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ABSTRACT

Responses of coincidence-detecting neurons are a direct function of the
temporal structure of their input patterns. Quantitative studies of coincidence-
detection provide insight into how neural processing of temporal information
contributes to psychophysical performance. This study explored in detail the
response properties of model coincidence-detection cells that receive inputs
from auditory-nerve (AN) fibers. It also focused on the role of these model cells
in coding of complex sounds related to psychophysical tasks for which
temporal cues are believed to be important.

Performance of model cells was evaluated quantitatively for different model
parameters, including the width of the coincidence window, the number of
input AN fibers, the characteristic frequencies (CFs) of the input AN fibers, and
mixed strengths of the inputs. Results suggest that model cells with low CFs
are very sensitive to the phase relationship of the input AN responses. The
response properties of the model cells were also compared with results of
physiological studies, and the coincidence-detection model predicts several
response properties that were previously believed to be difficult to explain.

Models for psychophysical detection and discrimination were designed
based on population responses of model coincidence cells. Quantitative
predictions of masked detection suggest that the most sensitive model cells for
detection are the cells whose input AN responses are out of phase when a tone
is added to the noise. The temporal structure in AN responses changes with
signal-to-noise ratio and does not change as the overall level changes; thus,
this model predicts psychophysical performance better than energy-based
models under conditions in which the overall level of the stimulus varies
randomly from trial to trial. The comparison of the coincidence-detection model
and models based on other cues (e.g. envelope detector and channel theory)
and implications for the theory of complex sound processing are also discussed.
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Chapter 1 Introduction

1.1 Goals

The problem of understanding information processing in the auditory
system, or any biological system, is usually approached from a
multidisciplinary perspective that incorporates an integrated study of behavior,
neurophysiology and computational modeling. Psychophysical data
demonstrate the computational problems, or specific auditory functions, that
require explanation, and neurophysiological analysis constrains the possible
solutions to a given computational problem. Computational modeling has its
unique and significant role among these approaches. A successful
computational model should be sufficiently specified by the underlying
physiological mechanisms and thus should provide insight into the functional
significance of the neural circuit being studied. It should also yield
computational results that are comparable to the psychophysical data and
thus bridge our understanding of the relationship between auditory function
and the underlying implementation in the form of neural mechanisms.

The modeling study presented here explores the potential importance of a
physiologically realistic mechanism, coincidence-detection, from the
perspectives of both physiology and psychophysics. The fundamental questions
that this study addresses are how the coincidence-detection mechanism affects
the physiological response properties of a neural circuit, and how models based
on the coincidence-detection mechanism could be used to account for the
psychophysical performance associated with complex sound processing. After a
brief summary of previous work on this topic, a description of how each
chapter relates to the overall goals of this dissertation is provided in this
introduction.

1.2 Background

1.2.1 Coincidence detection: Theoretical significance and neurophysiological

evidence

Recent studies show that information can be represented by the coherent
patterns in the responses of different neurons (Singer and Gray, 1995; Gray
1999; Roy and Alloway, 2001). Temporal correlations among different neurons
are crucial for processing if information is coded in the temporal structure of
neural activity. Interest in coincidence detection is aroused because such
temporal codes can be employed by the nervous system if neurons are sensitive
to coincidence (Abeles, 1982; Konig et al., 1996). Coincidence-detecting cells
respond only to synchronously arriving spikes and most other spikes have no
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effect on their responses. The coding capacity and dynamic performance of
coincidence detection are different from those that occur in traditional temporal
integration. Coincidence detection uses the timing of neuronal discharges and
provides an elegant and highly economic way to bind distributed neurons into
functionally coherent assemblies, and to select subsets of responses for further
joint processing.

It is widely accepted that the time dimension in hearing is important since
acoustic information is essentially carried by time-varying signals. The auditory
system provides an ideal place to study how temporally structured information
is processed by the central nervous system (CNS). In the auditory system, one
impressive example of neurons acting as coincidence detectors and responding
to temporal structure of input activity is in the medial superior olive (MSO),
which is involved in binaural hearing. It is well know that interaural time
differences (ITDs) between the arrival times of acoustic signals reaching the two
ears provide an important cue for the spatial location of sound, and
discrimination thresholds for ITD are very small (~10us, Durlach and Colburn,
1978). Physiologically, the principal neurons of the MSO receive bilateral
synaptic input from the axons of spherical bushy cells of both left and right
anterior ventral cochlear nuclei (AVCN), which respond precisely to the fine
timing of the input stimulus. These cells act like coincidence detectors and are
sensitive to tens of microseconds differences in their afferent signals (Goldberg
and Brown, 1969; Yin and Chan, 1990).

Recent studies in the AVCN also show there are cells that have response
properties that can be explained by a coincidence-detection mechanism. Each
primary auditory-nerve (AN) fiber has an ascending branch to the AVCN in the
cochlear nucleus. AVCN neurons can be classified based on morphology (e.g.,
spherical bushy cell; globular bushy cell; octopus cell; and multipolar/stellete
cell; see review by Cant, 1992) or based on physiological response properties
(e.g. primary-like (PL); primary-like-with-notch (PLn); chopper; onset lockers
(Or); onset choppers; pausers; and buildups; see Blackburn and Sachs, 1989).
Nearly all the cells from the AVCN receive convergent inputs from AN fibers.
Onset cells have distinctive response properties consistent with the assumption
that these cells only respond to a large number of synchronized inputs. Carney
(1990) showed that several neural response types in the AVCN are sensitive to
temporal discharge patterns across the AN population and are consistent with
a monaural cross-frequency coincidence mechanism. Studies of phase-locking
in the axons of the trapezoid body (TB) show enhanced synchronization
compared with AN fibers (Joris et al., 1994ab). The improvement in
synchronization at low frequencies can be predicted with a coincidence-
detection model that receives convergent inputs from two or more AN fibers
(Joris et al., 1994a). In addition, studies of intracellular recordings in the MSO
show that the membrane properties of MSO cells (Smith, 1995) are similar to
those of bushy cells in the AVCN (Manis and Marx, 1991; Wu and Oertel, 1987,
Rothman and Manis, 2003a), which indicates that these cells may have similar
processing abilities, including coincidence detection.
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1.2.2 Psychophysical studies show the importance of spatio-temporal cues in

processing complex sounds

While some basic functions of the auditory system can be characterized
using simple stimuli such as pure tones (e.g. level and frequency
discrimination), studies of physiological and psychophysical responses to
broadband stimuli have had a profound influence on the development of
auditory theory. Studies of complex sound processing reveal nonlinear effects
of the auditory periphery and interactions between different parts of the
auditory system. Also, these studies are important for applications of signal
processing because most natural stimuli are broadband.

Fletcher (1940) found that the detectability of a tone is affected only by the
energy of a masking noise in a certain bandwidth; the noise outside this
bandwidth does not affect the detectability of a tone. This work inspired the
idea that narrow-band filtering exists in the first stage of auditory processing
and a sound signal is filtered into different channels for further processing. The
channel theory has been the basis of most modern models in auditory theory.

The work of Green (1988) and that of Hall and his colleagues (1984)
showed that broadband sound processing is much more complex than the
assumption that information is processed in different channels independently.
Cross-channel comparisons are used by the subject to decode cross-channel
information, and temporal fluctuations of the masker affect a subject's
performance. When multiple equal-amplitude components are presented, the
threshold for detecting a level increment of the center component decreases
with an increasing number of components (the frequency ratio between
components are the same, thus the total spectral range increases with the
number of components; see Green, 1988). When envelope fluctuations are
correlated across different frequency bands, the detection of a tone in a
fluctuating noise masker is enhanced (Hall et al., 1984).

Further studies have explored the effects and interaction of different cues
used in psychophysical tasks. Kidd et al. (1989) compared the shape of the
threshold-bandwidth function for tone-in-noise detection and for tone-in-noise
discrimination. In a fixed-masker-level paradigm, their results showed that
level cues are enough to account for human performance, whereas in the
roving-level situation, the detection process must use temporal and/or across-
frequency cues to account for the results. Even in the fixed-level task, the
results for different bandwidths revealed that human subjects use level-
invariant cues to improve performance in the level-discrimination task.

Gilkey (1986) used a molecular approach to study human performance in
detection of tones in wideband noise. He found that linear combinations of the
outputs of several detectors centered at different frequencies provide better fits
to the data than the output of a single channel detector. Richards and Nekrich
(1993) assessed level-dependent and level-invariant cues (in a single frequency
channel) for detection of a tone added to a narrowband noise. Different
observers seem to employ the cues in different ways. Detection of a tone added

3



to noise may be performed using two or more cues, and a single observer may
alter strategies as the experimenter changes stimulus parameters. These
results suggest that spatio-temporal cues are important for even simple
masking experiments.

1.2.3 Previous modeling work on temporal processing of complex sounds

Durlach et al. (1986) extended the traditional channel model and
combined it with signal detection theory (SDT) to process broadband complex
sounds. In this framework, the same optimal processor was used to
discriminate overall level and spectral shape. The central processor used the
inter-channel correlation to decrease the variance in the decision variable that
was caused by external noise. Thus the sensitivity index, d', increased
(threshold decreased) as the bandwidth of the noise increased and more
channels were excited. Further investigation has concentrated on the effects of
unequal variance across the channels and the bandwidth of the channels
(Bernstein and Green, 1987; Lentz and Richards, 1997). Studies of pitch and
timbre also provide ideas related to how the auditory system processes complex
sounds (Lyon and Shamma, 1996). Feth and Stover (1987) developed a model
for complex sound processing based on pitch changes in complex sounds.
Changes in spectral shape often produce a noticeable change in the pitch of
stimuli. They found that the pitch change at the threshold of profile analysis
experiments is constant as the number of components changes, suggesting
that subjects use these apparent pitch changes as a cue. Another class of
complex sounds that has been a topic of renewed interest is amplitude-
modulated stimuli. Studies of amplitude-modulation suggest that there are
neurons tuned to different modulation rates (Kay, 1982), i.e. these neurons
may act as a “modulation filter bank”, and the envelope fluctuation in each
auditory filter is extracted by these modulation filters (Dau et al., 1997a).

Although these previous modeling efforts extended our understanding of
the auditory system, there is much to do to construct an auditory theory of
complex sound processing. There is still no successful theory that relates
physiological responses to psychophysical behavior in these tasks, and the
temporal correlation between different auditory filter outputs is ignored in most
previous modeling studies. Furthermore, the level, temporal fluctuation and
spectral shape of stimuli do not change independently in most psychophysical
experiments. Thus a multiplicity of effective cues exists, and it is hard to say
which cues are actually used in various auditory information processing tasks.
Because the nervous system may use some fundamental operations to process
information, exploring the capability of mechanisms such as coincidence
detection to process different cues is important to construct a unified theory of
complex sound processing. Since coincidence detection can group different
neurons and process temporal information, it is possible that all of these cues
could be represented by different coincidence-detecting cells, allowing further
processing by the central nervous system.



1.3 Organization of this thesis

The following four chapters present results of studies of coincidence
detection as a physiologically realistic mechanism for processing complex
sound in the auditory nervous system. Chapters 2 and 3 focus on the study of
neural response properties of coincidence-detecting cells that receive
convergent AN inputs. Chapters 4 and 5 focus on the potential neural
implementation of perceptual functions based on coincidence detection. Each
chapter is written in the form of a journal paper, with individual introduction
and discussion sections.

Chapter 2 studies the response statistics (regularity, synchronization, and
output rate vs. input rate function) of an integrate-and-fire (I&F) model to
stationary and non-stationary periodic input. The I&F model receives sub-
thresholds inputs and thus behaves as a coincidence detector. A computational
method to calculate response statistics was derived, and the relationship
between model parameters and responses statistics was explored in detail.

Chapter 3 describes the response properties to pure tones and tones in
noise of model coincidence-detecting cells that receive convergent AN inputs.
Tuning properties, response areas and rate-level functions were simulated. The
effects of the synapse configuration of input AN fibers was demonstrated by
studying model cell responses with different synaptic configurations. The
potential correlations between model predictions and physiological neuron
responses are discussed. The relationship between different coincidence-
detection models (shot-noise and cross-correlation models) is also discussed in
focusing on predictions of performance for a masked-detection task.

Chapters 4 and 5 examine the processing capability of the coincidence-
detection model for psychophysical masked-detection tasks. Chapter 4 focuses
on tone-in-noise detection and Chapter 5 studies model performance for a
level-discrimination-in-noise task. A matrix of coincidence-detecting model
cells was constructed based on a population of coincidence-detection cells that
received inputs from AN fibers tuned to different frequencies. The model
responses for different stimulus conditions were studied first, and then the
performance of each model cell was evaluated. Based on the population
responses, detectors were designed, and model performance was examined by
simulating the same tracking algorithms as used in psychophysical
experiments.

The performance of other model detectors was also evaluated in Chapters
4 and 5. These model detectors include 1) the energy-based channel model,
which was based on the output energy of several different auditory filters, 2)
the envelope detector, based on the envelope statistics (peakiness) of the
auditory-filter outputs. The relationship between these model predictions and
possible cues used in masked detection are then discussed.

The last chapter provides some brief comments on the significance of the
present work and suggests directions for future work.



Chapter 2. Response properties of an integrate-and-fire model that receives sub-

threshold input

2.1 Abstract

A new computational technique for calculation of the inter-spike interval
and poststimulus time (PST) histogram of an integrate-and-fire (I&F) model for
arbitrary input was developed. The effects of the model parameters on the
response statistics were studied systematically. Specifically, the probability
distribution of the membrane potential was calculated as a function of time,
and the mean inter-spike interval and PST histogram were calculated for
arbitrary inputs. For stationary inputs, the regularity of the output was studied
in detail for various model parameters. For non-stationary inputs, the effects of
the model parameters on the output synchronization index were explored. The
results show that enhanced synchronization in response to low-frequency
stimuli required a large number of weak inputs, and irregular responses and a
linear input-output relationship required strong (but sub-threshold) inputs
with a small time constant. A single synapse configuration with mixed-
amplitude inputs can respond to stationary inputs irregularly and also have
enhanced synchronization to low frequency inputs. Both of these response
properties have been reported in different cells in the ventral cochlear nucleus.

2.2 Background and Introduction

One fundamental question in the study of nervous-system function is how
a single neuron responds to and processes the information received from other
neurons. In the auditory system, approximately 30,000 primary auditory-nerve
(AN) fibers with different characteristic frequencies (CF) connect the auditory
sensory organ, the cochlea or inner ear, and the cochlear nucleus (CN) in the
brainstem. The CN receives all the information in the acoustic signal
represented by the temporally structured spike discharges in the population of
AN fibers, and is the first stage of information processing in the central
auditory system. The CN contains a variety of cells that differ in their
responses to a relatively homogeneous input and therefore presents a unique
opportunity for quantitatively studying input-output transformations by
neurons and the relations between a neuron’s function and its underlying
mechanisms.

While the importance of spike timing in the millisecond range in cortical
areas is still a topic of intense debate (e.g. Kénig et al., 1996), the importance of
temporal coding for auditory perception, especially sound localization, has been
widely accepted (e.g. Joris et al., 1998). It is thus of great interest to
understand temporal coding and processing along the auditory pathway and its
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underlying mechanisms. Considerable progress has been made over the
decades. Temporal information is first encoded in the discharge pattern of AN
fibers, which are phase-locked to the temporal features of the acoustic
waveform up to 4-5 kHz (Kiang et al., 1965; Johnson, 1980). In the ventral
division of the cochlear nucleus (VCN), the bushy cells appear to be specialized
to preserve and even enhance the temporal information encoded in AN fibers
(Joris et al., 1994ab). Temporal information is further transmitted to the
superior olivary complex where cells are sensitive to interaural timing
differences from their binaural inputs.

The capability that bushy cells have to preserve or even enhance timing
information relies on the synaptic configuration and the membrane properties
of the cells. Bushy cells receive large somatic AN terminals, called the end
bulbs of Held (see review by Cant, 1992), that differ in number and size:
spherical bushy cells (SBC) have fewer and larger end bulbs, while globular
bushy cells (GBC) have more and smaller end bulbs. The somatic inputs
bypass the dendritic low-pass filtering and thus have a very short time
constant in their synaptic current. Bushy cells also have short membrane time
constants (Oertel 1983, 1985) caused by the activation of a low-threshold
potassium conductance at the resting potential. Recent experimental (Manis
and Marx, 1991; Rothman and Manis, 2003c) and modeling (Rothman et al.,
1993, 2003a,b) studies have provided a satisfactory explanation for how the
membrane properties of the bushy cell contribute to its capability of preserving
temporal information precisely.

Analysis of neural responses is very useful for estimating the parameters
of synapse inputs (the number and size of the inputs) to bushy cells since
these parameters are believed to be crucial to the bushy cell's input-output
functions. SBCs usually have prepotential waveforms (Bourk, 1976; reviewed
by Rhode and Greenberg, 1992) and have discharge patterns similar to those of
the AN fibers, thus they are referred to as primarylike (PL), suggesting that
SBCs may receive suprathreshold inputs. Modeling studies by Rothman et al.
(1993) suggest that bushy cells with primarylike-with-notch (PLn, associated
with GBCs) responses to high-frequency tones at CF must also receive
suprathreshold inputs to maintain their irregularity. Evidence that bushy cells
receive subthreshold inputs also is available. Some bushy cells demonstrate
Onset discharge patterns that can be successfully modeled using many weak
subthreshold inputs (Rothman et al., 1993; Kipke and Levy, 1997; Kalluri and
Delgutte, 2003a,b). Enhanced phase-locking has been observed (Joris et al.,
19944a,b) in low-CF bushy cells in the AVCN in response to CF tones and in
high-CF PLn response types in response to low-frequency tones, consistent
with models receiving sub-threshold inputs.

The reports that high-CF bushy cells respond irregularly to CF tones and
have enhanced-sync responses to low-frequency tones (Joris et al., 1994a)
suggest that the same synaptic configuration (number and size of the AN
inputs) must be capable of both input-output relationships. In the studies from
Rothman and his colleagues (Rothman et al., 1993; Rothman and Young, 1996;

7



Rothman and Manis, 2003a), a compartmental model was used to explore the
model responses with different synaptic configurations. Their results support
the hypothesis that sub-threshold inputs are capable of producing enhanced-
sync response to low-frequency tones, and suprathreshold inputs are more
suitable to describe the PL and PLn responses of bushy cells. They also
suggested that the different arrangements of synaptic inputs may affect the
input-output relationships of bushy cells. However, the relative importance of
such arrangements was not clear based on their results, and they did not
elucidate whether the desired responses can be attributed to different synapse
configurations without considering the complex (nonlinear) effects of neural
dynamics.

Statistical analysis of neural activity based on integrate-and-fire (I&F)
models to obtain estimates of physiological and anatomical parameters of
neurons has a long history in theoretical neuroscience (Tuckwell, 1988) due to
its simplicity and mathematical tractability. The I&F model was also the first
neural model to capture the essential properties of neural behavior: synaptic
integration and threshold for responding. A generalization of this simple
phenomenological model (known as the Spike Response Model, see Gerstner
and Kistler, 2002) can emulate more physiologically realistic Hodgkin-Huxley
type (channel) models (Kistler et al., 1997) and has been widely used in the
study of neural coding, synaptic plasticity, and pattern formation. I&F models
have been used to study the regularity properties of spontaneous activity in
auditory neurons (Molnar and Pfeiffer, 1968), the phase-locking properties of
bushy cells (Joris et al., 1994a), and the discharge pattern of Onset neurons in
the CN (Kalluri and Delgutte, 2003a,b). Stochastic processes have been
employed in modeling the responses of single neurons using the 1&F model.
Stein (1965), who proposed a discontinuous Markov process as a neural model
that incorporated the exponential decay of the membrane potential, provided
various insights to model properties. Computational methods have provided
quantitative statistical descriptions of the model response (Molnar and Pfeiffer,
1968; Colburn and Moss, 1981). Previous methods for analyzing the I&F model
have been limited to conditions with stationary inputs and new techniques are
needed to explore model responses to non-stationary (phase-locked) input.

Kempter et al. (1998) investigated the coincidence-detection properties of
an I&F model in response to periodic spike inputs. Their analysis concerns how
the model response rate depends on the neural parameters, such as the
number of synapses, the threshold, and the time course of the postsynaptic
responses. They also explored the effects of these parameters on the neuron’s
ability to convert a temporal code into a rate code. An extended study (Burkitt
and Clark, 2001) has also been conducted to evaluate the inter-spike interval
(IS]) histogram and the period histogram for neural responses to ongoing
periodic inputs. Both studies assume that there is a large number of small
inputs to the model and that the membrane potential is approximated by a
Gaussian random variable, and they limit their analyses to a model without
refractoriness.



In the present study, we explored how the neural response statistics
change with different synapse configurations using an I&F model. The model
cell received convergent AN inputs, which were superimposed and modeled as a
non-stationary Poisson point process. A computational method based on
Stein’s model is proposed to calculate the ISI histogram and post-stimulus time
histogram (PST) of the I&F model accurately in response to an arbitrary
stimulus waveform. The method presented here applies to the I&F model
without any limitations on the model parameters and is especially efficient
when there is small number of inputs with fast membrane decay time
constants. The model parameters were systematically investigated using
responses to both stationary and non-stationary inputs. Various response
properties of the model cell were explored, including the rate response of the
model cell, regularity in response to stationary inputs, and phase-locking in
response to non-stationary input. The general conclusions about the effect of
model parameters on the neural response statistics apply to all cells that
receive convergent inputs, though the statistics we investigated here are of
particular interest for the study of bushy cells in the VCN.

2.3 Method

2.3.1 The I&F Model:
The I&F model used in the present study is a simple I&F neuron with the
following properties:
1. Each input spike (except those that arrived during the model’s dead
time) at time # from channel i generated an EPSP given by

V, (1) =Axe T 2.1)

The amplitude (4j) and time constant (ti) of the EPSP (Vj«) represent the
basic configuration of the synapse integration and were explored
systematically, along with different input stimuli.

2. The membrane potential V(t) (O at resting) was the linear summation of
all incoming EPSPs.

3. The model cell fired when the membrane potential V(t) exceeded the
threshold. The threshold was always set to 1 (so the EPSP amplitude
represented the synapse strength relative to threshold).

4. The membrane potential V(t) was reset to zero after firing, with a dead
time of 0.7 ms (spikes that arrived during the deadtime do not generate
EPSPs).

How the membrane potential V(t) changed with time after the firing was
very important to the neural response statistics. When the neuron was not
discharging (assuming the dead time period ended at t = O, that is, the previous
spike time is at t = -0.7 ms) and the model input was a Poisson stationary
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process with arrival rate R, the mean and variance of the model’s membrane
potential values were given by (Stein, 19695)

U, =RAT(1-e"""), (2.2)

and

o) =RA (/2)(1-e7'7). (2.3)

2.3.2 Stimulus description and superposition of AN inputs

The discharge pattern of the AN fiber can be described as a
nonhomogeneous Poisson process modified to include refractory effects
(Johnson and Swami, 1983). Since the EPSPs are integrated linearly, inputs
from multiple AN fibers that produce EPSPs with identical amplitudes and time
constants can be superimposed. The equivalent input can then be described by
a nonhomogeneous Poisson process (Cox, 1962) as the number of input fibers
increases. Figure 2-1 illustrates the change of the inter-spike interval (ISI)
distribution of the superimposed input with different numbers of input AN
fibers. Each model AN fiber’s discharge times were produced by a renewal
process that simulated a stationary input (100 sp/sec) modified by
refractoriness (Carney, 1993). The ISI curves (calculated based on 100,000
simulated spikes) are plotted on normalized axes so that they are comparable
with each other (the solid line represents the ISI for a Poisson process). The
simulation shows that the superimposed input could be approximated by a
Poisson process (i.e. the effect of input refractoriness on ISI could be ignored)
when there were more than five independent AN-fiber inputs.

