05; Cook, 1996). Values in italics
were interpreted as in Table 1.
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each cell type’s local anticlustering pattern attribute, as
represented by the NND distribution. Additionally, the
values of �i were suggestive of a signaling mechanism that
is either diffusible in nature or is delivered via cellular
projections that extend beyond direct soma-to-soma con-
tact (cf. the inferred �i values of Fig. 8A with the soma
sizes evident from Cameron and Carney, 2000 and Fig. 6
of this report). Because of this implied generality in the
signaling mechanism for pattern formation, for all subse-
quent modeling the values of threshold and (�i/NNDdata)
were held constant at 1.0 and 1.14, respectively.

The second tier of modeling experiments was aimed at
determining whether these average, cell-type–independent
signaling parameters produced model patterns with DRP
and quadrat profiles that matched those of the empirical
data, that is, determining whether local and long-range pat-
tern characteristics of the model patterns matched those of
the corresponding seeds. Two examples of cellular patterns
generated by the model are illustrated in Figure 9, and the
corresponding quantitative spatial analyses are presented in
Figure 10. These results are representative of those derived
for the other cell types. Visual inspection of the seeds and
their corresponding model patterns reveal similarities in
patterning (Fig. 9). The qualitative similarities were sup-
ported by the quantitative spatial analyses. Specifically, for
each seed that was analyzed, the derived model pattern had
similar spatial characteristics, as judged by the NND, quad-
rat, and DRP analyses. Two examples are illustrated in
Figure 10. Expressed as a percentage and pooled across all
analyzed data files (n � 13), the mean NND values for the
seed and model patterns differed by 0.11 	 7.2% of the
empirical NND, and the effective radius values differed by
�7.3 	 23.1% of the empirical effective radius values. Quad-

rat analysis revealed that all the model patterns had profiles
that were similar to the corresponding seed (either regular,
or neither regular nor aggregated, as in Fig. 7). No post-
differentiation manipulations of cellular patterns, such as
tangential cellular movements, were required in the model
to attain good matches between the seed and the model
patterns. These results indicated that the hypothesized sig-
naling mechanism, which controls the spatiotemporal profile
of cell fate decisions during retinal growth, could generate
model cellular patterns that closely matched those of the
empirically observed patterns, as judged by three different
spatial pattern-analysis techniques.

DISCUSSION

The results of this study suggest that cellular patterns
in the inner retina of adult zebrafish—and their formation
during retinal growth—are characterized by general orga-
nizational principles. First, the somata of a given cell type
are arrayed within two-dimensional patterns that are
characterized by anticlustering. Second, for most cell
types there is little evidence for long-range, nonrandom
pattern features. Third, the patterns of different cell types
are often independent of one another. The generality of
these results motivated the development of a computa-
tional model of cellular pattern formation in the zebrafish
retina, which in turn suggested that a relatively simple
signaling scheme—modeled as a spatiotemporal regula-
tion of cell fate decisions—could account for all the ob-
served cellular patterns. These principles, and hypothe-
sized mechanisms of cellular pattern formation, are
discussed below.

Fig. 9. Model cellular patterns for TH-positive (left) and PKC-
positive cells (right) in adult zebrafish retina. For each simulation,
threshold was set to 1.0, and (�i/NNDdata) was set to 1.14 (see Results).
In each panel the seed pattern of empirically derived cells is indicated
by the open circles, and the model pattern is indicated by the filled
circles (symbol sizes not to scale). The boxed regions within each

pattern indicate those regions that were quantitatively analyzed (see
Fig. 10). The numbers that increment radially from the center of the
seed to the margin of the model pattern indicate the absolute distance
in micrometers; note the different scales for the different cell types.
Note the qualitative similarity between the data and model patterns
for each cell type. For abbreviations, see list.
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Anticlustering of cellular patterns

Each analyzed cell type was arrayed in a pattern char-
acterized by anticlustering, that is, each soma of a given
cell type was surrounded by a two-dimensional area that
was devoid of homotypic somata. Because the size of these
exclusion zones is significantly larger than the dimensions
of individual somata (Cameron and Carney, 2000), it is
possible that the anticlustering phenomena could arise
from signaling mechanisms that operate beyond the spa-
tial extent enabled by direct soma-to-soma contact. At the
molecular level such mechanisms could include diffusible
agents or intercellular contacts via cellular projections
such as dendrites. Diffusible signaling mechanisms have
previously been implicated in ocular development, includ-
ing mechanisms that involve ligands of the epidermal
growth factor receptor (e.g., Baonza et al., 2001), ligands
of the retinoic acid receptor (for review, see Adler, 1993),
and the hedgehog signaling system (Stenkamp et al.,
2000; Neumann and Nuesslein-Volhard, 2000). Addition-
ally, dendrodendritic interactions have previously been
suggested as a mechanism for regulating cellular pattern
formation in the vertebrate retina (Galli-Resta, 2000; Eg-
len et al., 2000), and a testable hypothesis for future
studies is that the �i values derived from the current
model are correlated with the spatial characteristics of the
corresponding cell type’s dendritic arbor. The results of
the current study cannot rule out the operation of direct
soma-to-soma signaling mechanisms during pattern for-