For the model cell that received stationary input from multiple AN fibers,
we treated the total input spike train as a Poisson process with rate R. When
the input was periodic, the total input spike train was described as a
nonhomogeneous Poisson process with an instantaneous rate of firing san(t)
given by (see Colburn, 1973; Colburn et al., 2003)

@sin(27 ft)

fJ‘”f PSR g1 7
0

s =R (2.4)

where the exponential function in the numerator represents the periodic signal,
with ¢ and fdetermining the strength of phase locking and frequency of the
input. The parameter R is the mean firing rate of the non-stationary Poisson
process (the exponential function is normalized
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Figure 2-1: ISI (inter-spike interval) distribution of a superposition model with
different numbers of independent AN inputs. Each input model AN fiber had a
stationary Poisson response of 100 sp/sec modified by refractoriness (Carney,
1993). The input spikes were interleaved, and the ISI was calculated based on
10,000 simulated discharges. Both axes were normalized (either multiplied or
divided by the mean interval-spike time p) to make the ISI distributions
comparable. The simulation shows that as the number of independent inputs
increased (to values larger than 5), the combined input spikes could be
approximated by a simple Poisson process (solid line).
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by the denominator, which is the modified Bessel function I[g] described in
Colburn et al., 2003).

2.3.3 Analytical calculations of the ISI and PST for the I&F model with stationary

and non-stationary inputs

Stein (1965) proposed a discontinuous Markov process model to describe
the statistics of the membrane potential for the I&F model mentioned above.
Molnar and Pfeiffer (1968) used this model to numerically (computationally)
calculate the ISI of the output for the case with stationary input. The following
analysis and computational results extend this method to include both the ISI
and PST of the model output.

We define F[Vx,t] as the cumulative probability that the membrane
potential V(t) is less than potential V. at time t: F[Vx,t]=Prob (V(t) < V), and
F¢[Vx,t] as the conditional cumulative distribution for this probability given that
the voltage does not exceed the threshold of 1 at time t. For both distributions,
it is assumed that the previous output spike time is at =0 and the potential
V(t') is always less than 1 for O<t'<t. Thus, F[Vx,t] can be derived from the
distribution Fc[Vx,’] before time t. For a stationary Poisson input with rate R,
the probability of an input spike occurring in a short time interval A can be
represented as RA. We then can express the function F[Vx, t+A] in terms of F¢[Vx,
t] based on the transition of the Markov process model (Stein, 1965) as

F[V,,t + Al = (1 — RA)E[V,e®/7 t] + RAF,[V,e2/™ — At], (2.5)

where A and t are the amplitude and time constant of the input EPSP.

For a threshold voltage equal to 1, the probability that the model cell will
have an output spike in the time interval from t to t+A is equal to 1-F[Vx=1,t].
The relationship between the corresponding probability density functions f[Vx,t]
and f;[Vx,t] can be described as f;[Vx,t] = {[Vx,t]/F[1,t] for x < 1. F[Vx,t] is thus
given by

F¢[Vx,t] = F[Vx,t]/ F]1,t] for all Vx< 1, and
F¢[Vx,t] = 1 for all Vx >=1. (2.6)
The output of the I&F model can be described as a renewal process (Cox,

1962) with a hazard function p(t), which is defined as the rate of a renewal
(spike) event that occurs at time t and is determined by

p(t) = (1= FILI))/A. (2.7)
The inter-spike interval (ISI) of the model output with stationary input can be

specified by
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fisi(t)=S(t)p(t), (2.8)

where S(t) is the survival function of the renewal process, or the probability
that there is no renewal (spike) event between O and t. The S(t) can be written
in terms of the hazard function as

S(t) = ¢ b (2.9)

The above analysis can be easily extended to the situation where the input
is a nonhomogeneous Poisson process described by R(t) with a previous output
spike time at to (The arguments of S(*), p(*), and fisi() are intervals since the
previous spike time %=0 (in Eq. 2.5-2.9), whereas the arguments of P(-) and R()
are times). In this case, the ISI calculated above becomes the density of the
first-passage time to threshold and is represented as fisi(t-to| to). The
unconditional firing probability P(t) (which is an estimate of the PST histogram)
of the model output to the input R(t) can described as (Cox, 1962)

P(t) =[ P(x)fu(t-xIx)dx, (2.10)

where x represents the spike time before time t.

The calculation of P(t) from the above equation is not possible
computationally because the duration over which the integral is computed is
not limited.

We now assume that the cumulative conditional probability of the
membrane potential F¢[x,t|to] (Where to is the previous spike time) is
determined by the input spikes during the preceding time period (¢T, t), where
T >> 1. This is a reasonable assumption since the potential contributed by
spikes before t-T decays with a time constant 1 and can be neglected compared
to the potential contributed by recent spikes if T >> 1. For all previous spike
times for which to<t-T, the cumulative probabilities of the membrane potential,
F¢[x,t]|to] and F[Vx,t|to], can be approximated as F¢[Vx,t|t-T] and F[Vx,t|t-T],
and the hazard function p(t-to | to) derived from equation Equation 2.7 can be
approximated by p(T|t-T). Together with Eq. 2.10 the unconditional firing
probability P(t) can be rewritten as

P) = [ P@hs(t -2 2)d
= fjm P)St—z | x)p(t —z | x)dz

=T ; . (2.11)
~ fix P@)S(t —z | x)p(T |t — T)dx + j;iT P)S(t —z | z)p(t — z | x)dx

— p(T|t=T) f:f P@)S(t — o | 2)ds + [ iT P@)S(t — o | 2)plt — z | 2)de
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The integral on the 2nd line was separated into two integrals on the 3 line,
and for all spike times previous to x < t-T, p(t-x | x) was approximated by p(T]| t-
T), which was the hazard function at time t given a previous spike at t-T. The
second integral in the final line of the above equation has a limited duration,
and thus the numerical calculation based on Eqgs. 2.7-2.10 is possible. The
first integral in the final line of the above equation can be further simplified as

A t+A-T
R’Esidue (I+A) = J-_ P(X)S(t'i'A_XI X)dx
= [ PQ)S(+A-x1x)dx+P(t-T)S(T11-T)A

= [ PISU-x10)+A-dS(—x I 0)Mx+P(-T)ST1-T)A ,  (2.12)

dsS(t—xl1x)
Sit—xlx)
O+P-T)S(T1t-T)A

:KTP(X)S(I—X'X)[HA- Wx+P(t—=T)S(T1t-T)A

=(1-p(T11-T)A)P,

esidue

where the last step of the derivation is based on the relationship between the
survival function S(t) and the hazard function p(t) (Cox, 1962),

d
SS(I) ——p(t). (2.13)

The final line in Eq. 2.12 can be described by a differential equation and
calculated numerically

dP

residue ~

—P, . PTt=T)+Pt-T)S(Tt-T)dt. (2.14)
Using the above relationships, P(t) can be calculated knowing R(t) and the

mean ISI for a non-stationary input from time t; to & can be represented by

[7P@) f (¢ )
- J-:lz P(x)dx

F i@ (2.15)

and calculated numerically (this is not shown in detail because we are not
interested in the ISI for the non-stationary input).

For a model receiving inputs having EPSPs with two different amplitudes
but the same time constant, the Markov process of the I&F model (Eq. 2.5) can
be described as
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Fla,t + A] = Py F[we®/7 t] + PyF,[ze®/7 — Ay 1]

+PuFlaet T — A, t] + BFfae® T — A — Ayt] (210
where Poo, P10, Po1, P11 represent the joint probability of input spikes from two
channels with different EPSP amplitudes (A1 and A) in the interval from ¢ to
t+A. The derivation above can then be extended to calculate the PST and ISI of
the model response to arbitrary inputs with mixed amplitude EPSPs. The same
technique can be applied to allow multiple spikes to arrive in a time window A
(such that a large A can be used to approximate the Poisson process), making
this computation more efficient.

2.4 Resulis

2.4.1 Predictions for a model that receives stationary inputs

The steady-state response of an AN fiber to a CF tone at a high frequency
is generally assumed to be a stationary point process (Siebert, 1964; Kiang et
al., 1965). The response of a neuron receiving stationary inputs can be modeled
successfully as a stationary renewal process fully characterized by the inter-
spike interval of the mean, |, and standard deviation, ¢, of the process (Cox,
1962). The mean rate of the model output is defined as

Rate = 1/mean interval = 1/,

and the quantitative measure of the response regularity is described by the
coefficient of variation (CV)

CV=oc/u.

This regularity measure of the cell response is important since it may
represent different underlying processing mechanisms, and it has been used as
one of the criteria to classify different unit types in the CN (Young et al., 1988;
Blackburn and Sachs, 1989). A cell with a CV value close to 1 is considered
irregular, and its response can be treated as a process essentially similar to the
Poisson process (o=p). It is more realistic to model a cell with a deadtime-
modified (tg) Poisson process, and the measure of CV for such a process is
affected by the response firing rate Rout (1 /Rout = L = 6 +14, and CV=c/u = 1-
Routtd) (Rothman et al., 1993). To reflect the more fundamental nature of the
underlying process, the modified coefficient of variation (CV’) of the cell
responses (Rothman et al., 1993) is used as a measure of the cell regularity

CV'=oc/(u-7a). (2.17)

15



The mean rate and CV’ measurements of the I&F model responses to
stationary inputs with various model parameters are shown in Figs. 2.2-2.3.
The input to the I&F model was a stationary Poisson process, and the
calculations were based on the equations described in Section 2.

Figure 2-2 illustrates the effect of the time constant (t) of the EPSP (with a
fixed amplitude of 1/3) on the model cell responses. The response rate of the
model cell was plotted as a function of input strength (input discharge rate R
multiplied by the EPSP amplitude) in Fig. 2-2(a). With a large time constant,
the model output was more affected by the integration (energy) of the input
EPSPs, and the model response rate changed more linearly with the input
strength. When the time constant was short, the model cell’s response was
dominated by the coincidence-detection mechanism, and the probability of
discharge in an effective time window w was approximated by (Stein, 1965)

Rkwk—le—Rw
Pf = W ) (2 18)

where k equals the number of input spikes that are required to arrive within
the time window w (proportional to 1) to generate an output spike. The model
response rate increased rapidly (and nonlinearly) as the input rate R increased.
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Figure 2-2: Responses for models with different EPSP time constants to
stationary inputs. The EPSP amplitude was fixed at 1/3 for all models. The
abscissa in (a) and (b) is input strength, which is defined as input rate
multiplied by the EPSP amplitude. (a) Model response rate as a function of
input strength. For high input strength, the output rate was limited by the
deadtime of I&F model. For small input strength, input-output rate function
was determined by the EPSP time constant. The model rate responses initially
changed linearly with input strength for large EPSP time constants and
increased nonlinearly for small EPSP time constants. (b) Regularity measure
(CV’) of model response as a function of input strength. The CV’ generally
dropped as the input strength increased, but remained high (> 0.65) for model
cells with short time constants (up to 400 ps). (c) Regularity measure replotted
as a function of model response rate. The increase in irregularity of the model
response was caused by the EPSP time constant and not by the drop in the
model response rate.

17



The regularity measure (CV’) of the model response is plotted in Fig. 2-2(b)
as a function of input strength. The CV’ of the model response decreased as
the input rate increased for all time constants. However, model cells with
short-time constants (up to 400 us) were still classified as irregular (CV"' of the
model response was higher than 0.65). When the time constant of the model
cell was long, the model cell discharged more regularly (with small CV’). This is
because the probability of discharge of the model cell was greatly affected by
the integration time constant of the membrane potential after the deadtime, as
the mean and variance of the model potential increased slowly after the
deadtime (See Eq. 2.2 and Eq. 2.3). Figure 2-2(c) shows the regularity measure
of the model cell response as a function of the model response rate. For a fixed
output response rate, model cells with large time constants were more regular
than cells with short time constants, showing that the decrease of the
irregularity in Fig.2-2(b) with increasing EPSP time constant for a fixed input
rate was not caused by the increase of the response rate.

Model responses for different amplitude input EPSPs are shown in Fig. 2-3.
The time constant of the model EPSP was fixed at 100 us and the amplitude
was always below threshold (otherwise the model response process would have
been the same as the input process, modified by refractoriness). The model
response rate as a function of input strength is plotted in Fig. 2-3(a). Since the
input strength is defined as EPSP amplitude multiplied by the input rate, the
input rate for each model cell (with different amplitude EPSP) was different at
each abscissa value, but the total energy of the input was the same. The
response rate of the
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Figure 2-3: Responses of models receiving stationary inputs with different
EPSP amplitudes and a fixed time constant (100 ps). Data are plotted in the
same way as in Fig. 2-2. (a) The input-output rate function was more linear for
models with large EPSP amplitude and more nonlinear for models with small
EPSP amplitude. (b) Regularity measure CV’ of model responses. The change of
model EPSP amplitude did not affect the CV ’of the model responses; the CV’
remained high, presumably because of the short EPSP time constant used in
the computation. (c) CV’ replotted as a function of model response rate. When
model cells had same output rate, there was no clear monotonic relationship
between CV’and the model EPSP amplitude.
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model output increased as the input strength increased, however, the model
cells with small inputs required greater input strength to generate the same
response rate. Weak inputs required a larger number (k) of input spikes in an
effective time window w and the rate tended to change nonlinearly as the input
strength increased, as expected from Eq. 2.18. The CV 'of the model response
(Fig. 2-3(b)) dropped as the input strength increased, but remained high for all
model cells, regardless of EPSP amplitude. When the regularity measure is
plotted as a function of the output response rate in Fig. 2-3(c), it is clear that
there is not a simple relationship between CV ’and the strength of the synapse
input (amplitude of the EPSP). The CV’ changed non-monotonically with
increased amplitude of the model EPSPs. This result shows that the regularity
of model cells that received sub-threshold inputs was determined primarily by
the time constant of the input EPSPs.

2.4.2 Predictions for the model that receives synchronized input

The most prominent feature of AN fiber responses to low-frequency tones
is that the discharges phase lock to the stimulus frequency up to about 5 kHz
(Johnson, 1980). Enhanced phaselocking has been reported in VCN bushy cells
(Joris et al. 1994) and can be modeled as a consequence of converging sub-
threshold AN inputs (Joris et al., 1993; Rothman et al. 1996; Rothman et al.,
2003). The combined input from convergent AN discharges to the I&F model
was represented by a single non-stationary (periodic) Poisson process, as
described in association with Eq. 2.4. The PST of the model response to such
an input is also periodic and can be calculated numerically based on the
methods described in Section 2.3. The degree of phase locking of the model
response was quantified by the synchronization index (SI), which is defined as
SI= B/ A, where B is the fundamental frequency (stimulus frequency)
component and A is the DC component of the Fourier series of the response
PST histogram (Johnson, 1980).

The responses for I&F models with different time constants are plotted as
a function of input synchronization index (S]) in Fig. 2-4. The model EPSP
amplitude was fixed at 1/3, and the combined input had a constant rate of
5400 spikes/sec. The input stimulus had a frequency of 500 Hz, and its SIwas
varied systematically. The model rate responses are illustrated in the top panel
of Fig. 2-4. The model response with a short time constant changed
dramatically when the input Sl increased (the input spikes were more
synchronized). For a large time constant, the model response rate mainly
depended on the total energy of the input and did not change dramatically as
the input synchronization index changed (in fact, the rate dropped as more
input spikes arrived in the deadtime period of the model and did not contribute
to the model potential). The SI measure of the output response is plotted in the
bottom panel of Fig. 2-4; the dotted line is the result for which the output SI
equals the input SI. The model responses with short time constants had more
enhanced synchronization than model responses with large time constants,
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and the SI measure was not affected by model time constant when the inputs
were highly synchronized.

Figure 2-5 is similar to Fig. 2-4 except that the stimulus frequency was
2000Hz. With a high input frequency, the response rate of the model
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Figure 2-4: Responses for models with different EPSP time constants (see
legend) and a fixed amplitude EPSP (1/3) to non-stationary inputs. The input
waveform had a frequency of 500 Hz and a fixed average rate of 5400
spikes/sec (Eq. 2.4). The results were plotted as a function of input
synchronization index (S]). (a) Rate responses for different models. For a small
time constant (see legend), the model response rate increased dramatically
when the input Slincreased (a timing code was converted to a rate code in this
situation). For a large time constant, the model response rate did not change
much as the input SIchanged. In fact, the response rate dropped as more
input spikes arrived in the deadtime period of the model and did not contribute
to the model potential. (b) The SI measure of the model output; the dotted line
represents the output SI equaling the input SI. The model responses with short
time constants had more enhanced synchronization than model responses with
large time constant, and the SI measure is nearly independent of model time
constants when the inputs were highly synchronized.
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Figure 2-5: Similar plot to Fig. 2-4 except that the stimulus frequency was
2000 Hz. The output SI measure was greatly affected by the model time
constant for both highly and weakly synchronized inputs.
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was similar to the result in Fig. 2-3, but the output SI measure was affected by
the model time constant for both highly and weakly synchronized inputs. The
response of the model with a large time constant (left triangle) had a degraded
synchronization compare to the input SI measure (dotted line). The reduction of
synchronization due to the large time constant was most effective at high
frequencies. This may explain, in part, the physiological observation that the SI
of the CN cell is enhanced with respect to AN fibers at low frequencies but is
lower than that of AN fibers at mid frequencies (Blackburn and Sachs, 1992,
Joris et al, 1994).

The responses of a model with different EPSP amplitudes (with a fixed time
constant of 100ps) are plotted as a function of input SIin Fig. 2-6. The
stimulus frequency was 500 Hz, and the input strength (EPSP amplitude
multiplied by the mean input rate) was fixed at 1800. With strong inputs (a
large model EPSP amplitude) the model response rate (top panel) changed
slowly as the input SI measure changed, and the synchronization enhancement
(re: input SI, bottom panel) was also lowest for the model with the largest EPSP
amplitude. When the input had a high SI measure (usually true for low-
frequency inputs), the amplitude of the inputs had a larger effect on the output
SI measure than did the model time constant (See Figs. 2-4 and 2-6).

The synchronization of actual AN fibers, which are the inputs to CN cells,
change systematically as a function of the stimulus frequency. Model cell
responses to inputs with realistic synchronization at each stimulus frequency
are illustrated in Fig. 2-7. The input spike rate was
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Figure 2-6: Responses of models with different EPSP amplitudes and a fixed
EPSP time constant of 100ps to non-stationary inputs. The results were plotted
in the same way as Fig. 2-4. The stimulus had a frequency of 500 Hz with fixed
input strength of 1800. Since the input strength was defined as the EPSP
amplitude multiplied the input rate, the input rate doubled when the model
amplitude was decreased by half. In this way, the energy of the model inputs
was kept constant for different input SIs. (a) Model rate responses. (b) The SI
measure of the model responses. The EPSP amplitude had a larger effect on the
degradation of the output SI when the input SIwas high as compared with the
effects of time constant illustrated in Fig. 2-4.
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fixed at 8000 spikes/sec, and each input spike generated a model EPSP with
an amplitude of 0.3 and a time constant of 100ps. The SI measure for each
input frequency was plotted in the bottom panel (circles) of the figure and fitted
to AN fiber data (Johnson 1980; Rothman and Manis, 2003a). Model response
rate (top panel) changed non-monotonically as the input frequency increased.
At low frequencies, the deadtime (absolute refractoriness) of the model
prevented multiple discharges in each cycle, and the rate increased as stimulus
frequency increased, since the model cell fired in each cycle. The model
response rate then dropped with increasing frequency, because the stimulus
inputs were less synchronized. The SI measure of the model output (diamonds
in the bottom panel of Fig. 2-7) was higher than the input SI across all the
frequencies. If we assume that a time jitter of 70 ps (Kopp-Scheinpflug et al.,
2002, p. 11006) was added to each output spike (we assumed the time jitter!
had a normal distribution with standard deviation 70 ps; the calculation was
based on the convolution of the output PST and this normal distribution), the
SI measure of the model output was more comparable to the physiological
observation in some CN cells (e.g. see Joris et al., 1994a).

2.4.3 Effects of mixed-amplitude inputs on model responses

As illustrated in the above results, the model cell response to stationary
inputs required a short time constant to maintain appropriate irregularity, and
required strong inputs for a linear input-output rate
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" The time jitter applied here may be caused by the dynamics of spike generation, refractoriness or just degraded
timing due to the strong inputs (the effective coincidence window for strong inputs is larger than that for weak
inputs).
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Figure 2-7: Responses as a function of stimulus frequency for a model with
EPSP amplitude of 0.3 and a time constant of 100ps. The input spike rate was
fixed at 8000 spikes/sec, and the input SIvaried with frequency systematically
to fit the AN fiber data (Johnson 1980; Rothman and Manis, 2003a, plotted as
circles in the bottom panel). (a) Model response rate changed non-
monotonically as input frequency increased. (b) SI of the model output with )
and without (diamonds) time jitter added (crosses and diamonds, respectively).
The time jitter had a normal distribution with standard deviation 70 ps; the
calculation was based on the convolution of the output PST and this normal
distribution.
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function (e.g. similar to high-CF PL responses to CF tones). However, the model
cell response to non-stationary inputs required a large number of weak inputs
to create enhanced synchronization, and required a large time constant to be
more responsive to both synchronized and non-synchronized inputs without
showing a reduction of the enhancement of the synchronization at low
frequencies (when the input SI measure is high, see Fig. 2-4). We hypothesized
that cells with mixed-amplitude inputs would respond to high-frequency
stimuli (i.e. stationary inputs) irregularly and also show enhanced phase-
locking to low-frequency stimuli (i.e. nonstationary inputs).

The responses of models with mixed-amplitude EPSP parameters to
stationary inputs across different input strengths are plotted in Fig. 2-8. The
time constant of the models was fixed at 400 ps, and the other parameters for
each model (plotted in different symbols) are described in the figure legend. For
the model with mixed-amplitude inputs, the amplitudes of the weak and strong
inputs were fixed at 0.17 and 0.7, respectively, and the rate for both strong and
weak inputs changed with the input strength. The responses of models for both
mixed-amplitude inputs and single-amplitude inputs had high values of
regularity (bottom panel of the plot), consistent with the finding the CV
depends primarily on the time constant of the model (see Fig. 2-2). For the
models with similar response output rates, the model with mixed-amplitude
inputs tended to respond more linearly to the change of the input strength (top
panel). Increasing the EPSP amplitude for the model with the same inputs
made the model respond more linearly, but this manipulation
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Figure 2-8: The responses for models with different synaptic configurations to
stationary inputs. All model EPSPs had a fixed time constant of 400ps. The
results for models with same-amplitude inputs were plotted with a solid line
with different symbols (see legend for EPSP amplitude). The model with mixed-
amplitude inputs (dotted line with squares) had EPSPs with amplitudes of 1/6
and 0.7, and the ratio of weak input rate to strong input rate was fixed at
28.8:1 (the results were plotted against the weak input strength for this model).
(a) Model response rate. Compared to the same-amplitude input model with
similar responses, the model with mixed-amplitude inputs had a higher
response rate with small inputs and a lower response rate with large inputs. (b)
CV’ measure of the model responses. All model responses had CV’ measures
that would be classified as irregular cells, presumably because of the short
EPSP time constant used.
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reduced the enhancement of phase-locking in response to low-frequency
stimuli.

Figure 2-9 shows the responses of models with different parameters to
synchronized inputs. The models with same-amplitude inputs had a constant
input strength of 1200. For models with mixed-amplitude inputs, the input
strength was 1200 for weak inputs with an amplitude of 0.17, and the strength
was 1600 for weak inputs with an amplitude of 0.08. The rate of strong inputs
for the mixed-amplitude model was fixed at 250 spikes/second; the strong
input amplitude was 0.7. Other parameters for the model and stimulus are
described in the legend. The rate responses (top panel) for all models changed
non-monotonically as a function of stimulus frequency. For the mixed-
amplitude model, the response rate (plotted with asterisks and downward
triangles) to the low-frequency inputs depended on the synchronized weak
inputs; as stimulus frequency increased, the inputs were less synchronized
and the model response depended more on the strong inputs. The SI measure
of the model responses with mixed-amplitude inputs dropped more quickly as
the stimulus frequency was increased than that of the models with same-
amplitude inputs. At low frequencies, the SI measure of the model response
stayed high since the output was dominated by the discharges generated by
the weak inputs; at high frequencies, the model response was determined by
the strong input, and thus the synchronization of the input was not enhanced.
In general, the cell with mixed-amplitude inputs had a more linear input-
output rate function in response to high-frequency tones than model cells with
same-amplitude inputs, and the SI
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Figure 2-9: Responses for models with different synaptic configurations to non-
stationary inputs. The results are plotted in the same way as in Fig. 2-7. The
solid lines (see legend for model EPSP amplitude) represent the results for
same-amplitude input models. The results for mixed-amplitude input models
are plotted with a dotted line (stars) and a dot-dashed line (downward triangles).
All model EPSP time constants were fixed at 400 ps. The input strength was
fixed at 1200 for the same-amplitude input models and was 1200 and 1600 for
the mixed-amplitude input models with weak amplitudes of 1/6 and 1/12
respectively. The strong inputs for both mixed-amplitude input models had a
rate of 250 spikes/sec and each input EPSP had an amplitude of 0.7. (a) Model
rate responses. (b) SI measure of the model responses. The SI measure of the
stimulus input (fitted to AN fiber data) was plotted with circles. The SI measure
for mixed-amplitude input models stays high in response to low frequencies
and drops more quickly than that of the same-amplitude input model as the
input frequency increased.
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degraded more rapidly as stimulus frequency increased?. Both properties are
desirable for the physiological responses of the globular bushy cells in the CN.

2.5 Discussion

Calculation of the PSTs and ISis of I&F models with non-stationary inputs

Statistical analysis of neural activity, together with stochastic neuron
models, has proven to be very useful for estimating physiological and
anatomical parameters of neurons and elucidating the different functions of
various neurons (see Tuckwell, 1988). In addition to the discrete Markov
process discussed here, other stochastic neuron models have been proposed,
including the Ornstein-Uhlenbeck Process (OUP) approximating diffusions, and
partial differential equations modeling the spatial extent of neurons (especially
for dendrites) (Tuckwell 1989, Chapter 5). However, little progress has been
made to provide a satisfactory analytical solution for the first passage time
problem for these models, and researchers have generally either analyzed their
models with limited ranges of parameters (Kempter et al., 1998) or resorted to
Monte Carlo simulations. The numerical method proposed in this study
provides a new way to calculate the statistics of the neuron model with more
accuracy and efficiency than using Monte Carlo simulations, without the
compromise of using only stationary inputs or limiting the model’s parameter
space. Because equations 2.11-2.14 only depend on the assumptions that the
neuron can be modeled as a renewal process and that only recent inputs
(discharges) determine the response, the method can be generalized in different
ways as long as the conditional first passage time can be calculated
numerically: 1) Relative refractoriness can be incorporated by changing the
firing threshold as a function of time (assuming the previous discharge time
occurs at time zero); 2) Inhibitory effects may be incorporated based on Eq.
2.16, in which the amplitude of inhibitory EPSPs is negative and arriving
inhibitory discharges decrease the model potential; 3) The assumption that the
membrane decays exponentially simplifies our analysis by allowing the EPSPs
of incoming spikes to be combined, without having to keep track of the history
of input spike times. It is possible to use more realistic EPSP waveforms (e.g.
alpha-functions) by separating the model potential (hyper-polarization)
contributed by recently incoming EPSPs and by EPSPs in the exponential decay
tail; 4) Noise that is intrinsic to the neuron can be introduced as a diffusion of
the potential distribution at each step of calculation.

* In the previous section, we assumed a constant time jitter to degrade the SI at high frequency. If the SI in response
to high frequencies is already degraded, a smaller time jitter is required, which thus maintains the timing information
at low frequencies.
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Regularity of the model cell response to stationary inputs; Effects of time constant,

synapse amplitude, and refractoriness

Regularity analysis of the model responses suggested that a small value of
the EPSP time constant was important to prevent the cell from regular firing;
this prediction agrees with findings in physiological studies (Blackburn and
Sachs, 1989; Young et al., 1988). The EPSP inputs to a bushy cell have a very
short time constant since the somatic synapse bypasses any dentritic filtering
and the low-threshold potassium channels reduce the effective membrane time
constant (Rothman and Manis, 2003a). All three response types associated
with bushy cells (PL, PLn, and On-L) demonstrate irregular discharge patterns
(Rothman et al., 1993), regardless of possible differences in their input synapse
strengths. In contrast, the chopper response type, which usually has a regular
response pattern, is believed to be related to stellate cells in VCN which have
large dentritic trees contacted by AN fibers (Young et al, 1988) and long
duration EPSPs (Oertel, 1983). Regularity is also affected by the relative
refractoriness of the cell responses (which is not corrected in the calculation of
CV’), especially when the mean inter-spike interval is comparable to the
duration of refractoriness. Our simulations for model AN responses showed
that the CV’ of a Poisson process modified by relative refractoriness decreased
dramatically as model response rate increased (not shown). This result is
consistent with the simulations reported by Rothman et al. (Fig. 9A in Rothman
et al., 1993) using a channel-based (Hodgkin-Huxley-like) model. The model
responses had the lowest regularity measure when the input EPSP was just
above the absolute threshold, where the refractoriness effect was strongest.
Response regularity was higher for models with just sub-threshold inputs,
since the combination of two required inputs was much higher than the
absolute threshold. Rothman et al. (1993) argued that a secure input, which
generates an EPSP much higher than the threshold, is necessary to maintain
response irregularity for PLn cells, because the strong input decreases the
relative refractory period. They also argued that the regular response of the
model onset cell, which may not be physiological realistic, could be improved
via inclusion of inhibition. It is possible though, as illustrated in their later
study (Rothman and Young, 1996), that an inhibitory mechanism can also be
used to increase the irregularity of the PLn model cell responses without the
requirement of a strong suprathreshold input. Other mechanisms are also
possible to reduce the effect of refractoriness (Rothman and Manis, 2003a) and
thus increase the irregularity of the model cell responses.

Effect of EPSP amplitude on the input-output rate function

The input-output rate function of the model response was strongly affected
by the amplitude of the model EPSPs. The input rate and amplitude had
different effects on the statistics of the model potential distribution. While
increasing both the input rate and EPSP amplitude increased the expected
value (mean) of the membrane potential, the variance of the potential was
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proportional to the square of the EPSP amplitude but had a linear relationship
with the input rate. With the same input strength (EPSP amplitude multiplied
by the input rate), the potential of the model with larger EPSP amplitudes had
larger variance, and the model cell response depended more on the fluctuations
of the potential. The input-output rate function of model cell tended to be
exponential when the relative potential variance was small and to be linear
when there were large potential fluctuations (Tuckwell and Richter, 1978). This
prediction has important implications for the synapse conditions of bushy cells.
The input discharge rate to bushy cells changes dramatically during tone
bursts, as a result of onset adaptation in high-spontaneous-rate AN fibers. The
fact that bushy cells with PL or PLn response type have response rates during
tone bursts that are similar to those of the input AN fibers suggests that they
receive at least one large input. Further, the Onset response type bushy cells
that have a nonlinear input-output rate function may receive many small
inputs. These predictions agree with the morphological correlates of the
different cell types in the CN (see review by Cant, 1992). The PL responses are
usually observed in SBCs, which have one or two large synapses known as
endbulbs of Held. The PLn and Onset response type units are more closely
related to the GBC, which receives small (compared to the endbulb of Held)
endbulbs that are varied in number and size.

Enhanced phase locking and its relation to EPSP amplitude and time constant
Increasing the EPSP amplitude, which increased the potential fluctuation,
degraded phase locking of the model response. With a large number of small
inputs, the membrane potential usually followed the expected value of potential
with a small variance, and the model potential could be treated as
deterministic. The model cell fired very precisely around the time when the
expected value of the potential crossed the threshold. This conclusion may also
apply to the channel-based model, in which all the EPSPs are linearly summed.
Of course, the small variance in the potential may be disturbed by other
nonlinear properties, such as refractoriness. Realistically, for large inputs that
generate EPSPs just above threshold, the timing of the action potentials was
affected by the amplitude of the EPSPs (Rothman et al., 1993), and this
relationship degraded the phase-locking of the model cell to the synchronized
inputs (especially to the mid-frequency inputs, see Rothman et al., 1993).
Small inputs, in fact, helped to increase the precise timing of action potentials,
since action potentials generated early in the periodic cycle, when there was a
low rate of small inputs, had a large delay, and action potentials generated
later had a small delay. This was illustrated in our study of mixed-amplitude
inputs when the strong input amplitude was near but still below threshold.
Enhanced phase-locking was not affected much by the EPSP time
constant as long as the EPSP time constant was short (e.g., by about a factor of
4) compared to the cycle of the stimulus frequency. Of course, the time
constant is still much smaller than observed in other neurons that are not
specialized for temporal coding. The short time constant of the membrane
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conductance has other effects on the precise timing of the neuron’s response,
such as refractoriness.

Implications of mixed-amplitude inputs for the Bushy Cell model

Results from this study show that model cells that receive mixed-
amplitude inputs demonstrate desired response properties that have been
observed in some cells in CN. The neurons encode or enhance the temporal
information at low frequencies and also carry rate information at high
frequencies. These properties made the model neurons more efficient in
processing information in different conditions. The inputs to high-CF cells in
the CN in response to complex sounds usually have temporal (envelope)
fluctuations due to narrowband peripheral filtering. A cell that receives mixed-
amplitude inputs can benefit from both spectral and temporal cues. The
different number and size of the endbulbs may contribute to the different
synapse configuration for bushy cells, and the dendrites that branch profusely
within several hundred microns of the cell body (Rhode and Greenberg, 1991)
could also provide weak inputs to help enhance timing information in response
to complex sounds.

Potential effects of Inhibition on model responses

Inhibitory inputs to bushy cells have been shown to exist in physiological
studies (Caspary? et al., 1994; Wu and Oertel, 1986). The function of inhibitory
inputs on model response statistics can be interpreted in several ways. First,
inhibitory inputs will have different effects on the mean and variance of the
model potential if the inhibitory post-synapse potential (IPSP) is integrated
linearly in the I&F model. The mean of the potential will decrease as the
inhibitory input rate increases, while the variance of the membrane potential
will be equal to the sum of the potential variances contributed by excitatory
and inhibitory inputs. The model cell responses will depend primarily on the
variance of the potential distribution (that is, the fluctuation of the voltage)
when the inhibitory and excitory inputs are balanced. This situation is similar
to what occurs when the amplitude of individual EPSPs increases; thus,
including inhibition may make the cell’s response rate vary more linearly with
the input rate. Second, inhibition will have different effects on the peaks and
valleys of a non-stationary input. IPSPs usually have a larger time constant;
therefore, the integral of the IPSPs in response to non-stationary inputs will not
fluctuate as much as the integral of the EPSPs. As a result, the model cell will
tend to respond more at the peak of the synchronized inputs and the inhibition
will contribute to enhanced phase-locking. Finally, inhibition in bushy cells will

? Caspary's study showed that inhibition has the same receptive field as excitation, and that the role of inhibition is
generally not lateral inhibition, which is often described as a mechanism for sharpening the receptive field. This on-
frequency inhibition can be interpreted as a modulation filter that extracts the envelope fluctuation in the inputs
(Nelson and Carney, submitted). As discussed here, inhibition could also contribute to the enhanced timing of the
cell responses in CN.
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have several nonlinear effects on the membrane properties. Inhibition will
effectively make the membrane time constant faster by adding membrane
conductance, and it will also decrease the effective amplitude of EPSPs, thus
reducing the amplitude of a secure synapse to an amplitude that is just above
or even below the threshold.

In summary, while the membrane properties of a neuron define the cell’s
capacity to process the information carried in the input spikes, the synaptic
configuration of each input determines how the information is actually
processed. Cells that receive multiple inputs could have different synaptic
configurations and respond differently to corresponding stimuli, and thus
achieve processing functions that are advantageous for specific stimuli.
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Chapter 3 Predicting responses of CN cells that receive convergent AN inputs

based on coincidence-detection

3.1 Abstract

The basic response properties of model coincidence-detecting (CD) cells
that receive converging auditory-nerve (AN) inputs are presented in this
chapter. The responses to both pure tones and tones in wideband noise are
presented. The responses of model cells with different synaptic configuration
were explored and compared, and possible relations to physiological responses
of cells in the anteroventral cochlear nucleus are discussed. Coincidence-
detection cells with mixed-amplitude inputs showed response properties
similar to those of CN cells (as well as those of AN fibers at low stimulus levels),
and distinct response patterns in response to complex sounds that have been
observed in physiological studies. The coincidence-detecting model cells
responded to the spatio-temporal response pattern of their inputs and
demonstrated a physiologically realistic mechanism for processing information
in complex sounds that is carried in the spatio-temporal responses of the
population of AN fibers.

3.2 Introduction

Neurons communicate with each other through discrete discharge events.
The idea that information is represented by coherent patterns between different
neurons has been a fundamental concept of modern neuroscience. To
distinguish a given subset of cells participating in a particular representation
based solely on discharge rate is expensive in terms of neuron numbers and

sacrifices flexibility (KOnig et al., 1996). It has been suggested, therefore, that
synchronization of activity among a distributed population of neurons is very
important in processing information in neural networks. One essential
advantage of such population coding is that individual cells can participate at
different times in the representation of different patterns; that is, the
information can be represented by the spatio-temporal pattern of neuronal
activities (Singer and Gray, 1995).

In the mammalian auditory system, the inner ear (cochlea) performs a
mechanical frequency analysis; each place on the basilar membrane along the
cochlear partition has a different resonant frequency and results in a sharply
tuned and very sensitive input to the sensory hair cells. The afferent AN fibers
that innervate sensory hair cells carry the information contained in different
spectral channels to the brainstem through their temporal discharge patterns.
The discharges are phase-locked to the stimulus waveform at low frequencies
and reflect the envelope fluctuations of the stimulus when the stimulus
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frequency is high. Sound information is thus encoded in the spatio-temporal
pattern of discharges across the population of AN fibers, where the spatial
dimension is frequency and refers to the orderly tonotopic map of tuned
neurons in most auditory nuclei. The spatio-temporal patterns of AN fibers in
response to various stimulus waveforms are determined primarily by the phase
properties of auditory filters tuned to different frequencies. For example, the
phase difference of outputs of two model auditory filters tuned at 850 and 950
Hz changed systematically between 0° and 1800 as input frequency changes
(Fig. 3-1). Advantages of coding schemes based on the temporal responses
across a population AN fibers are that they are generally robust to changes in
overall stimulus level and to non-linearities, such as saturation (Carney and
Yin, 1988), and they are similar for fibers with different spontaneous rates
(Johnson, 1980).

Physiological studies have shown that processing of spatio-temporal
patterns may occur as early as in the cochlear nucleus (CN). Nearly all of the
cells in the anteroventral cochlear nucleus (AVCN) receive convergent inputs
from AN fibers. 1) Studies of phase-locking in the axons of the trapezoid body
(TB), which originate from bushy cells in the AVCN, show enhanced
synchronization as compared with AN fibers (Joris et al., 1994a).
Synchronization of phase-locked responses is usually quantified by measuring
vector strength as a function of input level and then finding the maximum
value (Rmax, Goldberg and Brown, 1969); typical Rmax values for low-CF AN
fibers are between 0.8~0.9. The study by Joris et al. (1994a) reported that 75%
of fibers with CF less than 700Hz had Rmax > 0.9. 2) Carney (1990) showed that
some low-frequency cells in the AVCN are sensitive to the temporal discharge
pattern across the AN population. In this study, complex stimuli were used
that had fixed flat magnitude spectra, and the phase spectra of the stimuli
were manipulated (a phase shift with variable slope at a particular frequency
was introduced). Some cells in the AVCN showed sensitivity to changes

Phase difference of BM filter output (degree)

500 900 2000
Tone Frequency (Hz)

Figure 3-1: The phase difference between the outputs of two model auditory
filters as a function of stimulus frequency. The CFs of two auditory filters were
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tuned at 850 Hz and 950 Hz. The filters had out-of-phase responses with each
other to 900 Hz tone (phase difference was around 180 degree). The responses
of two filters became in-phase with each other as the signal moved away from
900 Hz.
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in the slope of the phase transition (Figs. 6-11 in Carney 1990). These phase-
sensitive responses come from several different cell types in the AVCN, and the
responses are consistent with the hypothesis that these cells receive multiple
inputs from AN fibers and respond based on a cross-frequency coincidence-
detection mechanism.

Several models have been developed to process the spatio-temporal cues in
AN population responses in the context of pitch perception (see review by Lyon
and Shamma, 1996). The purely temporal information from the phase-locked
responses can be extracted using models based on the auto-correlation
mechanism. Cross-correlation models (Deng and Geisler, 1987; Carney, 1994;
Heinz et al., 2001; Carney et al., 2002) are proposed to take advantage of
temporal (phase-locked) information in one fiber and systematic phase
relationships along the spatial organization of the fiber array. The use of cross-
channel comparisons in cross-correlation models combines the spatial and
temporal information together in one mechanism and thus provides an
intuitive way to understand the processing mechanism. Shamma (1985)
proposed a model based on a lateral inhibition mechanism that depends on the
spatio-temporal patterns across the AN responses and shares some similarities
with cross-correlation models; the model was originally developed for speech
processing but can also be used for processing of other complex sounds.

Coincidence detection is a realistic physiological mechanism that performs
a form of correlation computation and is very sensitive to temporal properties
of the input. There is no sharp boundary between coincidence detection and
temporal integration since the criterion for such a distinction depends on the
relationship between the integration time and the mean interspike interval.
Physiological experiments have shown that neurons in the medial superior
olive (MSO) are sensitive to differences in the timing of their afferent signals on
the order of tens of ps (Goldberg and Brown, 1969; Yin and Chan, 1990),
providing strong support for a coincidence-detection mechanism. The fact that
the nonlinear membrane properties of Type II AVCN neurons (bushy cells) are
similar to those of cells in the MSO suggests that the cells in AVCN may also
behave as coincidence detectors (Manis and Marx, 1991, Rothman et al.,
2003ab). Using coincidence detection as an underlying physiological
mechanism, the spatio-temporal cues embedded within AN population
responses can be processed realistically and efficiently. To fully understand the
implications of the coincidence-detection mechanism for neural response
properties and for the functionality of information processing, more realistic
models must be constructed and their response properties to complex stimuli
should be studied.

In this chapter, a physiologically realistic "shot-noise", coincidence-
detecting model cell that received inputs from convergent AN fibers is described.
The basic response properties of two different model cells were explored in
detail. One model cell was extremely sensitive to the spatio-temporal patterns
of the inputs and represented the best coincidence-detecting cell for processing
spatio-temporal information in a masked-detection task; another cell received
mixed amplitude inputs and represented a more realistic synaptic
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configuration for the cells in CN. The model responses to pure tones and tones-
in-noise were studied in detail. How the model parameters affected the model
responses and relations between the "shot-noise" model and other simple
coincidence-detecting models were then explored.

3.3 Method

3.3.1 Computational Auditory-nerve Model

Carney (1993) developed a signal-processing model for auditory-nerve
fibers that focused on the timing properties of AN responses. Zhang et al.
(20014) extended the model to more accurately simulate two-tone suppression
and population (filter-band) responses found in physiological data. This model
has proven useful in understanding the nature of the temporal cues provided
to the CNS by the population of AN fibers (Heinz et al., 2000). The model was
adapted to human by Heinz et al. (2001ab) to study human performance in
some psychophysical experiments; this version of the model (model #1 in Heinz
et al., 2001d) was used to simulate the responses of human AN fibers in the
present study. The bandwidths of tuning of model human AN fibers (which are
narrower than that of cat) were fitted to human ERB data. The population
responses of low-threshold, high-spontaneous-rate (HSR) AN fibers
(spontaneous rate was set to 60 sp/sec’) were simulated to produce either

instantaneous firing rates r(t) or discharge trains (7') from the model,
depending on the coincidence-detection model used.

3.3.2 Monaural Cross-frequency Coincidence Detection Model

Colburn described a simple coincidence-detection model in his studies of
binaural detection phenomena (1973, 1977). The model receives two AN-fiber
inputs from different ears with the same CF, and is assumed to discharge only
when the two input fibers both discharge within a narrow temporal window.
Heinz et al. (2001c) proposed a monaural, across-frequency coincidence model
that has the same structure but receives inputs from AN-fibers from the same
ear, that can have different CFs. The coincidence counts of the model can be
represented by

Ki Kj

CAT T} =23t/ ~1,)), (3.1)

=1 m=1

* A recent study has been conducted to modify the synapse dynamics of this composite model. The new synapse
model has a more realistic offset adaptation response, and the response to amplitude-modulated (AM) stimuli of the
new composite model is more comparable with the physiological data. This study is reported in the Appendix of this
dissertation.

> The spontaneous rate of model AN fibers is defined as the instantaneous firing rate before the discharge generator.
For the simulated discharge trains, the spontaneous rate is lower because of refractoriness.
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where 7i={tl;,...,tiki}, and 7i={ti1,...,tk} are discharge times of two input AN

fibers from the ith and jth channels, respectively, Ki and K;j are the counts for the
two channels, and f(.) is a rectangular coincidence window with unity height
(see Eq. 2 in Heinz et al., 2001c).

If the AN discharge times 7% and 77 are independent responses of two

stochastic model AN-fibers to some deterministic stimulus, with the output
stochastic process as a non-stationary Poisson processes with time varying rate
functions ri(t) and rj(t), the expected value of the coincidence counts during
stimulus time duration T is given by (Colburn, 1977)

EIC,(T T =], [ £ =)o, (y)dxdy . (3.2)

If the coincidence window is very short compared to the fluctuations of the
instantaneous firing rate, the equation can be simplified to a cross-correlation
operation on the two input AN spike trains.

This simplified coincidence-detection model does not address several
situations that are common for cells observed in physiological studies: 1) cells
usually receive more than two inputs (Liberman, 1991,1993), 2) cells receiving
many input spikes from fibers tuned to the same CF would be expected to have
some temporal summation between the matched-CF input spikes that would
contribute to the cell output; therefore, a simple cross-CF coincidence window
may not be sufficient to characterize the cell responses.