mation of the inner nuclear layer in zebrafish. The results
do suggest, however, that molecular signaling schemes
that extend spatially beyond soma-to-soma contact could
be important mechanisms of cellular pattern formation in
the inner retina of zebrafish.

Cellular patterns are neither regular nor
aggregated over large spatial scales

Most of our evidence, derived from quadrat analysis,
suggested that the patterns of inner retinal cells are not
statistically different from random patterns over large
spatial scales (which is not to say that the patterns are
indeed random). This observation is in contrast to the
regular patterns of cone photoreceptors that are com-
monly observed in teleosts (e.g., Stenkamp et al., 2001),
including zebrafish (Larison and BreMiller, 1990; Robin-
son et al., 1993). The lack of pattern regularity over large
spatial scales cannot rule out the operation of long-range
spatial organizing mechanisms during retinal develop-
ment and growth, but it does suggest that cellular pattern
formation in the inner nuclear layer of zebrafish is domi-
nated by signaling mechanisms that operate over rela-
tively short spatial distances. In terms of functional con-
siderations for an individual cell, the lack of nonrandom
patterns over large spatial extents suggests that the pre-
cise spatial location of a homotypic soma beyond some
critical distance (e.g., two or three mean nearest neighbor
distances) may not be significant.

Fig. 10. Quantitative spatial analysis results for the data and
model patterns illustrated in Figure 9. Left (top to bottom): NND,
quadrat, and DRP analyses for the seed and model patterns of TH-
positive cells. Note the similarity between the data and model pat-
terns: similar means (and distributions) of the NND; similar quadrat
analysis functions (cf. Fig. 7); similar effective radius values and

anticlustering phenomena indicated by the DRP analysis. Right (top
to bottom): NND, quadrat, and DRP analyses for the seed and model
patterns of PKC-positive cells. The data and model patterns of PKC-
positive cells had similar characteristics, as objectively determined by
the quantitative spatial analyses. For abbreviations, see list.
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A consistent exception to the general rule of long-range
“randomness” was observed. PKC-positive bipolar cells
were arrayed in patterns that were always regular over
large distances. It is unclear whether a functional or de-
velopmental significance can be attached to the spatial
regularity of this cell type, which receives considerable
synaptic input from rod photoreceptors (Suzuki and
Kaneko, 1990). It may be that some second-order neurons
in the zebrafish retina are arrayed in regular patterns in
order to achieve an isotropic sampling of photoreceptor
inputs. The modeling results of this report do indicate that
both regular and nonregular patterns can arise from the
same, relatively simple rule of homotypic inhibition of cell
fate decisions during retinal growth (see below).

Independence of cellular patterns

Although the analyzed cellular patterns in this study
share an anticlustering characteristic, their two-
dimensional patterns were generally independent of one
another (Table 2), similar to observations made previously
for the inner retina of rabbit (Rockhill et al., 2000). This
result indicates that the mechanisms controlling cellular
pattern formation in the inner nuclear layer are, at some
level, necessarily different between different cell types. If
each cell type had utilized a common spatial organizing
mechanism, the patterns should have been positively cor-
related, even if they differed in density. It is unclear,
however, how selective signaling can be achieved in this
system. Although instructive patterning cues between
cells of different types have been suggested in the outer
retina (Stenkamp et al., 1996), the independence between
cellular patterns, and the model’s ability to produce cellu-
lar patterns using a signaling scheme that is cell-type
specific, argue that instructive cues between different cell
types may not be a universal component of cellular pat-
tern formation in the inner retina.