A more explicit, though still abstract and phenomenological, model to
simulate the neural responses based on the coincidence-detection mechanism
is the “shot-noise” neuron model (Colburn et al., 1990; see Chapter 2). In such
a model (which is also used in the present study), each input discharge
generates a small, exponentially decaying increment to the model membrane
potential, analogous to an excitatory postsynaptic potentials (EPSP) in a real
neuron. An output discharge was generated when the model potential exceeded
a pre-defined threshold (which was always set to 1.0). Following each output
spike, the membrane potential was reset to zero for 0.7 ms, called the
"deadtime", to simulate a refractory period for the neuron (spikes that arrived
during the deadtime did not generate EPSPs). The model was used to simulate
different synaptic configurations that varied in several critical parameters: 1)
the number of model AN inputs and the CFs of these AN fibers, and 2) the
amplitude and time constant of the EPSPs for each input AN fiber. Two model
cells were used in illustrating the response properties of the “shot-noise” model
implementation of a coincidence-detecting cell (see Fig. 3-2). Model cell A
received two AN inputs with CFs of 850 Hz and 950 Hz, respectively. Each
input spike generated an EPSP with an amplitude of 0.7 and with a decay time
constant of 300 us. Model cell B received inputs with different EPSPs: strong
inputs from a 900-Hz AN fiber that generated an EPSP with an amplitude of
0.8 and a time constant of 100us; weak inputs from 10 AN fibers with CFs of
850 Hz and 950 Hz (5 fibers in each CF channel), each of which generated an
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EPSP with an amplitude of 0.2 and a time constant of 300 us. Model cell A
represented the extreme case in which the input temporal pattern changed
dramatically as stimulus frequency changed, whereas model cell B represented
a more realistic synaptic configuration of cells in the CN (cochlea nuclei)
receiving convergent AN inputs (see Chapter 2).

3.3.3 Simulations of Model Responses

For the simulation of model responses to pure tones, the stimulus was
gated with a 5-ms cosine-squared function and the output discharges with
latencies between 30 and 230 ms were counted for 200 repetitions of the
stimulus. Model responses to tone input with different frequency and sound
level were studied.

In the study of model cell responses to tones in wideband noise, the
response aréd and rate-level function of Bhe model cell in the presence of

Output Output
\ {8 \% 8

850 Hz 49&

Figure 3-2: The synapse configuration of two coincidence detectors used in
present study. A) Coincidence detector A received two AN inputs with CFs at
850 Hz and 950 Hz. Each input discharge generated an EPSPs with amplitude
of 0.7 and time constant of 300 us; B) Coincidence detector B received one
strong input from a 900-Hz AN fiber and weak inputs from 10 AN fibers with
CFs of 850 Hz and 950 Hz (5 independent AN fibers at each CF). The strong
input generated EPSPs with amplitude of 0.8 and time constant of 100 us. The
weak inputs generated EPSPs with amplitude of 0.2 and time constant of 300

us.

850 Hz 900 Hz 2P0 Hz
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wideband noise were computed. The wideband noise was geometrically
centered around 900 Hz and had a bandwidth of 3 kHz. The tone and noise
were turned on simultaneously with a total duration of 250 ms, gated with a
20-ms cosine squared function. The response areas of model cells were
computed at tone levels of 20, 40 and 60 dB SPL, with the noise spectral level
fixed at 30 dB SPL. The rate-level functions of model cells were computed for
noise spectral levels of 10, 20 and 30 dB SPL, with tone frequency fixed at 900
Hz. The model cell responses with latencies between 30 and 230 ms were
counted. Fifty independent noises were generated for each simulation, and the
response to each noise (plus tone) was calculated for 20 repetitions (so there
were a total of 1000 repetitions for each stimulus condition).

The onset (first 30 ms) of model cell responses were not used in the
present study. For input model AN fibers, the responses at onset were
dominated by adaptation and had wider dynamic ranges than the steady state
responses. The onset responses of model coincidence-detecting cells were
affected primarily by the input AN fiber adaptation and were more level-
dependent.

3.3.4 Comparison between Shot-noise Model and Cross-correlation

Constructing models for auditory theory usually involves two driving forces
that sometimes contradict each other. On the one hand, the models should be
complex and realistic enough to approximate neural implementations and
predict physiological responses; in most case these models generate discharges
that mimic the inputs and outputs of the neural system. On the other hand,
models used to predict psychophysical experiments are usually based on signal
processing schemes to simplify the operation. Using simple signal-processing
models is simple and efficient, and can generate satisfactory approximations if
the essential properties of the neural dynamics are captured.

For the coincidence-detection model, the simple model (cross-correlation)
in Eq. 3.2 has been used successfully to account for many binaural
experiments (Colburn, 1995). The physiologically realistic coincidence-detection
model ("shot noise" model) underlying this simple mechanism had a very low
firing rate (a result of the very short coincidence window) that is not observed
in physiological studies. While realistic response rates could be achieved by
increasing the number of inputs, there was a question as to whether the cells
were still sensitive to the input spatio-temporal patterns when they had a large
number of inputs. To study whether the cross-correlation and shot-noise
models were comparable with each other, the performance of models with
different parameters were evaluated by simulating the tone-in-noise detection
experiment from Kidd et al. (1989). Specifically, the signal to be detected was a
900-Hz pure tone, and the noise had a bandwidth of 3 kHz geometrically
centered at the signal frequency and with a fixed spectral level of 35 dB SPL.
The tone and noise were turned on simultaneously with a total duration of 250
ms, gated with a 20-ms cosine squared function.
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To evaluate the effects of model parameters on the model’s performance for
detecting a tone in noise, a detector based on the model responses was
constructed and measurement of the detector performance was defined. The
detector used in the present study was based on the responses from a
population of model CD cells, illustrated in Fig. 3-3. Each model CD cell
received inputs from two channels (at 850 and 950 Hz, respectively), and each
channel had Nindependent input AN fibers (all with EPSPs that had the same
amplitude and time constant). The parameter N varied from 1 to 32. Responses
from several identical but independent CD cells were summed to generate the
total output discharge count. The number of CD cells was equal to 32/ N to
guarantee that the total number of AN inputs to the detector at each frequency
was 32. The model CD cell responses were calculated during the steady-state
response (100~200ms). The total output count C in response to noise n or tone-
in-noise (n, L) was used as a decision variable. The strategy was to look for a
drop in the responses to indicate when the signal was present®.

The performance of the detector was evaluated by calculating the
sensitivity measure (Heinz et al., 2001):

__ ECInL]-E[CIn]
JVar[CIn]+Var[Cln,L])/2’

(3.3)

where C|n and C|n,L represent the total response counts to noise only and
noise plus signal , respectively. The signal level L (20 dB above the noise
spectral level) was approximately equal to the subject threshold for tone-in-
noise detection from Kidd et al. (1989). An alternative approach

¥ CD cell Output

Total Ouptut

@

e
_®
%@/

® As the results indicated in following section, the model cell response decreased when a 900 Hz tone was added to
the wideband noise because the input AN fiber responses became more out-of-phase with each other with the
addition of the 900 Hz tone.
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Figure 3-3: The model detector based on "shot-noise" coincidence detection
model cells. Each CD model cell received inputs from two channels with CFs at
850 Hz and 950 Hz. Each channel of CD model cell received N independent AN
inputs. Response spikes from several identical but independent CD cells were
summed to produce the detector decision variable. The total number of AN
inputs at each CF was fixed at 32, so the number of CD cells used was
determined by the number of independent AN fibers in each channel to a single
CD cell (32/N).
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to evaluate the detector performance was used in which the model
psychometric function was constructed by computing performance at different
signal levels; this computation was based on 100 independent noise maskers.

3.4 Results

3.4.1 Responses of model Coincidence Cells to Pure Tones

A convenient summary of the model responses to pure tones was to plot
the responses (e.g. rate, synchronization coefficient, phase etc.) as a function of
the frequency and the sound level of the pure tone input. Other plots could
then be derived from this 3-dimensional view of the data. For example, given
the model responses r(f,spl) (rate as a function of frequency and sound level of
a pure tone), the response area (splis fixed), rate-level function (fis fixed) and
tuning curve (contour curve at iso-rate threshold) could be derived.

Figure 3-4 summarizes the rate responses of model cell A to pure tones.
The 3-dimensional view of the model cell’s responses is plotted in the top panel,
and the response area and threshold tuning curve of the model cell are plotted
in the middle and bottom panels, respectively (Fig. 3-4). The model cell
response increased as the tone level increased, with the response shape
affected by both the tuning of the AN fibers (dashed and dotted lines in the
bottom panel, Fig. 3-4) and their input phase relationship. When the stimulus
frequency was around 900 Hz, the two input AN fibers both responded with
high rates to the stimulus frequency, but the model cell had a low response
rate because the inputs were out
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Figure 3-4: Responses of model cell A to pure tones. The stimulus was gated
with 5-ms cosine-square function and the output spikes with latencies between
30 and 230 ms were counted for 200 stimulus repetitions. Top panel: Three-
dimensional view of rate responses as a function of frequency and level of the
stimulus. Middle panel: The response area of the model cell at tone levels of 15,
25, and 35 dB SPL. Bottom panel: the threshold tuning curves of the model cell
(solid line) and of the input AN fibers (850 Hz (dotted) and 950 Hz (dashed)).
The response threshold of the model cell was set at 2.5 sp/sec. The response
threshold of the model AN fibers was set at 60 sp/sec (the spontaneous
discharge rate of AN spikes including refractoriness was roughly 50 sp/sec).
The responses were affected by both the AN fiber tuning and input phase
relationship.
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of phase. As a result, there were two peaks in the response area, neither of
which was at the CFs of the input AN-fibers. Also, the threshold for the model
cell at 900 Hz was somewhat higher than the threshold for other nearby
frequencies apparently because of the coincidence-detection interactions
between the two inputs whose phase response differ, the outline of the
threshold tuning curve did not appear to be the simple union of the threshold
tuning curves of the two input AN fibers.

The responses of model cell B to pure tones are plotted in Fig. 3-5. The
responses were generated and plotted in the same way as in Fig. 3-4. The
model cell responses at low levels were very similar to a 900-Hz AN fiber, as the
cell responses were more dependent on the responses of the strong input AN
fiber than on the temporal patterns in the other AN inputs at low levels. The
response area at low levels and the threshold tuning curve of the model cell
were more comparable to responses of neurons in the VCN (Rhode and
Greenberg, 1991), which are similar to those of AN fibers. At high stimulus
levels, the strong input AN fiber was saturated, there was relatively more
inputs from other weak AN fibers, and the model cell responses began to be
affected by the temporal patterns of the AN inputs. The response at 900 Hz at
higher stimulus levels was lower than the responses to other frequencies, for
which the inputs were more in phase with each other.

3.4.2 Responses of Model Coincidence Cells to tones in wideband noise

The response areas and rate level functions for model cells A and B to
tones in wideband noise are plotted in Figs. 3-6 and 3-7 respectively. Since the
input rate of AN fibers were all saturated at the noise spectrum
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Figure 3-5: Responses of model cell B to pure tones. The data were computed
and plotted in the same way as in Fig. 3-3. At low stimulus levels, the model
cell responses were very much like the responses of a 900 Hz AN fiber. At high
stimulus levels, the responses were more affected by the temporal patterns of
input AN fibers.
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level of 30 dB SPL, any changes of the model cell response area were caused by
changes of the spatio-temporal patterns of the input AN fibers. At low tone
levels (20 and 40 dB SPL), the response area was flat as a function of tone
frequency because the temporal pattern of the AN fibers did not change; signal-
to-noise ratio was so low that the responses were dominated by the noise.
When the tone level was high (60 dB SPL), responses for both model cells
changed systematically as the input tone frequency changed. At a tone
frequency of 900 Hz, the AN inputs were more out of phase with each other and
the response dropped. For tone frequencies away from 900 Hz, the AN inputs
were more in phase with each other and the response increased. Such
response properties not only made the model cell sensitive to changes in the
spectral shape of the input stimuli but also made such sensitivity frequency
specific.

The rate-level functions for model cells A and B were different. For model
cell A, the responses always dropped when tone level increased, and the
response was determined by the signal-to-noise ratio (the tone level referenced
to the noise spectrum level). For model cell B, the responses at low noise
spectrum levels increased with tone level, suggesting that the large 900-Hz AN
input had a strong influence on the model response. At high noise levels, the
model response dropped as tone level increased, suggesting that the temporal
pattern of input AN fibers influenced the model response more strongly at high
levels.

In general, the responses of model cell B were similar to those frequently
observed in a recent study of cells in AVCN of gerbil,
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Figure 3-6: The response areas and rate-level functions for model cell A in
response to tones in wideband noise. The wideband noise had a bandwidth of 3
kHz geometrically centered at 900 Hz. The tone and noise were gated with the
20-ms cosine squared function and turned on simultaneously with a total
duration of 250 ms. The response areas of model cells were computed at tone
levels of 20, 40 and 60 dB SPL, with noise spectral level fixed at 30 dB SPL.
The rate-level functions of model cells were computed at noise spectral levels of
10, 20 and 30 dB, with tone frequency fixed at 900 Hz. The model cell
responses with latencies between 30 and 230 ms were counted. Each
simulation used 50 independent noise tokens, and the response to each noise
(plus tone) was calculated for 20 repetitions (so there were a total of 1000
repetitions for each stimulus condition).
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Figure 3-7: The response areas and rate level functions for model cell Bin
response to tones in wideband noise. The data were computed and plotted in
the same way as in Fig. 3-6.
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suggesting that such a synaptic configuration was realistic (see DISCUSSION).

3.4.3 Response sensitivity of coincidence detection models to tone-in-noise
Figure 3-8 plots the sensitivity measure of the model detector (N=1, i.e.
each input channel of a CD cell contains one model AN fiber) for different EPSP

parameters. The sensitivity is plotted as a function the EPSP time constant (1)
for various EPSP amplitudes (Ae) in the top panel, and sensitivity is replotted
as a function of the duration of the coincidence window (defined as the longest
time interval between two EPSPs that could generate an output spike, which

Ae
1-Ae
changed non-monotonically with the EPSP parameters. The most sensitive
model detectors have a coincidence window around 170 us. A shorter
coincidence window did not guarantee better performance, because the
response variability increased as response rate decreased.

For detectors with different numbers of independent input fibers (N=1, 4,

8), and with 7 fixed at 200 us, the EPSP amplitude that resulted in the highest
sensitivity was computed. The rate-level function (top panel) and psychometric
function (bottom panel) for these detectors are plotted in Fig. 3-9. The rate of
each model coincidence cell was normalized for comparison; the maximum
rates for different coincidence-detecting cells (with different Ns, and different
EPSP parameters) are labeled in the legend. The EPSP amplitude (Ae) that
resulted in the greatest sensitivity was used in the computation (0.7, 0.4, and
0.3 for CD

was computed as cw =rxlog( y) in the bottom panel. The sensitivity measure
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Figure 3-8: The sensitivity measure of the model detector (IN=1) for various
EPSP parameters. a) sensitivity measure as a function of time constant (t) for
different EPSP amplitude (Ae, see legend); b) sensitivity measure as a function
of equivalent coincidence window. The coincidence window was computed as

CW = rxlog( AZ y. The sensitivity measure changed non-monotonically with

1-Ae
EPSP parameters. The shortest coincidence window did not result in the best
sensitivity. The maximum sensitivity was achieved when the coincidence
window was approximately 170 us.
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Figure 3-9: The normalized rate-level functions (top) and psychometric
functions (bottom) for coincidence-detection models based on shot-noise model
and cross-correlation model. The coincidence-detection model received AN
inputs with CFs at 850 Hz and 950 Hz. The shot-noise model cell received 1, 4,
or 8 independent AN inputs at each CF channel (plotted with diamonds, circle,
and squares respectively). The EPSP time constant was fixed at 200 us and the
EPSP amplitude of each model cell changed (0.7, 0.4, and 0.3 respectively) to
achieve maximum coincidence detection. The maximum response rate of model
cell (see legend) increased as number of independent input AN fibers increased.
The psychometric functions for three shot-noise models showed they were all
very sensitive to the spatio-temporal pattern of the AN inputs. The performance
of the cross-correlation model (cross symbols, not shown in legend) was very
similar to performance of shot-noise model, suggesting it was a good
approximation to the more physiological realistic coincidence detector for tone-
in-noise detection.
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models with N=1, 4, 8 respectively). The dashed lines with cross symbols
represented results from the cross-correlation model (Eq. 3-2 with coincidence
window of 20 us). In general, when more inputs converged on one model cell,
the maximum response rate increased and became more realistic, but the
model cell was still sensitive to the spatio-temporal pattern of the AN inputs.
Thus the cross-correlation model was a good approximation to the “shot-noise’
coincidence-detection model with optimum coincidence-detection window in
terms of tone-in-noise detection.

2

3.5 Discussion

3.5.1 Implications for Physiological Evidence of Cross-frequency Coincidence-

detecting Cells

It is seldom the case that neurons receive only one synaptic input, and
electrophysiological studies (Oertel, 1985; Manis and Marx, 1991; Rothman et
al., 2003; Goldberg and Brown, 1969, Yin and Chan, 1990) have shown that
many cells in the auditory brainstem are specialized for processing of timing
information carried by the discharge patterns of their inputs. However, do cells
in the brainstem exhibit distinctive response patterns that can be predicted by
monaural cross-frequency coincidence-detection models? Based on their broad
tuning it is generally agreed that the Onset cells in VCN receive convergent
inputs from a wide range of AN CFs and that they respond based on
coincidence detection; that is, they respond only at the stimulus onset, or to
low frequency stimuli for which multiple input discharges arrive within a short
time period (Oertel et al., 2000). Carney (1990) demonstrated that many cell
types in AVCN were sensitive to changes in the phase spectra of complex
stimuli (Huffman sequences), suggesting that these cell types received
convergent AN inputs tuned to different CFs and were sensitive to the relative
phase of these various inputs.

The results presented here show that model coincidence-detecting cells
produce response properties similar to observed AN fiber responses at low
levels, and produce the distinctive response patterns due to coincidence
detection in response to high-level stimuli or in response to complex sounds.
The response properties predicted in the present study have been observed for
cells in the AVCN in recent studies of gerbil (unpublished observations). Among
a total of 97 units recorded, more than 30% of units showed a decrease in
response rate when a CF tone was added to the noise?, and showed multiple
peaks in the response areas at high levels. Figure 3-10 plots the responses of
such a unit from that study. The response area to pure tones is plotted in the
top panel; multiple peaks in the response area were observed at high stimulus

734 units out of 97 units recorded had a decrease in response rate when a tone was added to the noise out of 97; this
response characteristic was observed in many cell types (no preference to a particular cell type).
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levels. The response area for tones in noise (with noise spectrum level at 30 dB)
is plotted in the middle panel. A decrease in responses was observed when a
tone was added to the noise, and tones near CF caused the greatest decrement
in cell responses. When the level of the CF tone increased, the cell responses to
the tone in noise decreased (bottom panel of Fig. 3-10). These response
properties are consistent with
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Figure 3-10: Responses of one primary-like cell (unit ID: g182u10) recorded
from AVCN of the gerbil. Top Panel: Response area to pure tones at several
levels. The response area had multiple peaks at high stimulus levels; Middle
Panel: Response area for tones in noise, with fixed noise spectrum level at 30
dB SPL. The cell responses decreased when a tone was added, especially for
tones near CF above 50 dB SPL; Bottom Panel: Rate-level function for tone in
noise with fixed noise spectrum level at 30 dB SPL. As tone level increased
(abscissa), the cell response decreased. These response properties could be
predicted by model coincidence-detection cell which received convergent AN
inputs.
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responses of a model cell that received convergent AN inputs and responded
based on a coincidence-detection mechanism.

The responses of a model coincidence-detection cell usually decreased
when a CF tone was added to the noise (referred to as the phase-opponency
mechanism, or PO, Carney et al., 2002). This decrease occurs because two AN
fibers tuned very close to each other always had in-phase responses; in this
case, there was little change in the correlation of their inputs when the tone
was added. As the CF-difference between AN fibers increased, the phase
between two AN responses to the tone signal (i.e. a signal with a frequency at
the mean of the CFs of the two AN fibers) become out of phase first, which
resulted in a decrease in model CD cell response. Two AN fibers with large CF-
difference could have in-phase response to the signal but a high signal level is
required to generate a change in the temporal correlation between the two AN
responses.

From a functional point of view, both the PO mechanism and a lateral
inhibition (lateral inhibition at low frequency is essentially a form of
coincidence detection, see discussion in Shamma and Klein, 2000) could
enhance the representations of the input spectral shape. The PO mechanism is
purely temporal while the lateral inhibition mechanism is rate-based and
requires non-saturated input rates (Rhode and Greenberg, 1994). Given that
primarylike CN cells have dynamic ranges similar to AN fibers (May and Sachs,
1992), and that at low frequencies most cells have limited dynamic ranges
(Winter and Palmer, 1991) as a result of little compression of the basilar
membrane, the PO mechanism could be a more realistic way to process
spectro-temporal information than lateral inhibition. Further studies with more
controlled recordings from AVCN cells in the low CF regions could help to
identify which of these two different mechanisms is responsible to CN
responses. The coincidence cells should have multiple peaks in their response
area at high levels and show a decrease in response rate when a CF tone is
added to the complex sound at a level where the cells are already saturated.

3.5.2 Functional implications and relation to hearing impairment

Biologically inspired models based on coincidence detection have been
used in explaining various auditory tasks. Some models require explicit delays,
e.g., models for the processing of interaural time delays (Jeffress, 1948;
Colburn and Durlach, 1978), or models for computing the correlograms for
pitch (Licklider, 1951; Slaney and Lyon, 1993). Other models use cross-
correlations to encode stimuli for specific tasks (Deng and Geisler, 1987;
Shamma and Klein, 2000) where the delays are intrinsic within the spatio-
temporal pattern of the AN responses. The present study, together with several
other studies (e.g. Heinz et al., 2001; Carney et al., 2002), shows that
fundamental features of the stimulus such as level information and spectrum
shape could be conveyed in the spatio-temporal pattern of AN responses.
Cross-frequency coincidence detection can process such spatio-temporal
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information in complex sounds and convey this information to the CNS in the
form of a rate code.

Cross-frequency coincidence detection relies on the relative timing of
responses across different auditory filters. While most studies of hearing
impairment have focused on the broad tuning and elevated thresholds of
auditory filters due to the loss of cochlear compression, the temporal (phase)
changes of the responses of the auditory periphery are ignored. These phase
changes may be a critical factor in understanding functional implications of
hearing loss. Damage to the auditory periphery affects both frequency
selectivity and group delay (slope of the phase responses) of the auditory filter,
and thus will change the spatio-temporal pattern of AN responses. Such
changes will influence the responses of neurons that are involved in spatio-
temporal encoding schemes and may explain the difficulties of hearing-
impaired listeners in noisy environments (Moore, 1995).