With respect to neurophysiological processing, indepen-
dence between cellular patterns may not be surprising: if
dendritic arbors are the structural foundation of neural
processing, spatial registration between the somata of dif-
ferent cell types may be of comparatively minimal conse-
quence. One hypothesis is that the nonrandom patterns
are “echoes” of developmental events, with such patterns
having originally served as templates for the spatial es-
tablishment and alignment of pre- and postsynaptic struc-
tures. Perhaps by regulating cellular pattern formation at,
or near, the spatiotemporal point of cell fate decision—and
by minimizing instructive interactions between hetero-
typic cells—the retina can achieve its proper, two-
dimensional organization at relatively minimal metabolic
cost. On this general point the results of Kouyama and
Marshak (1997) are noteworthy, as they indicate a posi-
tive spatial correlation between short-wavelength–
sensitive cone photoreceptors and their synaptically asso-
ciated bipolar cells in the primate retina. It remains
possible, therefore, that future investigations might re-
veal inner retinal cell types in the zebrafish that are
arrayed in patterns that are positively correlated: it is
already known that the different spectral classes of cone
photoreceptors in the zebrafish retina are so organized
(e.g., Robinson et al., 1993).

Mechanisms for regulating cellular pattern
formation in the inner retina of zebrafish:

a hypothesized “one-step” mechanism

Cellular pattern formation in the vertebrate central
nervous system is an extremely complex phenomenon. A
first-order geometric requirement for proper functionality
is that millions of cells, comprising hundreds of different
cell types, must be properly arrayed within three-
dimensional space. At the current time no single model
accounts for the mechanisms that control the assembly of
such a complex structure. However, computational tech-
niques can be successfully applied to restricted aspects of
cellular pattern formation—such as how nonrandom, two-
dimensional patterns of cells can arise from an undiffer-
entiated neuroepithelium—and from these studies in-
sights regarding the molecular mechanisms that regulate
cellular pattern formation can be developed and ulti-
mately tested.

In the current study, a computational modeling ap-
proach was used to determine whether a relatively simple,
physically realistic signaling scheme could account for
aspects of cellular pattern formation and structure in the
zebrafish inner retina. In this “proof of principle” model,
cellular patterns very similar to those observed empiri-
cally arose via the operation of a signal, arising from
differentiated cells, that inhibits the generation of the
homotypic cell type. This type of inhibitory signaling
mechanism, arising from differentiated retinal cells, has
previously been implicated in the genesis of specific cell
types during vertebrate retinal development, including
TH-positive cells (Negishi et al., 1982; Reh and Tully,
1986), amacrine cells (Belliveau and Cepko, 1999), and
ganglion cells (Waid and McLoon, 1998).

This inhibitory signaling mechanism successfully ac-
counted for all the objective, quantitative aspects of cellu-
lar patterns, including anticlustering. We note that the
zebrafish retina is a popular system for investigating the
signaling mechanisms that control retinal development
(e.g., Fadool et al., 1997; Malicki and Driever, 1999;
Doerre and Malicki, 2001; Jensen et al., 2001; Kay et al.,
2001), and mechanistic roles for cell-surface (Link et al.,
2000; Scheer et al., 2001) and diffusible agents (Hyatt et
al., 1996; Stenkamp et al., 2000; Neumann and Nuesslein-
Volhard, 2000) have been reported. Our model thus seems
consistent with physically realistic signaling mechanisms
that are known to regulate zebrafish retinal development.

A key feature of our model’s prediction is that the grow-
ing retina utilizes signaling mechanism(s) that directly
affect cellular pattern formation at, or near, the spatio-
temporal point of cell fate decision. No tangential migra-
tions of differentiated cells were necessary in the current
model to provide reasonable matches to the empirical cell
patterns (however, see Eglen and Willshaw, 2002). In
many neural structures such migrations are critical for
the proper establishment of cellular patterns, with a clas-
sic example being the migration of differentiated neurons
during cerebellar development (for review, see Goldowitz
and Hamre, 1998). Tangential movements of differenti-
ated somata have also been reported in vertebrate retinas
(Hendrickson, 1994; Reese et al., 1995, 1999; Galli-Resta
et al., 1997; Galli-Resta, 2000), and computational models
of cellular pattern formation in other model retinal sys-
tems support the importance of such mechanisms (Eglen
et al., 2000; Eglen and Willshaw, 2002). The current study
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does not rule out a role for tangential movements of dif-
ferentiated somata during zebrafish retinal development,
and indeed this mechanism could formally provide the
“one-step” mechanism inferred by the modeling results.
The overall effectiveness and general applicability of the
current model’s control of cell fate decisions, however,
suggests that for many neuronal cell types within the
inner nuclear layer of zebrafish, cellular pattern forma-
tion might be dominated by signaling mechanisms that
establish the two-dimensional patterns at, or very near to,
the spatiotemporal point of cell fate decision.
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