3.6 Conclusions

The present study provides fundamental information about the responses
properties of model AVCN cells that receive convergent AN inputs based on a
coincidence-detection mechanism. These model cells were sensitive to the
spatio-temporal pattern of AN inputs. The responses of model cells that
received mixed-amplitude inputs (model cell B) were similar to AN fibers at low
stimulus levels and had responses that were affected by the spatio-temporal
pattern of their input AN fibers at high stimulus levels. For the tone-in-noise
stimulus, the model cell response changed systematically depending on the
tone frequency, making the cell capable of processing changes in spectrum
shape which were encoded in the spatio-temporal patterns of the AN responses.
The response properties of model cell A were not observed in CN cells from
physiological experiments. However, the responses of such a model cell
represented the maximum capability of the coincidence-detection mechanism
to encode spatio-temporal information; several stages of processing may be
required for the nervous system to extract temporal information completely
based on a more realistic coincidence-detection mechanism. In general, the
cross-correlation model was a reasonable and simple operation that could
account for how the spatio-temporal pattern of AN inputs could be processed
by neurons that act as coincidence detectors.
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Chapter 4 Detection performance using a Coincidence-Detection Model:

Identifying model cells sensitive to different cues

4.1 Abstract

A temporal model based on a monaural, across-frequency coincidence-
detection mechanism was used previously to successfully predict simple
psychophysical experiments, such as level discrimination (Heinz et al., 2001c¢)
and tone-in-noise detection (Carney et al., 2002). This study provides a detailed
evaluation of how the stimulus parameters in masked-detection tasks affect
the predictions of such a temporal model. The model receives inputs from
auditory-nerve (AN) fibers tuned to different frequencies, and its response
changes dramatically when the phase relationship (temporal correlation)
between the input AN fibers changed. The temporal pattern of AN fiber
responses exploited by the model is determined by the signal-to-noise ratio,
thus the model cell response is robust to changes in the overall level of the
stimulus. As the bandwidth of noise decreases, the most sensitive model
coincidence-detecting cell responds to both rate and temporal information in
the input AN fiber responses. The model naturally combines rate and temporal
information and predicts performance for masked detection under various
conditions. The performance of other model detectors are also evaluated for
masked detection of tones in noise. The other model detectors are based on the
output energy (rate) of several auditory filters tuned to different frequencies
and the envelope statistics (peakiness) of the auditory-filter outputs. These
detectors are based on different aspects (cues) of the stimulus and thus
predictions for the same experiment provided direct comparisons of how each
cue could be used in masked detection.

4.2 Introduction

It is widely believed that data from psychoacoustical experiments have
their basis in the physiological mechanisms of the human auditory system. It is
thus a fundamental problem of auditory theory to relate perception to the
underlying physiological properties of the auditory system. One useful
approach to bridge our interpretation of the data from psychophysics and our
understanding of the underlying physiological mechanisms or function has
been to construct models that mimic (at least at some stage of processing) the
physiological mechanism and to use them to predict human performance.

One successful example of this approach is the “power spectrum model”
based on the critical-band (CB) hypothesis for the detection of a pure tone in
masker noise (Moore 1995). In a classic experiment, Fletcher (1940)
demonstrated that the detection threshold increases as noise bandwidth is
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increased up to a certain value, known as the CB; the threshold is essentially
constant with addition of noise energy outside the CB. The results were
interpreted as an application of signal detection theory based on the energy of
the output of the auditory filter centered at the tone frequency (Green and
Swets, 1966, Chapter 8). The behaviorally measured auditory filter is widely
believed to be a direct reflection of the filtering that occurs on the basilar
membrane (BM) in the cochlea (Moore, 1986; Evans et al., 1989). These
assumptions have been the foundation of many other masking experiments
and have led to numerous quantitative studies of the auditory filter and related
physiological properties of cochlear function (e.g. Patterson, 1976; Moore, 1978;
Oxenham et al., 2003).

However, the power spectrum model fails to predict human performance
reported in several other studies. Studies from profile analysis (Green, 1988)
and comodulation masking release (CMR, Hall et al., 1984; Hall, 1986) have
demonstrated that acoustic information outside the CB can improve signal
detection8, and human performance for detection in wide-band noise is only
slightly disrupted when the overall level of the stimulus is varied from interval
to interval (Kidd et al., 1989). These results can be partly reconciled by
applying channel theory to the responses of a population of auditory filters
tuned to different characteristic frequencies (CF). When the different auditory
filters are correlated in response to noise and uncorrelated (or have a different
correlation) in response to the signal, the information in the responses of
different filters can be combined optimally to decrease the uncertainty caused
by the noise in the channel centered at the signal frequency to improve
performance (Durlach et al., 1986; Kidd et al., 1991).

The power spectrum model generally ignores temporal information in the
stimulus, which is apparently important for perception of various aspects of
complex sounds and has been studied extensively in modulation discrimination
and pitch perception (Eddins and Green, 1988; Houtsma, 1988). Several
studies have demonstrated that temporal information in the stimulus,
including the stimulus envelope and fine-structure, provide important
information for masked detection in narrowband noise without the presence of
reliable level differences (Kidd et al, 1992; Richards 1992; Richards and
Nekrich, 1993). The same temporal information could also contribute to
masked detection in wideband noise because narrowband peripheral filtering is
widely accepted as the first fundamental processing stage in the auditory
system. It is thus of great interest to see if a temporal model can predict
performance for masked detection under various conditions and provide an
alternative explanation of the underlying mechanisms that account for this
simple psychophysical experiment.

Another problem for the “power spectrum model” is that it requires a
reliable representation of stimulus energy, presumably in the responses of the
peripheral auditory system. Such a representation is not clearly available in the

8 Studies of information masking (see Watson, 1987; Neff and Green, 1987; Durlach et al., 2003) suggest that
threshold could also be elevated due to maskers outside the CB.
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discharge rates of AN fibers. The majority of AN fibers have a limited dynamic
range and saturate in response to even moderate level sounds®. The existence
of such fibers suggests that they might be useful in encoding information at
sound levels even when their responses are saturated. The inclusion of low-
spontaneous-rate, high-threshold, wide-dynamic-range fibers may provide rate
information about the stimulus energy over a wide dynamic range (Winslow
and Sachs 1988; Heinz et al., 2001c; see review chapter by Delgutte, 1996) but
the optimal use of average-rate information in the AN cannot account for
human performance on a level discrimination task across a wide range of
frequencies (Heinz et al., 2001a). It has been argued that robust performance
in level discrimination could be accounted for by a model based on temporal
information in AN fiber responses (Heinz et al., 2001a; Colburn et al. 2003).
Thus stimulus energy may be represented in the spatio-temporal pattern of the
population AN fiber responses.

In the present study, a temporal model based on a monaural, cross-
frequency coincidence-detection mechanism (Carney, 1994; Heinz et al., 2001c;
Carney et al., 2002) was evaluated in detail. The coincidence-detecting model
cell responded to the synchronized inputs from model AN fibers tuned to
different frequencies, and was very sensitive to changes of the phase
relationship (temporal correlation) between the input AN fiber responses. The
effects of the stimulus parameters and model parameters on the response
properties of this temporal model were explored. The benefits of combining
outputs of a population of model cells were illustrated, and model performance
was examined by simulating the same tracking algorithms as used in
psychophysical experiments. Specifically, the detection of a tone in noise with
different bandwidth and with different roving-level conditions (Kidd et al., 1989)
was simulated based on the model outputs. Additionally, the performance of
several other models was evaluated in the second phase of the study. The
alternative model detectors included an energy detector based on a population
of auditory filter responses and an envelope detector. These different model
detectors make use of different characteristics or cues available in the stimulus.
A comparison of their performance for the same stimuli is helpful in clarifying
which mechanisms are appropriate to explain masked detection.

4.3 Methods

4.3.1 Stimuli
Noise stimuli with different bandwidths were created digitally. In each
desired bandwidth, a wideband Gaussian noise with a specified spectrum level

? Conversational speech is approximately around 60 dB SPL (from http:/www.nonoise.org/) and human threshold
for tones between 500 Hz and 4k Hz is about 10 dB SPL (Moore, 2003, pg. 129). Many AN fibers (66% in cat) are
low threshold with dynamic ranges of approximately about 30 dB SPL (May and Sachs, 1992).
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was first generated, and the frequency components outside the desired
bandwidth were set to zero in the frequency domain. The noise stimulus
parameters were matched to those used in the psychophysical measurements
of masked detection that were the focus of this study (Kidd et al., 1989). The
bandwidth of the noise was geometrically centered at the tone frequency of 900
Hz and varied from 10 to 3000 Hz. The spectral level of the noise was either
fixed at 35 dB SPL or randomly varied across intervals over a maximum range
of 32 dB centered at 35 dB SPL. The tone and noise were turned on
simultaneously with a total duration of 250 ms, gated with a 20-ms cosine
squared function.

4.3.2 Simulation of AN Fiber responses

A computational auditory-nerve (AN) model for the auditory periphery in
human (Heinz et al.,, 2001d (ARLO)) was used to simulate the AN responses.
The model was based on a nonlinear model for the responses of AN fibers in cat
(Zhang et al., 2001), modified to have bandwidths appropriate for human
listeners (Heinz et al., 2001d). Different versions of the AN model can be used
to study the role of several response properties associated with the cochlear
amplifier, including level-dependent tuning, compression, and suppression, as
well as the role of fibers with different spontaneous rates and thresholds (Heinz
et al.,, 2001d, 2002). The model AN responses presented here were produced
using nonlinear model fibers with compression and suppression (Model #1 in
Heinz et al., 2001d) and with a high spontaneous rate (HSR) of 60 sp/sec. The
analysis of models responses from low-spontaneous-rate (LSR) fibers was not
included in the present studies because: 1) The temporal information in LSR
and HSR fibers is similar (Johnson, 1980), and 2) physiological evidence
suggests that compression in the low-frequency region is relatively weak
(Cooper and Rhode, 1997), and thus low-CF LSR fibers have rate-level
functions with limited dynamic ranges (Sachs and Abbas, 1974; Winter and
Palmer, 1991).

Population responses of model AN fibers were generated based on a total of
41 model AN fibers centered at 900 Hz (the 21st model AN fiber had a CF of 900
Hz); model fibers were 0.2mm apart on a cochlear map. The CF of the AN fibers
was determined by the human cochlear frequency placemap (Greenwood, 1990)
given by

CF = A (10 /L - K), (4.1)

where x is the distance of the location from the apex and that other variables
are constants (A=165, a=2.1, K=1.0, and L=35) chosen for human.

4.3.3 Monaural, across-frequency (correlation) coincidence-detection model
The temporal model used in the present study was a simple coincidence-

detection model described in several studies (Colburn, 1973, 1977; Carney et

al., 2002; Heinz et al, 2001c). Each model cell received two AN inputs and
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discharged only when both input fibers had discharges within a narrow
temporal window. When a very small coincidence window (CW=20us in present
study) was used, this model is similar to cross-correlation models (Colburn,
1977; Loeb et al. 1983; Deng and Geisler, 1987; Shamma and Klein, 2000),
and the model responses are proportional to the multiplication of the
instantaneous firing rate of the input AN fibers. To obtain model responses
with discharge rates that were consistent with typical auditory neurons, N=10
identically driven inputs from each of two AN CFs converged on each model
coincidence cell and the instantaneous firing rate of the model output was
approximated by

Rep(t) = Ranri(t) *Rant(t) x CWxN2, (4.2)

where Ranfi(t) and Ranf2(t) are the instantaneous firing rate of the input AN
fibers at two CFs, CWis the width of coincidence window, and N is number of
identical inputs from each of two AN CFs.

This approximation assumes that the model discharges only when two
input spikes from different CF fibers fall within the coincidence window (i.e.
coincident spikes from fibers at the same CF are ignored here). In the analysis
presented below, the steady state portion (100-200 ms) of the cell responses
was used. This simplified operation has performance comparable to that of the
coincidence-detection model based on a shot-noise model, which is more
physiologically realistic but more computationally intensive (see Chapter 3).

The coincidence-detection model is sensitive to the spatio-temporal pattern
of the input AN responses. The temporal AN inputs of a model cell in response
to wideband noise only (top panel) and tone-in-noise (bottom panel) are
illustrated in Fig. 4-1. The input AN fibers had CF's of 850 Hz and 950 Hz,
respectively, and their responses to a 900-Hz pure tone differed by
approximately 180 degrees of phase. The model coincidence-detection cell only
responded at times when the two AN inputs overlapped (dark regions). The
responses of two AN fibers were partially correlated to the noise stimulus, since
some energy passed through both filters, resulting in occasional coincidences
in their outputs. When the tone was added to the noise, the temporal pattern
in both AN responses became dominated by the signal and thus the inputs to
the model cell were out-of-phase with each other, resulting in a dramatic
reduction in the coincidence-detector model cell responses. The systematic
change of the spatio-temporal pattern in the AN responses with the addition of
a tone to the noise thus provided information for the coincidence-detecting cell
to detect the presence of the signal. Based on
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Figure 4-1: Responses of two model AN fibers with CFs at 850 Hz and 950 Hz
to wideband noise only (top panel) and to tones-in-noise (bottom panel). The
responses of two AN fibers to 900-Hz pure tone were out-of-phase (differed by
approximately 180 degree) with each other. The responses of the two AN fibers
to the noise stimulus had occasional coincidences in their outputs (dark
regions). When the tone was added to the noise, the temporal pattern was
dominated by the signal in both AN responses, which were out-of-phase with
each other, resulting in a dramatic reduction in the coincidence-detector model
cell responses.
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the population of AN responses, a matrix of model coincidence-detecting cells
was constructed. Each model cell received inputs from AN fibers at two CFs.

4.3.4 Quantitative measure of the detector performance and internal noise

A decision variable C was formed based on model responses to pairs of
stimuli. The performance of such a detector was evaluated by calculating the
sensitivity measure

E[C(n,L)]- E[C(n)] E[C(n,L)]— E[C(n)]
~ JVarlCml+VarlCm L)/2 N

(4.3)

where n is the masker noise, and L is a tone level selected near the
performance threshold. A similar metric was used by Heinz et al. (2001c
(JASA)); Q corresponds to the commonly used sensitivity index d', which is a
complete characterization of sensitivity when the decision variable C has a
Gaussian distribution with equal variance under both conditions (noise-only
and signal-in-noise). The variability in the decision variable C (or in the model
responses) was caused by stochastic fluctuations across different noise
samples (i.e. the "external noise", denoted by Vex ). A negative sign of the
sensitivity measure Q indicated that the detection strategy was to look for a
drop in the decision variable when a tone was added to the noise.

A variety of sources can account for internal noise (e.g., imperfect memory
or lack of a constant decision criteria), including the stochastic nature of the
neural activities. We could include an approximation of “internal noise” in the
sensitivity metric with the assumption that individual neural activities could be
approximated by Poisson processes (that is, the response variance was equal to
the mean activity). If C represented an expected value of the model neural
response, then the sensitivity measure of the detector based on M independent
identical model cell responses is given by (Heinz et al., 2001a)

E[C(n,L)]- E[C(n)] _ E[C(n,L)] - E[C(n)]
\/v +(E[C(n, L)1+ E[C(n)])/(2M) JV +V, /M)

, (4.4)

where Vinrepresents the variance of "internal noise" from one single model cell.

The detector performance based on a population of responses C;, where C;
represents the output of the ith channel, can be evaluated by (Durlach et al.,
1986)

Q> =[A,,..A, IG[A,...A, T, (4.5)

where Ai=E[C;|n,L]-E[C;|n], N is the total number of the channels, and G is the
inverse of the covariance matrix K. The covariance matrix of the population
responses, K, which included the neural variability in each channel of M
independent model cells was given by
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k, = (Var[C,(n)]+Var(C,(n,L)])/ 2+ (E[C,(n)]+ E[C,(n, L)]) /(2M )

k; =(CoV[C,(n),C;(m]+ CoV[C,(n,L),C,(n,L)])/2, (i# j) (4.6)

Note k;jj (i#j) has no internal component because cells are statistically
independent, and k; includes the internal noise calculated based on the
response count from M independent model cells for each channell©. A decision
variable L can be formed based on simulated population responses

L= W]|Cy,...CNT, where W= [Ay, ..., AN|G=[A5, ..., ANK 1, (4.7)

and the expected response difference A; was measured for stimuli having
signal-to-noise ratios indicated by human performance thresholds from Kidd et
al. (1989). The detector constructed above is an optimal detector if C; was
Gaussian with the same variance in both conditions and varied linearly near
the threshold level.

For all of the results presented here, 100 independent noise samples were
used to compute the means and variances of the model responses. The results
with no internal noise represented a lower bound for thresholds that could be
obtained with a very large number of identical model cells, because the
combination of responses across independent cells reduced the effect of the
internal noise.

4.3.5 Population Model Coincidence Detecting Cells

A matrix of CD model cells was constructed from a population of model AN
fiber responses (see Section 4.3.2). Each model cell in the matrix received
different AN fiber inputs based on its position within the matrix. The sensitivity
measure Q for cells at each location in response to different stimulus
conditions was calculated for stimuli at the human detection threshold (Kidd et
al., 1989). For all the computations fifty identical and independent cells (M=50
in Eq. 4.4) were used!!, and Q actually represented the sensitivity of these 50
identical cells at each location in the matrix. We refer to cells with negative Q
as “negative” cells, because the responses of these cells decreased with addition
of the signal. The cells with positive Q are referred to as “positive” cells,
correspondingly. A sensitivity measure of 1 or —1 indicates that the model
predictions based on the cell responses was close to threshold, because the
sensitivity measure Q is very similar to the d-prime measure. The sensitivity
matrix was calculated using signal levels that matched human thresholds for

' Calculation of the inverse of the cross-covariance matrix without including internal noise for each channel may be
impossible and also would not be optimal. By including internal noise for each channel, combining two channels
that had the same output would enhance discriminability.

' Each location in the cell matrix represents 50 identical cells, which decreased the internal noise and increased the
sensitivity for each matrix location. Since the cell responses were highly correlated (as we will see below), this was
also similar to combining cells across different locations in the cell matrix, which decreased the internal noise but
not the external noise. Combining cells across different locations in the cell matrix may decrease the total number of
cells in the matrix, which is constrained by anatomyphysiology, see http://earlab.bu.edu/anatomy/Ratcell.aspx.
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each bandwidth in the roving-level or fixed-level condition (Kidd et al., 1989),
depending on the simulation.

4.3.6 Simulation of the Psychophysical task

To provide predictions that could be directly compared to experimental
results, a two-interval, two-alternative forced-choice (2I2AFC) method with an
adaptive 2-down, 1-up tracking algorithm was used (matched to Kidd et al.,
1989) to estimate the masked threshold for tones in either fixed-level or roving-
level noise. Independent Gaussian noises were generated for each stimulus
interval in the simulations. In the roving-level conditions, the spectrum level of
each noise presentation was chosen randomly from a rectangular distribution
(ranges of 4 dB or 32 dB) of levels centered around 35-dB SPL spectrum level.
The noise spectrum level in the fixed-level condition was always 35 dB SPL.
The 900-Hz signal was present at the level determined by the adaptive tracking
procedure in one of the two presentations (intervals). The tone level in each
track started at 25 dB re: Np and the initial step size was 4 dB. The step size
dropped to 2 dB after 4 reversals, a total of 16 reversals was simulated for each
repetition, and threshold was taken as the mean of last 12 reversals for each
track. A track was stopped if the tracking level went above 50 dB re: No. Forty-
two tracks were simulated for each condition to match the number of threshold
estimates averaged in the Kidd et al. (1989) study, which included 6 estimates
of threshold for each condition for 7 listeners.

A decision variable was computed based on the model responses. For
coincidence-detecting model cells, the expected value of the discharge counts
with latencies between 100 and 200 ms in response to a given stimulus
waveform was computed for each stimulus interval (Eq. 4.2). This value varied
across noise samples but did not include “internal noise” associated with the
stochastic nature of the neural activity. A simple Poisson distribution was used
to describe the spike counts of each model cell output. For all the results
presented here, the decision variable used for the task was a sum of responses
from 50 identical model cells. The randomness of the decision variable caused
by the “internal noise” was approximated by adding a Gaussian!2? random
variable to the mean output of total counts. The Gaussian variable has zero
mean and variance equal to the mean output. In the case of sensitivity
measurement, the variance was applied directly to Egs. 4.3 and 4.4. The
computation of decision variables for the other models will be described in the
corresponding sections.

4.3.7 Energy-based detectors

Energy-based detectors typically assume that human listeners have a
roughly constant threshold (in dB) for level (intensity) discrimination over a
wide dynamic range. Numerous theories that have been developed to address
the dynamic-range problem all assume that numerous AN fibers with different

2 Even though spike counts of each model cell output were described by a Poisson distribution, the sum of N
independent model cell outputs could be approximated by a Gaussian variable based on statistical theory.
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response properties are involved (whether they have different CFs, or they have
different rate-level functions, Viemeister, 1988; Winter and Palmer, 1991;
Heinz et al., 2002; reviewed by Delgutte, 1991). In this report, we followed a
common practice in psychophysical modeling to avoid this problem. The energy
output of the model BM filter (Zhang et al., 2001) was calculated without any
further processing by IHC or AN models. The RMS energy over the stimulus
duration from 10-240 ms was converted into dB (referenced to O dB output) at
the output of each channel (so it was dimensionless). Internal noise was
simulated by adding a Gaussian random variable with zero mean and 1.5
standard deviation to the channel output. The value of the standard deviation
was chosen so that the detector predictions in the narrowband noise for the
fixed-level condition were close to human performance. For the detector based
on multiple auditory filter outputs, five auditory filters evenly spaced along the
basilar membrane (Greenwood, 1990) were used and were separated by roughly
one critical bandwidth. The CFs of the auditory filters were 692, 790, 900,
1022, and 1158 Hz. A decision variable was formed based on the weighted
combination of different channels (Eq. 4.7).

4.3.8 Envelope-based detector

The envelope-based detector used in the present study was similar to
Viemeister’s model (1979) for modulation detection except that the current
model consisted of a narrowband basilar-membrane filter, followed by an inner
hair cell (IHC), which was modeled as a half-wave rectifier followed by a low-
pass filter. The first two stages of the processing used the corresponding
components in the peripheral auditory model (CF = 900 Hz) described in Zhang
et al. (2001), with parameters adapted for human (Heinz et al., 2001d). The
model IHC output was used instead of a model AN fiber response because the
modulation response of a single AN fiber is affected by stimulus level (Joris and
Yin, 1992), and a model with a wide dynamic range is required to explain the
psychophysics. The low-pass filter was a first-order Butterworth with a cutoff
frequency at 70 Hz. Before calculating the envelope statistics, the output of the
detector was low-pass filtered with a 500-Hz cutoff frequency with an 8th-order
Butterworth low-pass filter. This filter was applied to reduce the noise in the
calculation due to the carrier frequency (900 Hz); the bandwidth of the auditory
filter at 900 Hz was approximately 100 Hz, so the envelope fluctuations at the
output of this filter were unlikely to exceed 500 Hz. The average slope of the
envelope was used as the decision variable and was calculated over a 170-ms
window, omitting 30 ms after the stimulus onset, and normalized by the
average of the envelope slope, x: (1/n)X |xi — xi-1| /X | Xi| (Richards, 1992). The
simulations were run at a sampling rate of 100 kHz, and internal noise was not
included.
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4.4 Results

In this section, the properties of a population of CD model cells in
response to different stimuli is presented first, the strategy of combining the
responses of a population of CD model cells in simulating psychophysical tasks
and predictions is discussed next, and performance of the energy- and
envelope-based models is evaluated last.

4.4.1 Effects of stimulus and model parameters on model responses

Single-cell model responses to tone-plus-noise stimuli

The model coincidence detector, as illustrated in Fig. 4-1, can predict
human performance for tone detection in wideband noise (Carney et al., 2002).
To illustrate how different stimulus levels and bandwidths affected the model
detector predictions, model cell responses are plotted in Fig. 4-2 as a function
of the tone level (ref: Np) for different stimulus conditions. The plots in the top
panel show the rate responses of two input model AN fibers. The responses of
both model AN fibers were saturated to noise alone and there was no
significant change in the model AN responses with addition of the signal. Thus
the change of the model CD cell response was mainly due to the temporal
change of the AN fiber response pattern. The model CD cell responses to tone-
in-noise
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Figure 4-2: Model cell responses as a function of tone level (ref: No) for different
stimulus conditions. The noise is geometrically centered at the tone frequency
(900 Hz). The top panel shows the rate responses of two input model AN fibers
with different noise bandwidths at fixed noise spectral level (35 dB SPL): (a)
850-Hz AN fiber responses; (b) 950-Hz AN fiber responses. Both model AN
fibers had saturated rates in response to noise alone and there was no
significant change in rate with addition of the signal. (c) CD cell responses at
different noise bandwidths with fixed spectral levels of 35 dB. The cell
responses to the narrowband noise were already negatively correlated, and
responses remained low as signal level was increased. The increase in
responses at high level was due to the phase changes of the AN fiber responses
associated with broadening of the nonlinear auditory filters at high stimulus
level. (d) CD cell responses at several noise levels (see legend) in 3000 Hz
wideband noise. The changes of the model responses to different noise spectral
levels was much smaller than that to different tone levels, and model responses
were determined by the signal-to-noise ratio (tone level reference to No).
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stimuli with various bandwidths are plotted in Fig. 4-2(c) (bottom left panel).
The noise spectral level was fixed at 35 dB SPL and the bandwidth of the noise
varied from 10 Hz to 3000 Hz (see legend). Generally the model CD response
was a reflection of the correlation between the two input AN fiber responses,
which depended on the relative energy passing through the overlapping region
of the two auditory filters. In the narrowband condition, most energy in the
noise stimulus was around 900 Hz and the AN fiber responses to the
narrowband noise were already negatively correlated. Adding a signal to the
noise would not change the temporal pattern in the AN fiber responses, thus
the model cell response did not change much as the signal level increased. In
the wideband noise condition, the input AN fiber temporal responses became
more negatively correlated as the signal level increased, and the model CD cell
response dropped dramatically at high signal levels. The model coincidence
detector also had a limited dynamic range; its response rate did not change
significantly at high tone levels. The responses increased slightly at high
stimulus levels because the two CFs were no longer out-of-phase with each
other due to changes of the phase properties of model AN fibers associated with
the broadening of the nonlinear model auditory filters as input level increased.

Figure 4-2(d) shows the cell responses at several noise levels (see legend)
with a fixed noise bandwidth of 3000 Hz. The changes of the model cell’s
response to different noise spectral levels was much smaller than the changes
in response to different tone levels. So any significant change of the model
response was due to the change of the tone level relative to the noise spectrum
level. The model CD cell also responded similarly to similar tone levels
referenced to No for different noise spectrum levels, making the threshold for
detection consistent across noise spectrum levels.

The responses of another CD cell are illustrated in Fig. 4-3. This model cell
received two input AN fibers with CFs of 584 Hz and 959 Hz respectively. For
the narrowband noise masker, the 584 Hz AN fiber was not saturated and
therefore the AN fiber responses changed with tone level but were always less
than the responses to tones in wideband noise. The responses of this model CD
cell reflected both the temporal correlation between the input AN fibers and the
rate responses of the input AN fibers. For the narrowband noise masker
(centered at 900 Hz), the CD cell responses increased dramatically as tone level
increased and were greater than the responses to the wideband noise with the
same tone level. For this auditory filter with CF away from the signal frequency,
the responses to tones in narrowband noise had much higher signal-to-noise
ratios than the responses to wideband noise with the same signal level (ref: No).
The input AN fiber responses were more temporally correlated for the
narrowband noise at the same signal level, and this temporal correlation
contributed to the higher response rate of the CD cell in the narrowband noise
than that in the wideband noise. The responses of the CD cell for 100-Hz
narrowband noise at different spectrum levels are plotted in Fig. 4-3(d) with the
100-Hz narrowband noise. The model responses were affected by both the
noise spectrum
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Figure 4-3: Similar plot as in Fig. 4-2 for another model CD cell with same
stimulus conditions. The model CD cell received two inputs from 584-Hz and
959-Hz AN fibers. (a) The 584-Hz AN fiber was not saturated in response to
narrowband noise and the responses for narrowband noise masker were always
less than those to wideband noise masker. (b) 959-Hz AN fiber responses. (c)
CD cell responses with different noise bandwidths. The model responses for
narrowband maskers increased dramatically as tone level increased and were
greater than the responses to the wideband noise with the same tone level,
suggesting that changes in temporal correlation between AN fiber responses for
narrowband noise masker contributed to the CD cell responses (for wideband
masker, this happened at much higher signal levels). (d) CD cell responses at
different noise spectral levels with 100-Hz narrowband noise. The responses
were affected by both the noise spectral level and the tone level.
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level and the tone level, and thus roving the noise level would greatly affect the
performance of this model cell.

Responses of a population of model cells to tone-plus-noise stimuli

The plots in Fig. 4-4 are the sensitivity matrices for CD cells in the fixed-
level condition for each noise bandwidth. The noise bandwidth increases from
left to right and from top to bottom (a)-(f). The CD cell sensitivity changed
systematically as the temporal relationship of the two AN inputs changed. In
the narrowband noise condition, there were CD cells with negative sensitivity,
even though the responses of input AN fibers increased as the tone was added
to the noise. A CD cell became more sensitive when both the temporal
correlation and the rate responses of the input AN fibers changed positively
when the signal was added to the narrowband noise. Thus the most sensitive
cell in the narrowband noise condition was a positive cell that received input
AN fibers with different CFs (i.e. those cells not located on the bottom row in
the matrix).

There were several consequences when the AN fiber responses became
saturated in response to wideband noise. 1) There was less rate change for the
AN fibers with addition of the tone, and sensitivity of some positive CD cells
(especially cells with same-CF inputs) dropped; 2) the noise-only responses
from AN fibers near signal frequency were more uncorrelated, and thus there
was more temporal change when a tone was added to the noise; 3) the AN
fibers with CFs away from the signal frequency required higher signal levels to
change their temporal patterns. As a result, the most sensitive CD cells in
response to wideband noise
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Figure 4-4: Sensitivity matrices for CD cells in the fixed-level condition for
different noise bandwidths. The noise bandwidth increases from left to right
and from the top to bottom (a)-(f). The abscissa of each plot represents the
mean CF of the input AN fibers, and the ordinate represents the CF ratio of two
input AN fibers. The sensitivity patterns were mainly determined by the
temporal relationship of two AN fiber inputs (there were negative cells even
though AN fiber responses increased as the tone was added for the narrowband
noise masker). For the narrowband masker, the most sensitive cell was the
positive cell that received different AN inputs (i.e. these cells not on the bottom
row in the matrix). For the wideband noise masker, the most sensitive cells
were the negative cells in the central region, which were surrounded by less
sensitive positive cells.
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were the negative cells near the center of the matrix, and the nearby positive
cells had less sensitivity since they required higher signal levels to change their
temporal patterns.

The sensitivity matrices for CD cells in the roving-level condition are
plotted in Fig. 4-5. Higher signal levels (matched to human thresholds, Kidd et
al., 1989) were used in the calculation of the sensitivity measure in the roving-
level conditions. The threshold difference used between fixed-level and roving-
level conditions was highest for the narrowband noise, but the sensitivities of
positive cells still decreased in the roving-level condition compared to the
sensitivities in the fixed-level conditions (Fig. 4-4). The negative cells in the
sensitivity matrices had sensitivities that were comparable or even enhanced
with respect to that in the fixed-level conditions (Fig. 4-4) because these cells
were less dependent on the level changes of the stimuli. For the wideband noise
masker, the threshold difference between fixed-level and roving-level conditions
was small, and the pattern of sensitivity matrix was very similar for roving (Fig.
4-5) vs. non-roving (Fig. 4-4) conditions.

4.4.2 Psychophysical predictions based on the population of CD cell responses

Population Coding and correlation between the population CD cells

There are several ways to construct a detector based on the population of
CD cell responses. The simplest strategy was to construct a detector based on a
single cell that was most sensitive in each stimulus condition. The optimum
strategy was to construct a detector that
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Figure 4-5: Sensitivity matrices for CD cells in the 32 dB roving-level condition.
Even though higher signal-to-noise ratios (matched to human thresholds) were
used in the computations for narrowband noise conditions, the sensitivities of
positive cells decreased. The negative cells in the sensitivity matrices had
comparable or even enhanced sensitivities because these cells were less
dependent on the level changes of the stimuli. The sensitivity matrices were
very similar under different conditions for wideband noise maskers.
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combined the population responses optimally based on the covariance matrix K
across CD cells (See Eq. 4.5-4.7). If all CD cells had independent responses, the

sensitivity measure of the optimal process would be @’ :ZQi2 , Where Q; is the

sum
i

sensitivity measure of each individual model cell. This was only true when the
response variance was caused solely by the internal noise of each individual
CD cell, in which case the combination of population cell responses was similar
to increasing the number of independent cells.

Another mechanism that can improve the performance by combining
population responses applies if there were cells in the population that
responded only to the noise, and if the cell responses to the noise were highly
correlated. By combining different channel outputs optimally, the response
variance caused by the noise stimuli (i.e. the external noise) could be effectively
decreased (or suppressed). This is essentially the same mechanism (see Moore,
1988 for review of “dynamic aspects of auditory masking”) that has been
hypothesized to improve human performance in CMR or profile analysis, where
outputs of different auditory filters are correlated either in the temporal domain
(e.g. the envelope in CMR) or in terms of their power spectra, and only one
auditory filter is assumed to change its response when the signal is added to
the noise. In this case, the model cells can generally be classified into two types:
those that respond to the signal and those that do not.

To test if such a mechanism could improve the performance of the
population CD model, the optimum sensitivity measure was calculated based
on the outputs of two CD cells: one was always the most sensitive cell
(representing a cell that responded to the signal), and the other cell was chosen
from the population of cells. The enhancement of the sensitivity measure was
calculated as the difference between the optimum sensitivity based on the
combination of the two cells and the sensitivity of the best cell. A matrix
illustrating the enhancement of sensitivity by addition of the second cell can
thus be constructed (Fig. 4-6); the enhancement of sensitivity was plotted at
the location of the second model cell. The maximum enhancement of the
sensitivity, calculated for the roving-level condition in which there was
maximum external noise, was less than 0.2 for different bandwidths (Fig. 4-6).
This value was much less than the maximum sensitivity of the best cell
(around 1.0), so we could conclude that the advantage of combining outputs
from different cells was small, and that the predictions based on a detector
using the most sensitive cell would be similar to those of the optimum detector
that combines information from multiple cells.

Model Predictions based on individual cells

Predictions based on individual cells in a set of model CD cells for fixed-
level conditions are plotted in Fig. 4-7. The most sensitive cells (both positive
and negative) at each noise bandwidth were chosen to be included in the
simulation. The performance for each CD cell across different noise bandwidths
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are connected with dotted lines; the solid line connects the best thresholds
across this set of model cells for each
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Figure 4-6: The enhancement of sensitivity in predictions based on a second
cell combined with the most sensitive cell for each bandwidth. The
enhancement is plotted at the location of the second cell. The most sensitive
cell was selected separately for each bandwidth condition. The results were
computed for the 32-dB roving-level condition. The maximum enhancement of
the sensitivity was less than 0.2, which was much less than the maximum
sensitivity of the best cell (around 1.0). (Notice that a different gray scale was
used for this figure as compared to Figs. 4-4 and 4-5.)
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Figure 4-7: Predictions from a population of model CD cells for fixed-level
conditions. The most sensitive cells (both positive and negative) in each noise
bandwidth were used in the simulation. Each dotted line shows the
performance for one CD cell; different cells had different thresholds for each
noise bandwidth. The solid line connects the thresholds for the best model cells

for each bandwidth, and human performance (replotted from Kidd et al., 1989)
is plotted with filled symbols.
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bandwidth. The predictions for different roving-level conditions are plotted in
Fig. 4-8. The model predictions generally agreed with human performance: the
threshold in the wideband noise was not affected by the roving-level paradigm,
whereas the thresholds for narrowband noise were elevated by the roving-level
paradigm. The location of the best cell used in each condition is plotted in Fig.
4-9. The same model cell was used in the wideband noise conditions for both
roving-level experiments and fixed-level experiments. In the narrowband noise
conditions, different cells were used: a positive cell had the best performance in
the fixed-level experiment, and a negative cell was most sensitive in the roving-
level experiment.

4.4.3 Onset responses of the CD model cells

The results presented above were all based on sustained responses of the
model cells. In this section, we investigated the potential contribution of the
onset responses. Figure 4-10 shows the sensitivity matrices based on the first
50 ms of the model CD responses in roving-level condtion. Including the onset
responses of the model CD cells increased the sensitivity of positive cells in
narrowband noise and degraded the performance of negative cells in wideband
noise. This was because 1) the onset responses of AN fibers had larger dynamic
ranges than sustained responses, and onset responses of CD model cells were
more sensitive than the sustained responses to the level cues of the sitmuli; 2)
Onset adaptation affected the timing of the AN fiber responses, the temporal
information in CD cell onset responses was less reliable than that for sustained
responses under roving-level condtions.
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Figure 4-8: The predictions for different roving-level conditions from a
population of model CD cells. Only the best predictions from the population CD
cells are plotted and connected with solid lines. Human performance is plotted
in filled symbols (replotted from Kidd et al., 1989).
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Figure 4-9: The location of the best cell used in each condition; symbols match
those used in Fig. 4-8 (circles: O dB; triangles: 4 dB; squares: 32 dB). The
sensitivity matrices for roving-level condition are plotted as the background to
indicate the sensitivity of the cells. The same model cell was used in the
wideband noise conditions for both roving level experiments and fixed-level
experiments. In the narrow band noise conditions, different cells were used for
different roving-level conditions: the cell that had the best performance in the
fixed-level experiments was a positive cell, and the cell that was most sensitive
in the roving-level experiments (except for 10 Hz narrowband noise) was a

negative cell.
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Figure 4-10: Sensitivity matrices for CD cells in the roving-level condition for
different noise bandwidths. The first 50 ms of the model CD responses were
used in these computations. Including the onset responses of the model CD
cells increased the sensitivity of positive cells in narrowband noise and
degraded the performance of negative cells in wideband noise.
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Several studies support the assumptions that onset responses may carry
more level cues than the sustained responses. Gilkey (1987) measured fixed-
level and roving-level tone-in-noise detection thresholds using a much briefer
stimulus (50 ms). He reported a small (about 2 dB) difference in threshold at a
noise bandwidth of 1900 Hz between roving-level and fixed-level condtions.
Richards (1992) measured the performance for detection of tones in noise with
various durations and noise bandwidths; her results support the hypothesis
that energy-based detection dominates only when the masking noise is
relatively narrow and of a relatively short duration.

4.4.4 Predictions from other models

Results from an energy detector based on a population of auditory filter outputs

The energy detector combined the output from different auditory filters;
some general properties of the energy detector are illustrated in Fig. 4-11. The
sensitivity Q for each individual filter output is plotted as a function of filter CF
in Fig. 4-11(a) for different roving-level conditions. The sensitivities were
calculated for a 3000-Hz bandwidth noise. The filter centered at the signal
frequency had the greatest sensitivity, and the sensitivity decreased quickly as
the CF of the auditory filter moved away from the signal frequency. The
maximum sensitivity measure (based on the 900 Hz-filter output) for the 32-dB
roving-level condition was much smaller than the value of 1, suggesting that
human performance in the roving-level condition cannot be explained based on
the energy output of a single BM filter. The best sensitivity measured for
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Figure 4-11: The sensitivity measure Q for the energy detector calculated using
signal-to-noise levels matched to human threshold (Kidd et al., 1989) for 3000-
Hz bandwidth noise masker with different roving conditions (see legend). (a)
The sensitivity Q for each individual filter as a function of filter CF. The best
sensitivity for the 4-dB roving-level condition was slightly better than that of
fixed-level condition since a higher signal-to-noise ratio was used in the
calculation (based on higher human thresholds for the 4-dB roving-level
condition). (b) The optimum sensitivity measure based on two filter outputs.
One filter was always centered at 900 Hz and the other varied across the
abscissa. For the 32-dB roving-level condition, the optimum sensitivity
increased dramatically as the second filter moved away from 900 Hz. In the
fixed-level conditions, combining two filters both centered at 900 Hz decreased
the internal noise, and the optimum sensitivity was larger than the sensitivity
based on a single filter.
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the 4-dB roving-level condition was slightly better than that of the fixed-level
condition since a stimulus with a higher signal-to-noise ratio was used in the
calculation (based on human thresholds). The optimum sensitivity measure
based on two filter outputs is plotted in bottom panel of the figure. One filter
was always centered at 900 Hz and the other varied across the abscissa. For
the 32-dB roving-level condition, the optimum sensitivity increased
dramatically as the second filter moved away from the 900 Hz. When two filters
overlapped near 900 Hz, the second filter also responded to the signal and thus
did not provide independent information about noise level (Durlach, 1986), so
the performance of the detector was not improved much. In the fixed-level
conditions, combining two filters both centered at 900 Hz decreased the
internal noise and the optimum sensitivity was larger than the sensitivity
based on a single filter. For the 4-dB roving-level condition, a combined effect
of internal noise and external noise was observed. The sensitivity dropped and
then increased a small amount as the second filter moved away from the signal
frequency.

Figure 4-12 shows the optimum weights (see Eq. 4.7) of five auditory filters
that were evenly spaced along the basilar membrane and were separated by
roughly one ERB (see Section 4.3.6). The weights are plotted as a function of
CF of the auditory filters for different roving-level conditions for each noise
bandwidth in (a)-(f). Stimulus levels at the signal-to-noise ratio indicated by
human thresholds in the corresponding conditions were used in these
calculations. For narrowband noise, the weights were nearly flat since all filter
outputs had similar signal-to-noise
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Figure 4-12: The optimum weights (see Eq. 4.7) of five auditory filters which
were used as the optimal population energy detector. The weights are plotted
as CFs of auditory filters for different roving conditions for each noise
bandwidth in (a)-(f). Stimulus levels matched to the human thresholds in
corresponding condition were used in these calculations. For narrowband noise,
the weights were nearly flat since all filter outputs had similar signal-to-noise
ratios and were correlated with each other. The weight of the center filter
increased as noise bandwidth increased since this filter had a better signal-to-
noise ratio at its output. In the wideband noise condition, the weight of the
filters away from signal frequency were approximately zero for the fixed-level
condition, suggesting that they contributed little information to the detector;
the weights of these filters were negative for the roving-level condition,
suggesting they were used as the reference of the noise energy output.
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ratios and were correlated with each other. The weight of the center filter
increased as noise bandwidth increased since this filter had a better signal-to-
noise ratio at its output. In the wideband noise condition, the weight of the
filters away from signal frequency were approximately zero for the fixed-level
condition, suggesting that they contributed little information to the detector;
the weights of these filters were negative for the roving-level condition,
suggesting they were used as the reference of the noise energy output.

Threshold predictions based on a single filter centered at the signal
frequency (900 Hz) are plotted in Fig. 4-13. For the fixed-level and 4 dB-roving
condition, the model predicted human performance successfully, and the
predicted threshold increased as the noise bandwidth increased up to the
critical bandwidth value. For the 32 dB-roving condition, the model threshold
was elevated across all bandwidths, and the detector based on a single filter
output obviously could not account for human performance for the roving-level
condition except at the narrowest bandwidth (10 Hz).

Predictions of the optimal population energy detector that combined
responses of the five auditory filters are plotted in Fig. 4-14. For the fixed-level
condition, the model predictions across noise bandwidths were similar to the
predictions based on a single filter output. Combining information across
different filter outputs decreased the predicted threshold for the roving-level
condition in wideband noise. The optimal population detector did not improve
performance for a narrowband noise
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Figure 4-13: The predictions based on the energy in the response of a single
filter centered at the signal frequency (900 Hz). The model predictions were
connected with lines and the human performance were represented by solid
symbols (replotted from Kidd et al., 1989). For the fixed-level and 4-dB roving-
level condition, the model predicted human performance successfully, and the
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predicted threshold increased as the noise bandwidth increased up to the
critical bandwidth value. For the 32-dB roving-level condition, the model
threshold was elevated across all bandwidths, and the detector based on a
single filter output obviously could not account for human performance for the
roving-level conditions except at the narrowest bandwidth (10 Hz).
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Figure 4-14: Predictions of the optimal population energy detector. For the
fixed-level condition, the model predictions across noise bandwidth were
similar to the predictions based on a single filter output. Combining
information across different filter outputs decreased the predicted threshold to
near the human threshold (filled symbols) for the roving-level condition in
wideband noise. The optimal population detector did not improve performance
for a narrowband noise masker, and thus failed to predict human performance
for the roving-level condition in narrowband noise (S0Hz, 100Hz).
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masker, and thus failed to predict human performance for the roving-level
condition in narrowband noise (50 Hz, 100 Hz).

Predictions from an envelope detector

The performance of an envelope-based detector for masked detection is
plotted in Fig. 4-15. No internal noise was used in this simulation, and the
predictions therefore represent the best performance of the detector. The model
thresholds were near or below human thresholds in most cases, except for the
fixed-level condition in the narrowest noise bandwidth (10 Hz). The roving-level
condition slightly affected the model predictions due to the nonlinear BM filter
used in the model. The model had slightly better predictions than human
performance for the wideband noise masker. Experimental and modeling
studies from amplitude modulation detection (Viemeister, 1979; Dau and
Kollmeier, 1997b) suggest that envelope cue is interfered with by the envelope
fluctuations from other auditory filters, thus the performance of the envelope
detector would be expected to decrease when outputs of other auditory filters
were considered in wideband noise condition.

4.5 Discussion

Critical band theory and the detection of tones in wideband noise

Critical band theory holds for both temporally based models and for the
“power spectrum model.” That is, the addition of a tone in wideband noise
causes local changes (in either the temporal properties or amplitudes of the
responses) of the basilar membrane, and the detection
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Figure 4-15: The predictions of an envelope-based detector. The envelope
statistic was computed based on output of single auditory filter centered at
signal frequency (the envelope detectors used in other studies usually integrate
outputs across auditory filters; Viemeister, 1979; Dau et al., 1997). No internal
noise was added to the envelope statistics and the predictions represented the
best performance of the detector. The model predictions were near or below
human performance (filled symbols) in most cases except for the fixed-level
condition in the narrowest noise bandwidth (10 Hz). The roving-level condition
slightly affected the model predictions due to the nonlinear BM filter used in
the model.
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threshold does not change when the noise bandwidth is larger than the critical
bandwidth. The temporal changes in the population AN fiber responses are
only determined by the signal-to-noise ratio, and such changes are robust to
the roving level and not constrained by the limited dynamic range of AN fibers.
The predictions based on the energy model are also robust to the roving-level
conditions for wideband noise when the outputs from different auditory filters
are combined together.

Envelope information was most effective for narrowband noise conditions
because integration across different auditory filters made the change of
envelope fluctuation in a single channel imperceptible in the case of wideband
noise. Of course, it is possible that changes of the envelope fluctuation in a
single filter would be perceived as changes in other qualities of the sound. The
envelope cues could also be important for detection of a high-frequency tone in
noise when fine timing cues are not available.

The detection of tones in narrowband noise

Human performance in detection in narrowband noise suggests that both
energy cues and temporal cues are important to the subject. The detection
threshold in narrowband noise is elevated by the roving-level condition,
indicating that energy cues affect performance. The energy-based model failed
to predict the threshold difference between the fixed-level condition and roving-
level condition in the narrowband noises. Envelope cues can be used to
account for human performance in narrowband noise (Kidd et al., 1989; Kidd
et al., 1992; Richards, 1992; Richards and Nekrich, 1993), indicating that
temporal cues are important in this condition. The monaural cross-frequency
coincidence detection combines the energy and temporal cues, and its
predictions agree with the human performance for both fixed-level and roving-
level conditions.

Implication of the location of the most sensitive cell in monaural cross-frequency CD

model

The most sensitive model cells used for detection in wideband and
narrowband noise were different. This suggests that different strategies may be
used by the subject for detection of a tones in wideband and narrowband
noises. The perceptual quality of a narrowband noise is more tonal and is quite
different from that of a wideband noise (Kidd et al., 1989). In the wideband
noise, that fact that the same model cell was most sensitive in the roving-level
and non-roving-level conditions suggests that subject might focus on the same
“cues” in both detection tasks. However, in the narrowband noise, different
model cells were most sensitive in the roving and non-roving conditions. This
result suggests that subjects might shift their strategy (pay attention to
different “cues” of the stimulus) in different conditions (Richards, 1991).
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Neural implementation of the Cross-frequency coincidence-detection model

Several studies suggest that cells in AVCN respond like coincidence
detectors and are sensitive to changes of the temporal pattern across different
AN fibers (Joris et al., 1994; Carney, 1990). In the gerbil, some cells in the
AVCN show a decrease in response rate when a tone is added to the wideband
noise (Carney et al., in preparation), which is similar to the responses
properties of "negative cells" in the present study. These studies also suggest
that AVCN cells usually do not have response properties predicted by strong
phase-opponency (PO) cell (e.g. model cell A in Chapter 3). The optimum cross-
frequency coincidence detector may represent an abstract operation to process
the temporal correlation across different auditory filters; this operation may
actually involve neurons at several levels of the auditory pathway. Coincidence-
detecting cells may be involved in other neural processing mechanisms at the
same time. How the coincidence detection cells interact with each other, and
how the nervous system combine different processing mechanisms is a topic of
future study.

It is worth pointing out there are two distinct questions relating to the
temporal and energy based models. The first is whether the temporal aspects of
a stimulus or just the power spectrum of the stimulus underlies the behavior
we observed. The second question is whether the neural system processes or
encodes sound information based on the timing of the spikes or on the average
rate of the spikes. Whereas these two questions are usually separated in
studies of the central nervous system, they are typically combined in studies of
the peripheral auditory system. While it is straightforward to find empirical
evidence that temporal information could be encoded in the rate responses of
some neurons (such as cells in the inferior colliculus that are sensitive to
envelope cues; reviewed by Schreiner and Langer, 1988) and in the responses
of cells in MSO that are sensitive to the ITD cues (Yin and Chan, 1990), it is
also possible that the stimulus level (energy) is encoded in the timing of the
neural spikes (Heinz et al., 2001a; Colburn et al., 2003). Under these
circumstances the relative timing of discharges in different channels (or
perhaps in the same channel) is more important than the precise timing of
individual discharges; cross-frequency coincidence detection is a fundamental
operation to process temporal cues across different channels.
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Chapter 5 Evaluating performance of several models for level-discrimination in

hoise

5.1 Abstract

Performance in level discrimination of tones in noise is enhanced as the
bandwidth of the noise increases in both fixed-level and roving-level conditions
(Kidd et al., 1989). These data can not be explained by energy-based channel
theory since either 1) there is no additional filter output that could be used to
aid the signal detection in the narrowband noise condition; or 2) there is no
across-frequency temporal or spectral correlation cues available for the channel
theory in the fixed-level condition. The present study explored the ability of
several models to explain these experimental results. Models based on
detection of different cues in the stimulus were used, including 1) cross-
frequency coincidence detectors, which are sensitive to temporal cues across
different auditory filters; 2) a multi-channel detector that uses the energy
output of several filters to discriminate spectral shape; 3) envelope detectors
that are based on the envelope statistics of the filter outputs. The results
suggest that there is more temporal information available for level
discrimination in noise as the noise bandwidth increases. The enhancement of
level discrimination in noise as bandwidth increases can be explained based on
models that detect these temporal cues. The results also suggest that different
types of temporal cues must be combined together to successfully predict
human performance.

5.2 Introduction

Psychophysical studies of auditory masking are usually interpreted using
the “power spectrum model” (Moore, 1995). This model assumes that the
subject “listens” through a single auditory filter that provides the highest
signal-to-masker ratio, and that the detection strategy is to measure the long-
term power spectrum of the auditory filter output. This classical view of
masked detection has been challenged, and there is convincing evidence that
across-frequency comparisons are involved in signal detection. Two well-
researched examples are comodulation masking release (CMR, Hall et al., 1984;
Hall and Grose, 1988) and profile analysis (Green, 1988; Green et al., 1983). In
CMR, enhancement of signal detection is achieved by making envelope
fluctuations coherent across different frequency bands. The listener may use
temporal coherence across different bands to aid detection, either by
comparison of temporal responses from different channels or by detecting the
signal during a dip of the envelope (Buus, 1985).
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In a typical profile analysis experiment, the overall intensity is randomized
within trials to ensure that absolute intensity is not a reliable cue, and the task
is to detect an intensity increment to a pedestal tone in a multitone masker.
Performance is improved when nonsignal tones are added to the multitone
spectrum, even when they are placed well outside the bandwidth of a single
auditory filter centered at the pedestal frequency (Green et al., 1983). The
interpretation of the results is that filters outside the critical band that is
centered on the pedestal frequency respond to noise only, and can be used to
estimate the noise level. Listeners can base their discrimination on the
difference between the pedestal plus increment and the background masker
outside the auditory filter. The use of across-channel correlation to improve
performance is well addressed by channel theory (Durlach, 1986). The masking
caused by noise fluctuations can be effectively decreased by optimally
combining outputs of multiple channels.

The detection of an increment to the pedestal tone in the presence of noise
is also improved when the noise outside the auditory filter bandwidth centered
on the pedestal frequency is added without any temporal or spectral correlation
across different auditory filter outputs (Kidd et al., 1989; Plack and Viemeister
1992; Plack, 1998). Kidd et al. (1989) measured the threshold for level
discrimination (detecting an increment of the signal added in phase to the
pedestal tone) in noise with different bandwidths. They found that the
threshold decreases as the noise bandwidth increases within the critical
bandwidth for both fixed-level and roving-level conditions. The thresholds in
wideband noise are constant and lower than the threshold in narrowband noise
and are only slightly affected by the roving-level conditions. The spectral level
of the noise is fixed in the fixed-level experiments, and there are no temporal or
spectral correlations across-frequencies. Both channel theory and the power
spectrum model fail to explain human performance in these conditions (Kidd et
al., 1989). The only possible explanation is that cross-frequency comparisons
generate a “categorical” representation of intensity that may be more reliable
than “absolute” representations of intensity (Green, 1983; Plack 1998). This
general hypothesis has not been explicitly stated and quantitatively tested
using computational models, and the question still remains as to what is the
neural mechanism underlying the enhanced performance for level
discrimination in noise with increasing bandwidth.

In this chapter, level discrimination in noise was studied using the same
temporal model proposed in Chapter 4. The coincidence-detecting model cells
were sensitive to changes in temporal information when the signal was added
to the pedestal, but the pattern of the sensitivity matrix was different from that
for tone-in-noise detection. The enhancement of human performance as noise
bandwidth increased could be predicted based on model cells that had similar
level-discrimination resolution to each other. The performance of several other
models, including an energy detector and an envelope detector, were also
evaluated for comparison.
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5.3 Methods - Stimuli and simulations

Noise stimuli were created in the same way as discussed in Chapter 4. The
level of the 900-Hz pedestal tone was always fixed at 30 dB above the spectrum
level of the noise. The signal was added in phase to the pedestal, and threshold
was measured as the signal level referenced to the pedestal level. For example,
a threshold of O dB corresponds to level difference of 3 dB between the pedestal
and pedestal plus signal.

The model structures, parameters, and simulations used in the present
study were modeled after Kidd et al. (1989), and were generally the same as in
Chapter 4, in which they were discussed extensively (See Chapter 4.3). Any
changes of methods for each model are discussed in detail in the following
section.

5.4 Results

5.4.1 Sensitivity matrix of coincidence detection (CD) cells

In tone-in-noise detection experiments, the strategy is to compare the
responses of a detector to noise-alone and to tone-in-noise stimuli. In level-
discrimination-in-noise experiments, noise is present in both intervals but the
tone level varies with respect to the noise spectrum level (No). The sensitivity
measure for a detector that compares these two responses was defined as
response difference divided by mean of the standard deviation of the two
responses, and was given by

_ E[C(n,L+AL)]— E[C(n, L)]
JWar[C(n, L+AL)1+Var[C(n, L)])/ 2+ (E[C(n, L+ AL)|+ E[C(n, L)])/2M

Q (5.1)

where {C|n, L} represents the CD cell response to the pedestal tone at level L
with noise masker n, AL is the level difference between the pedestal and the
pedestal plus signal, and M is the number of identical CD cells used in the
computation. The first term in the square root of the denominator represents
the mean response variance caused by the external noise (n), and the second
term represents the mean variance caused by neural stochastic discharges
(“internal noise”), which decreases as the number of identical CD cells (M)
increases. The value of Q2 indicates the detector performance, similar to
sensitivity index (d’)?2 used in detection theory (e.g., Green and Swets, 1966).
The sensitivity measures for a population of CD cells for fixed-level
conditions and roving-level conditions are plotted in Figs. 5-1 and 5-2. The
value of Q at each location was computed using a signal level that matched
human thresholds (from Kidd et al., 1989) and was based on the responses of
50 identical cells (M=50). Cells with positive values of sensitivity were referred
to as “positive cells” since they increased their response when the signal was
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added to the pedestal, and accordingly the cells with negative sensitivity values
were referred to as “negative cells”. The distributions of the positive and
negative cells for both conditions were very similar across different noise
bandwidths, suggesting that the temporal correlation across the population of
AN fiber responses was invariant under these different conditions.

In the presence of wideband noise, the location of the negative cells was
shifted up, towards cells with AN inputs that were more separated in terms of
CF (i.e. larger CF ratios), as compared to the sensitivity pattern from the tone-
in noise detection experiments (c.f. Figs. 4-4 and 4-5). This is because the
coincidence detectors responded to the temporal correlation across their AN
inputs, and thus the pedestal tone at the signal frequency was a more effective
temporal masker than the noise away from the signal frequency. The input AN
fibers tuned further away (compared to the tone-in-noise condition) from the
signal frequency attenuated the temporal contribution of the pedestal input,
and addition of the signal to the pedestal resulted in larger changes in the
temporal responses of these AN fibers. The CD cells that received such inputs
were more sensitive than the CD cells that received AN fibers near the signal
frequency, which changed little with addition of the signal due to the
domination of the input AN responses by the pedestal tone. There was a
consistent difference in human performance between fixed-level and roving-
level conditions in the wideband noise. The higher signal levels used for
simulations for the roving-level condition (chosen to match the higher
thresholds for human listeners) yielded a higher sensitivity measure in the
roving-level condition for wideband noise, suggesting that elevation of the
human threshold in wideband noise was not predicted by the coincidence-
detection model.

In the narrowband noise conditions, cell sensitivities measured at signal
levels matching the lower threshold for the fixed-level condition (Fig. 5-1) were
much higher than the sensitivities measured at higher levels for the roving-
level condition (Fig. 5-2). The most sensitive cells were located at the edge of
the sensitivity matrix; these cells were more sensitive because the AN inputs
were less saturated at the lower stimulus levels. Also, for the narrowband noise
condition, the pedestal tone dominated the cell responses, and there were small
temporal changes when the signal was added. In the narrowband roving-level
conditions, the sensitivity of these cells was greatly reduced, especially for the
50 and 100 Hz bandwidths, where using a higher signal level (to match human
threshold) did not overcome the roving-level effect. As a result, a larger
threshold for the model predictions was expected in the roving-level conditions.

Variations of cell responses due to external noise were different for
narrowband and wideband noises. The pedestal tone was always 30 dB
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Figure 5-1: The sensitivity matrix of a population of CD cells for the fixed-level
condition. Each sensitivity was computed based on 50 identical cells. The noise
bandwidth increased from left to right and from top to bottom (a)-(f). The
abscissa of each plot represents the mean CF of the input AN fibers, and the
ordinate represents the CF ratio of the two input AN fibers.

100



1.91 1.91 1.91

Ratio of AN CFs

1.38 1.38 1.38

1 1
456 900 1671 456 900 1671 456 900 1671

1.91 1.91 1.91

Ratio of AN CFs

1.38 1.38 1.38

1 1 1
456 900 1671 456 900 1671 456 900 1671
Model Cell CF (Hz)

Figure 5-2: The sensitivity matrices for the 32 dB roving-level condition. Same
format as for Fig. 5-1.
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above the noise spectrum level. In the narrowband fixed-level condition, there
was little fluctuation in the responses of the CD cells across noise samples,
even when input AN fibers were tuned away from the pedestal frequency. This
is illustrated in Fig. 5-1; in narrowband noise, the cells at the edge of the
sensitivity matrix (which responded to the level change of the stimulus) had
sensitivity much higher than 1.0 due to the small variance across stimuli. In
the wideband noise, the most sensitive cells receive input AN fibers tuned away
from the pedestal frequency. These AN fibers attenuated the pedestal level and
boosted the contribution of the noise. In this case, small changes in the
stimulus level could not be detected because of the response variation caused
by the external noise.

5.4.2 Limiting the sensitivity of CD cells to changes in stimulus level

In the calculation of the sensitivity measure, each model cell was
approximated by a Poisson process, and 50 identical model cells were used to
estimate the internal noise caused by the stochastic nature of the neural
activity. The internal noise estimated with this method was not enough to
account for the limited resolution of human listeners to detect the level change
of the whole stimulus. For the narrowband fixed-level condition, the pedestal
was always 30 dB above the spectral level (which was 65 dB SPL) and there
was little variance in the stimulus (both temporal and amplitude properties) for
different noises. The CD cell responses to the pedestal plus noise were almost
deterministic with different tokens of noise. This could be observed from the
response properties of CD cells discussed in Chapter 4 (see Figs. 4-3c and 4-
3d): the response variance in narrowband noise, for both AN fibers and CD cell,
decreased dramatically as tone level increased; any small change in the signal
(tone) at high levels could be detected unless sufficient internal noise was
included to limit the threshold. For the model CD cells with two 490-Hz AN
inputs (and with 50 identical CD cells), the predicted threshold for level
discrimination was about 0.45 dB, which was well below human performance.

To address this problem, another central noise was introduced that limited
the ability of the model cell in a level-detection task without external noise (i.e.,
the total level of the stimulus was varied and the same waveform was used
across intervals). The performance of the detector for level-detection without
external noise in our stimulus condition was evaluated as

_ E[C,,(n,L)—C(n,L)]

’
Jo!

where C(n, L) was the model response to masker n with tone level at L, Caz(n, L)
was the model response to the same stimulus increased by AL dB SPL, and 1.2
was the variance of a Gaussian variable used to simulate the internal noise of
level detection. If it were further assumed that the human threshold for level

0 (5.2)

discrimination was Aitr (Q=1), the internal noise for the model that performed
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the level-discrimination (not of the tone level, but of the total level of the
stimulus) without external noise could be estimated as

UZALI/zr = E[CALthr (n’ L) - C(n’ L)]2 . (5.3)

5.4.3 Predictions of CD model cells with limited level-detection performance
The decision variable was computed by adding a random deviate to the
combined responses of 50 identical CD cells (see Chapter 4.3.6). The random
deviate represented the internal noise associated with level-detection, and the
variance was computed based on Eq. 5.3. For all the simulations, the

resolution of level detection was limited to 1.5 dB (At = 1.5 dB in Eq. 5.3 for
tone-in-noise stimuli; Florentine et al., 1986, 1987), and the variance of the
internal noise was estimated for CD cells at each location in the matrix under
each noise band condition. The simulation was based on the pedestal in noise
stimulus, and 300 independent noises were generated at a fixed spectrum level
(35 dB SPL). The estimated internal noise varied from cell to cell and also
varied at different noise bandwidths!3, but the same internal noise was used in
different roving-level conditions.

The most sensitive cells (both positive and negative) in each noise
bandwidth were used in the simulation. The best threshold for each bandwidth
and roving-level condition from the population of model cells was selected as
the model’s threshold prediction for that condition. The model cells with the
best thresholds were different in narrowband and wideband noise but were
similar for each noise bandwidth in different roving-level conditions. Figure 5-3
plots the best thresholds across different conditions (symbols with lines) along
with human performance (solid symbols). The predicted threshold in the
wideband noise was lower than the threshold in the narrowband noise for both
fixed-level and roving-level conditions, suggesting that the temporal
information in the wideband noise was a more reliable cuel4 than the stimulus
level change in both conditions. The coincidence-detecting cell with limited
level-detection resolution was able to account for human performance in the
wideband noise condition. In narrowband noise, the temporal cues that could
be detected by the cross-frequency coincidence detection mechanism were not
sufficient to account for human performance. The predictions of CD cells

" If the same internal noise for level-detection was applied for all the coincidence cells, this internal noise greatly
degraded the performance of the cells that were sensitive to temporal cues. We cannot use "power spectrum" models
with different internal noises for different channels to account for the improved performance in level discrimination
in wideband noise, because the same model used in the wideband noise condition can then be used in the
narrowband noise condition to provide performance that is better than that of human subjects. For the different
values of internal noise used in present study, model cells with small amounts of internal noise did not provide more
information about the level change of the stimulus than the cells with large internal noise value. The fact that
different cells have different amounts of internal noise but similar level discrimination resolution suggest that these
cells were in fact representative of different processes in the auditory system.

1 Since we already limited the model resolution for level detection, so a better resolution (lower threshold) of
pedestal level change in wideband noise is due to the temporal information carried by input AN fibers.
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depended on the level difference of the stimulus and failed to predict the

increased human thresholds in roving-level conditions for noise bandwidths of
50 Hz and 100 Hz.

5.4.4 Predictions of the “power spectrum model” based on multiple channel

theory

General models of spectrum shape discrimination based on multiple
comparisons of level across different auditory filter outputs have been
discussed in several studies (Durlach, 1986; Green, 1988; Kidd et. al., 1991).
The decision variable of the model is a weighted sum of multiple auditory filter
outputs. The predictions from these studies are analytical and rather limited
due to simplifying assumptions concerning each
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Figure 5-3: Predictions of level discrimination thresholds in noise from a
population of CD cells. The most sensitive cells (both positive and negative) in
each noise bandwidth were used in the simulation. The best threshold for each
bandwidth and roving-level condition was selected from a population of model
cells, based on the model prediction for that condition. Only the best
thresholds for each condition are plotted (symbols with lines) along with the
human performance (solid symbols, replotted from Kidd et al., 1989). The cell
that gave the best threshold was different in narrowband noise and wideband
noise, and the same cell gave the best predictions for each noise bandwidth in
different roving-level conditions.

105



auditory filter output (i.e. they assume that only one auditory filter responds to
the signal, and that all other auditory filters have the same responses to noise).
In this section, we describe the predictions of a simple model based on the
average energetic outputs of a population of auditory filters (see Chapter 4).
Optimal weights of auditory filters were derived computationally, at signal
levels matching human thresholds, based on the responses to 300 noise
tokens!® (see Chapter 4). This computational method avoided several
limitations that were required for the optimal detector in previous studies (see
Kidd et. al., 1991).

The optimal weights derived computationally for each noise bandwidth are
plotted in Fig. 5-4. The optimal detector consisted of five filters and the weight
for each filter was calculated for each roving-level condition (plotted in different
symbols). Since the weights for the auditory filters could be scaled arbitrarily,
the relative values of the weights across channels were more important than
the absolute values. When the noise bandwidth was less than 100 Hz, the
signal and noise were all within one critical band, and the optimal weights were
flat across channels because the signal-to-noise ratio in the output was the
same for each filter. When the noise bandwidth was greater than 100 Hz, the
filters tuned to frequencies distant from the signal frequency had lower signal-
to-noise ratios, so the weights of these auditory filters decreased. The filter that
was dominated by the noise (the 1st and 5tt filter, which were most distant from
the signal/pedestal frequency) had weights of zero in the

' The optimal weights were derived based on the molar approach rather than on the molecular approach proposed
by Gilkey and Robinson (1986).
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Figure 5-4: The optimum weights (see Chapter 4, Eq. 4.7) for five auditory
filters with CFs of 692, 790, 900, 1022, and 1158 Hz. The optimal population
energy detector was constructed based on the weighted sum of these filter
responses. The weights are plotted as a function of the CF of the auditory filter
in different roving conditions for each noise bandwidth in (a)-(f). Human
thresholds in a corresponding condition were used in the calculation. For
narrowband noise, the weight was nearly flat since all filters had similar signal-
to-noise ratio and they were correlated each other. The weight of the center
filter increased as noise bandwidth increased since it had better signal-to-noise
ratio at its output. In the wideband noise, the weight of the filters away from
signal frequency was about zero for the fixed-level condition, suggesting they
did not change their response upon addition of the signal; the weight of these
filters was negative for the roving-level condition, suggesting that they these
cells may provide a reference for the estimation of the noise energy output.
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non-roving conditions, suggesting that these filters did not respond to the
signal. In the roving-level condition, the filters that did not respond to the
signal could be used as a reference for the noise spectrum level, and thus could
improve performance in the roving-level conditions. As a result, the weights of
these filters were negative in the roving-level conditions. Another interesting
observation is that for the filters with CFs near the signal frequency (but
outside the critical bandwidth), there was still not enough noise away from the
signal frequency to dominate the auditory responses (since the pedestal was 30
dB above the noise level); thus these filters had positive weights in the non-
roving condition and had near zero weights in the roving-level conditions.

Figure 5-5 plots the predictions of the power spectrum model along with
the corresponding results from experiments for level discrimination in noise
(Kidd et al., 1989). In general, the predicted values did not fit the data very well.
In the fixed-level conditions, the predictions from the model increased slightly
as the noise bandwidth increased. The output of the auditory filter centered at
900 Hz was dominated by the pedestal tone and changed very little as noise
bandwidth increased (the pedestal was 30 dB above the noise spectrum level,
and the critical bandwidth at 900 Hz was about 100 Hz), thus the level of the
signal that was required to maintain a constant signal-to-noise ratio as noise
bandwidth increased was small.

In the roving-level conditions, the power spectrum model did predict
trends in human performance to some extent. The predictions decreased as the
noise bandwidth increased, and the threshold approached that of
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Figure 5-5: Model predictions based on the energy in the output of multiple
auditory filters. The model prediction is connected with lines and human
performance is plotted with solid symbols (replotted from Kidd et al., 1989).
Each prediction was made using the optimum weights calculated for each
condition from Fig. 5-5. For the fixed-level and 4 dB-roving condition, the
model predictions increased slightly as a function of the noise bandwidth,
which was not consistent with human performance. For the 32 dB-roving
condition, the model predictions generally decreased as noise bandwidth
increased. The predicted threshold was elevated across all of the narrowband
noise bandwidths, and the performance in 300 Hz was still much worse than
the corresponding human performance and the model prediction for the fixed-
level conditions. When the noise bandwidth was larger than 1000 Hz, the
model benefited from the multiple channel comparisons and thus the
performance was robust in the roving-level conditions.
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the non-roving conditions in the wideband noise. However, the model
predictions did not decrease as quickly as observed in human performance.
The model predictions for narrowband noises were all affected in the roving-
level conditions and the threshold was elevated, since the multiple channel
comparisons did not benefit the model at all for the narrowband noise. The
model also failed to predict human performance in 300 Hz wideband noises,
which had a similar threshold as for the other wideband noise conditions. The
model filters adjacent to the filter centered at the pedestal frequency still
responded to the pedestal at the signal frequency and could not be used as a
reliable reference for the noise level. Thus, the power spectrum model
predictions for the roving-level condition in 300-Hz bandwidth noise were much
worse than in the fixed-level condition, as expected.

5.4.5 Predictions based on the envelope model

A simple envelope-based model was described in Chapter 4 (see 4.3.7) to
extract the envelope cues from a single auditory filter output centered at the
signal frequency. The normalized average absolute slope s of the envelope x:
s=(1/n)X|xi—xi1|/Z|xi| (Richards, 1992), was used as the decision variable in
the simulations, and the detection strategy was to detect a drop of the average
slope when a tone was added to the pedestal in the noise.

The model predictions without any internal noise (i.e. the decision variable
was deterministic for a given stimulus waveform) are plotted in Fig. 5-6 along
with human performance (solid symbols). Generally the predictions
outperformed human listeners across all noise bandwidths,
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Figure 5-6: Predictions based on the envelope detector. Details of the envelope
detector were discussed in Chapter 4 (see 4.3.7). The decision variable used
was the normalized average slope of envelope (Richards, 1992). No internal
noise was added (the decision variable was deterministic for a given stimulus
waveform) so the predictions represented the best performance that the model
could achieve. Results for different roving-level conditions are plotted with
different symbols. Generally the predictions (symbols with lines) outperformed
human performance (solid symbols) across all noise bandwidths. The model
results predicted the increase in threshold as noise bandwidth increased. The
super-performance for the fixed-level condition in narrowband noise was due to
the nonlinear filter (cochlear compression) and can be avoided by introducing
some small internal noise to the decision variable (See Figs 5-8 and -9).
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and the performance generally improved as noise bandwidth increased. The
performance in the fixed-level condition in narrowband noise is much better
than the human performance and can be attributed to the following two factors:
1) For the pedestal tone in a narrowband noise, the fluctuation of envelope
statistics (here the average envelope slope) was extremely small and the
decision variable varied very little across different noise waveforms (i.e. external
noise was very small). A small change (less than 1%) in the decision variable
could be detected when the signal was added to the pedestal in noise. 2) The
envelope of the stimulus was compressed more by the nonlinear filter (or
cochlear compression) at high levels than that at low levels (Moore, 1995;
Oxenham and Bacon, 2003). This change in the envelope due to the cochlear
non-linearity was detectable by the envelope detector. In the roving-level
condition, the envelope change due to cochlear compression was not reliable
and thus the model predictions were greatly elevated. In the wideband noise
condition, the envelope change due to cochlear compression was masked by
envelope fluctuations (i.e. the variance of the envelope statistics) caused by the
external noise, so the performance of the envelope detector was similar for both
fixed-level and roving-level conditions.

To illustrate how the nonlinearity of the auditory filter affected the model
predictions, envelope-detector predictions based on a linear auditory filter
(Heinz et al. 2001d, model number 3) are plotted in Fig. 5-7. Since the
normalized envelope of the linear filter was the same across different stimulus
levels, the model predictions for the fixed-level
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Figure 5-7: Predictions based on the envelope detector with a linear filter (Heinz

et al., 2001d, model number 3). The model without the cochlear non-linearity

had similar predictions in the fixed level condition as in the roving-level
conditions.
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condition were very similar to the results in the roving-level conditions. The
results were also similar to the results with the nonlinear filter (Fig. 5-6) under
roving-level conditions, where the envelope cues due to the nonlinear filter were
not reliable.

Internal noise had different effects on model performance depending on
differences in the variation of envelope statistics for different bandwidths. Fig.
5-8 plots the predictions based on the envelope detector (with the nonlinear
filter) with internal noise added. The decision variable was computed by adding
a Gaussian random variable with zero mean to the envelope statistic. The
variance of the random number was always 0.01 (1%) of the envelope statistic.
In the narrowband noise condition, the model predictions were greatly affected
by the internal noise since external noise was very small; the change of
envelope statistics due to the nonlinear filter was masked by the internal noise,
and the predictions were similar across different roving-level conditions. When
the noise bandwidth approached the critical bandwidth1¢, there was more
variance in the envelope statistics caused by external noise, and the addition of
the internal noise had little effect on model performance.

"1t is also worthwhile to point out that in the wideband noise, the predictions of the envelope detector out-
performed humans. Usually envelope changes in a single channel are not considered to be a perceptual cue in
wideband noise since various studies (Viemeister, 1979) suggest that perception of envelope fluctuations is based on
the integration of information across a wide range of auditory filters.
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Simulation for pedestal
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Figure 5-8: Predictions based on the envelope detector with internal noise. The
internal noise was approximated by adding a Gaussian deviate to the decision
variable. The variance of the random deviate was always %1 of the decision
variable. The envelope detector used the same nonlinear filter as in Fig. 5-7.
The performance in the narrowband noise was elevated by the internal noise
since the variation in envelope statistics caused by the external noise was
small. Also the envelope changes caused by the nonlinear filter were masked by

the internal noise, and thus the results were similar across different roving-
level conditions.
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5.5 Discussion

Multiple cues, multiple processes, and strategies used in level-discrimination in

the presence of noise

The results in the present study show that the fact that there is more
temporal cues available when a signal was added to the pedestal in noise as
noise bandwidth increased could be attributed to at least two observations
from studies of level discrimination of tones in noise: First, human
performance improves as noise bandwidth is increased within a critical
bandwidth (Kidd et al, 1989; Kidd et al., 1992); and second, human
performance is best in wideband noise, even when there is no correlation
(either temporal or spectral) across different auditory filters (Kidd et al., 1989;
Plack 199817). In narrowband noise, changes in envelope fluctuations upon
addition of the tone were an important cue for level discrimination. In
wideband noise, changes in spectral shape upon addition of the signal to the
pedestal resulted in systematic changes of the temporal response pattern
across the population of AN fibers. Model CD cells responded to the temporal
pattern of AN responses and could be used as the underlying mechanism to
detect different spectral shapes in wideband noise. Compared to tone-in-noise
detection, there was a small but consistent elevation of the level-discrimination
threshold for the wider bandwidths. It is possible that when the tone at the
signal frequency was always perceived, the decision process was more affected
by the perception of the loudness/level of the signal. The effect of the roving-
level condition in narrowband noise could also be due to the same perturbation.
Thus, it may not be a question of whether multiple cues are used in the
psychophysical experiments, but rather a question of whether there is a
common process!® to combine these cues. Otherwise the subject must switch
to different processes for different conditions, or even for different trials based
on the molecular structure of the waveform. Since different levels of internal
noise were required for the different models to prediction human performance,
it is possible that these cues were evaluated by different processes.

The strategy of how these different cues are combined is an interesting
topic for future study. Richards and Nekrich (1993) concluded that human
subjects combine these cues non-linearly!®. Performance could either be worse

7 Most studies related to this phenomena have been done in the context of the reduced mid-level hump in the
presence of noise (e.g. Plack and Viemeister, 1992).

'8 This does not include the situation that after each cue is evaluated, these cues are used altogether in some decision
strategy. In this situation, different processes are still involved to detect different cues.

' The nonlinear combination could be algorithmic. For example, a “sequential” strategy could first attempt to detect
a tone based on CD model cell, and if it fails as is “not sure”, the decision process could continue to look for other
cues (energetic) to determine which interval has a tone. By examining the performance of other models where the
CD model fails, it should be possible to clarify which strategy is used in the decision process.
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or better than the linear combination rule for different cues. Molecular
psychophysics (e.g. Gilkey and Robinson, 1986) may provide a better situation
to explore the detailed strategy involved in the decision process. Most studies
(Gilkey and Robinson, 1986; Berg, 1992; Southworth and Berg, 1995; Richards
and Buss, 1996) use simple models based on channel theory and focus on the
different patterns of decision weights. Southworth and Berg (1995) suggested
that different weights correspond to differences in the cue used to make the
discriminations (i.e., pitch, loundness, roughness). It is feasible that the output
of different models sensitive to different cues were combined instead of a simple
channel model with different weights being involved in the decision strategy.

Neural mechanisms for level discrimination in wideband noise (lateral inhibition

and cross-correlation)

In wideband noise, the underlying perceptual processing mechanism that
explained human performance was to detect spectral contrast rather than to
detect a difference in overall sound level or the level in a single critical band.
These two processes could be distinctly different (Green et al., 1983). The
spectral shape discrimination stores a classification of each spectrum in
memory and compares the two stored spectra. Intensity discrimination in an
across-trial roving-level paradigm is based on a short-term comparison, and
performance is degraded if the inter-stimulus duration is increased (see review
by Braida and Durlach, 1995). So spectral shape discrimination in wideband
noise could be explained based on channel theory if it is assumed that the
internal noise is different from that required for intensity discrimination in
narrowband noise (thus we can predict the enhanced performance in wideband
noise).

Lateral inhibition (Shamma, 1985; Rhode and Greenberg, 1994) has been
discussed as a possible underlying neural mechanism for discrimination of
spectral shape. The lateral inhibition model output is the weighted sum of the
different input channels, where the weight of each channel is derived based on
channel theory, as described above. The negative value of weight indicates an
inhibitory input from the corresponding channel. The lateral inhibition scheme
does not address questions concerning the duration over which the spectrum
should be integrated and then compared. Several studies show that short-term
spectral shape discrimination provides a possible cue to account for human
performance (Hall and Grose, 1988; Richards et al., 1997), and human
subjects can make quite fine (< 2ms) across-channel timing discriminations
between broadband stimuli (Patterson and Green, 1970). In some sense
spectral shape discrimination over a very short time duration has to rely on a
coincidence-detection mechanism in a neural implementation; because the
time constant must be short to avoid temporal summation, the temporal
correlation across channels will affect the model response.

Deng and Geisler (1987) discussed the difference between the cross-
correlation and lateral-inhibition mechanisms. Lateral inhibition is essentially
a differential operation across different channels, whereas cross-correlation
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involves a multiplication across channels. In the low-frequency region, AN fiber
responses are halfway rectified, so multiplication is more sensitive to temporal
changes across the channels. In the high frequency region, AN responses
usually follow the envelope of the stimulus and have lower synchronization
indices (there is a strong DC component in responses that are phaselocked to
the envelope, which reduces the synchronization coefficient), and the
differential operation is more effective to eliminate the DC component (mean
rate) in the responses. It is possible that the nature of the temporal information
in the AN fiber responses across frequencies leads to the use of different neural
mechanisms at different frequencies.

5.6 Summary

The results from the present study suggested that there was more
temporal information available for level discrimination in noise as the noise
bandwidth increased. The enhancement of level discrimination in noise for
wider bandwidths could be explained based on models detecting these
temporal cues. In narrowband noise, the model based on an envelope detector
could be used to account for human performance in roving-level conditions. In
wideband noise, both the energy-based population model and the cross-
frequency coincidence-detection model could be used to explain the constant
threshold-bandwidth functions and robust performance in roving-level
conditions. The coincidence-detection model responded to temporal changes
across different AN fibers and did not require a mechanism to avoid the limited
dynamic response range of the AN fibers. To predict human performance more
accurately, different internal noises were introduced for different bandwidths to
limit the coincidence-detection model’s sensitivity to level changes and to
spectro-temporal changes of the stimulus. The differences in internal noise that
were required to adjust the model’s sensitivity to level changes may reflect the
fact there are more neurons involved in spectro-temporal processing than in
coding the spectrum level of each critical band. The required internal noise
decreased as noise bandwidth increased, and this decrease could be achieved
by increasing the number of cells involved in processing (see Eq. 5.1). In
summary, both temporal changes in the population of AN fiber responses and
temporally related processing mechanisms should be considered in developing
physiologically realistic models for experiments in psychophysics related to
complex sounds.
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Chapter 6 Summary and Comments

This dissertation was motivated by the fact it is still not well known how
neurons at high levels of the auditory pathway respond to the spatio-temporal
patterns in population responses of auditory-nerve (AN) fibers, despite the
spectacular ability of AN fibers to encode the fine structure, or temporal details,
of sounds over a wide range of low frequencies. Without a better understanding
of the temporal response properties and the processing mechanisms of cells
that are sensitive to changes in the relative timing across AN fibers, improved
physiological descriptions of the temporal response properties of AN fibers are
sometimes thought to be a distraction from the basic structure of information
processing. These physiological details are often ignored in efforts to relate
neural mechanism to psychophysical performance, without considering their
potential fundamental importance. Thus, the primary goal of this dissertation
was to investigate response properties of model coincidence-detecting cells that
receive convergent inputs from AN fibers. The study also focused on the
capability of these model cells in coding of complex sounds, for which temporal
cues are believed to be important for related psychophysical tasks. Quantitative
predictions of model cell response properties and psychophysical performance
in this dissertation were made based on computational models for AN fibers
and coincidence-detecting cells.

6.1 Response properties of an I&F model that receives sub-threshold inputs

Chapter 2 describes a computational method for calculating the output
statistics (PST and ISI histograms) of an integrate-and-fire (I&F) model with
arbitrary input waveforms. Several studies (Stein, 1965; Molnar and Pfeiffer,
1968; Kempter et al., 1998; Burkitt and Clark, 2001) have provided analytical
descriptions of the response statistics of the I&F model, but these studies were
tied to specific assumptions that either the inputs were stationary or that there
were large number of weak inputs. These assumptions are not appropriate for
the auditory neurons in brain stem nuclei because most of them (e.g. AVCN
bushy cells) receive a limited number of inputs and respond to the temporal
structure of acoustic stimuli. The methods developed in Chapter 2 provide a
new way to calculate the statistics of the neural model with more accuracy and
efficiency than Monte Carlo simulations, and without the compromise of using
only stationary inputs or limiting the model parameter space.

This method was used to analyze the response properties of an I&F model
with different model parameters, in particular with different synapse
configurations. These response properties, including the regularity measure,
synchronization index, and output-input rate function, are thought to be
important for the estimation of physiological and anatomical parameters of
different neurons in the CN. The results provided insights into the relationship
between these model parameters and response properties. For example, the
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regularity of the cell responses were mainly determined by the EPSP time
constant, and both the linear output-input rate function and enhanced phase-
locking were observed for model cells with mixed-amplitude inputs.

6.2 Response properties of model coincidence-detecting cells that receive
convergent AN fiber inputs

Recently, several studies (Deng and Geisler, 1987; Carney, 1994; Shamma
and Klein, 2000; Carney et al., 2002) have proposed monaural cross-channel
coincidence detection as a physiologically realistic mechanism to decode the
spatio-temporal discharge patterns in AN responses for several specific
psychophysical tasks. The distinctive response properties of a coincidence-
detecting model have not been studied systematically, and thus it is difficult to
identify the cells that behave as coincidence detectors in physiological studies.

Chapter 3 provided a survey of the general response properties of these
model coincidence-detecting cells. The model results showed that the
coincidence-detecting cell could have “normal” tuning (i.e. a sharp tuning curve
with one tip) and a “normal” response area in response to tones at low levels
(i.e. single-peaked rate vs. frequency functions), but have distinctive properties
in response to the complex sounds. This observation had several important
implications: 1) coincidence-detection mechanisms were more important in
processing complex sounds than simple stimuli; 2) responses to simple stimuli
do not provide good criteria to identify coincidence-detecting cells; 3) to explain
the physiological responses of cells to complex sounds, the role of the
coincidence-detection mechanism should be considered if a cell receives
convergent inputs and has a limited integration window.

Chapter 3 also compared the response sensitivities of the shot-noise and
cross-correlation models for detection of a tone added to wideband noise. The
cross-correlation model could be described as an explicit physiological
coincidence-detecting cell that received two AN inputs with a very short
coincidence-detecting window, and the simple cross-correlation based CD cell
had very low response rates. The shot-noise model included more AN inputs
and had higher, and thus more realistic response rates, which were
comparable to physiological observations, but its coincidence response could
be masked by temporal integration from single-channel inputs. The results in
Chapter 3 showed that with proper choices of model parameters, realistic
response rates and temporal coding capabilities based on the coincidence-
detection mechanism could be achieved by a single model cell. With few free
parameters, the cross-correlation model is an efficient way of representing the
coincidence-detection mechanism, and it is capable of processing information
from input spatio-temporal response patterns that are of fundamental
importance for the psychophysical tasks considered.

Chapter 3 also highlights the conclusion that the spectral shape of sound
stimuli could be represented by the spatio-temporal pattern of AN responses
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and decoded by the cross-channel coincidence-detection mechanism. A
common mistake in developing auditory theory is to assume that each auditory
filter represents the spectro-temporal information in its own narrow frequency
region, and that the interactions between channels are relatively slow, and
require delay lines or auto-correlation operations to extract the fine temporal
structure of responses from each single channel. This is not true, as Chapter 3
illustrated, because auditory filters typically overlap each other, and changes in
the spectrum shape of sound stimuli cause coherent temporal changes across
several filters, even when such changes in temporal information were not
obvious in single auditory filters.

The model responses to complex sounds predicted in Chapter 3 have been
observed in physiological studies of AVCN cells in gerbil. In addition, other
studies (Carney, 1990) have reported several neural response types in AVCN
that have properties that are consistent with the monaural cross-frequency
coincidence-detection mechanism. These observations suggest that cells in
AVCN act like coincidence detectors to extract spatio-temporal cues. It is also
worth pointing out that the sharp tuning and phase-locking to the fine
temporal structure of AN responses are maintained or even enhanced along the
auditory pathway up to the inferior colliculus (IC). Thus, the cross-channel
coincidence matrix could happen anywhere along the auditory pathway at or
prior to the IC (e.g. in the superior olive or the lemniscal nuclei). The
simulations in Chapter 3 provide insights into the response patterns of
coincidence detectors that should help the search for physiological evidence for
the presence of cross-channel coincidence detection.

6.3 Analysis of psychophysical experiments with a coincidence-detection model

The goal of Chapters 4 and 5 was to examine the role of the coincidence-
detection mechanism in the processing of spatio-temporal patterns of
population AN fiber responses in experiments commonly associated with
spectral masking. Two masking experiments, tone in noise detection and level
discrimination in noise (Kidd et al., 1989), were considered. Experiments on
tone-in-noise detection have been a foundation for the development of modern
auditory theories. Experiments of level discrimination in noise are similar in
paradigm to profile analysis, which has challenged the power spectrum
hypothesis used to explain tone-in-noise detection experiments.

Chapter 4 presented a detailed analysis of response properties of the
model coincidence-detecting cell with different stimulus conditions relevant to
the masking experiments. The results supported the conclusion from Chapter 3
that the coincidence-detection mechanism was a robust mechanism for
processing spatio-temporal cues in complex sound stimuli. In wideband noise,
the most sensitive cell received inputs that had out-of-phase responses to the
signal (the phase-opponency mechanism, see Carney et al., 2002). This was
because the temporal changes of two adjacent input filters were easily
detectable when their responses to the signal were out-of-phase with each
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other. The input AN fibers could not be tuned too close to each other because
their responses were already temporally correlated with the noise, and the
fibers could not be tuned too far away from each other because that would
require a higher signal-to-noise ratio to have the signal dominate the temporal
responses of both auditory filters. The location of the most sensitive cell was
also frequency specific, because correlation between two AN fiber responses
depends on the signal frequency. The sensitivity of the coincidence-detecting
cells in wideband noise was determined by the signal-to-noise ratio of the
inputs and was not affected by the total level of the stimulus. In narrowband
noise, the coincidence-detecting cell still responded to the spatio-temporal
change of the inputs, but such changes were less dominant in the AN
responses compared to the changes caused by the stimulus level. The
coincidence-detecting cell that was sensitive in the narrowband-stimulus case
had input AN fibers tuned further away from the signal frequency. In a neural
implementation of a matrix, or population, of coincidence-detecting cells, such
a cell could be replaced by cells that received low-spontaneous-rate AN inputs
(which had high thresholds and wider dynamic response ranges); such a
coincidence matrix could be constructed based on cells that received inputs
that were more closely tuned.

Predictions from Chapters 4 and 5 based on a coincidence-detection
matrix shared many similarities: 1) In wideband noise, the same model cell was
dominant for both roving-level and fixed-level conditions, and predictions were
robust to the roving-level conditions and were comparable to the human
performance. These results suggest that the same process may be involved in
both of these experiments. 2) In narrowband noise, the coincidence-detection
model was affected by stimulus level in both experiments. Different cells were
used in fixed-level and roving-level conditions, suggesting that different cues
may be involved in the narrowband noise masking experiments. There were
also some differences between tone-in-noise detection and level discrimination
in noise: 1) in wideband noise, the most sensitive cell for level-discrimination
still received out-of-phase inputs, but the inputs were tuned further away from
the signal. This phenomenon was similar to the “spread of excitation” in the
energy-based model, but it happened in the temporal domain and was mainly
determined by the signal-to-noise ratio instead of limited neural response
dynamic ranges. Also, auditory filters are broader in response to the high-level
tone due to the compressive nonlinearity, and thus the 180-degree phase
difference will occur for CFs that are further apart from each other; 2) In
narrowband noise, the AN temporal responses were already dominated by the
signal tone for level discrimination because of the presence of the pedestal tone,
and there were smaller changes in the fine-temporal information associated
with changes in the high-level tone than for the detection case. It was possible
that the envelope fluctuations were more detectable in the narrowband level-
discrimination in noise task because the envelope statistics were less variable
in the presence of the high-level tone.

The overall performance of the coincidence model together with several
other models discussed in Chapters 4 and 5 are summarized in Table 6.1.
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Coincidence detection is a useful mechanism for robust encoding of spatio-
temporal patterns of AN responses, especially in wideband noise for both fixed-
level and roving-level conditions. The coincidence-detecting cell that is sensitive
to the level and temporal
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Cross-Frequency Multiple-channel | Envelope
Coincidence Detector based Energy Detector
Detector

Physiological Coincidence Detection | Lateral inhibition | Modulation filter

Mechanism (Small membrane time | (Large membrane | (Rate-based
constant, Sub- time constant, modulation
threshold, convergent Non-saturated transfer function)
inputs) responses)

Tone-in- NB | Fixed-level Fixed-level Roving-level

noise Roving-level

Detection

Task WB | Fixed-level Fixed-level
Roving-level Roving-level

Level- NB | Fixed-level (partially) | Fixed-level Roving-level

Discrimin Roving-level (partially) | (partially)

ation WB | Fixed-level Fixed-level

Task Roving-level Roving-level

Table 6.1: Summary of the different models in psychophysical experiments. The
second row shows the possible underlying neural mechanism for each models,
and the other rows list the different stimulus conditions for which the model
successfully explained psychophysical results. The conditions for which the
model is useful but cannot explain the human performance alone are indicated
by the word "partially" in the table.
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information of the stimulus can also be used to account for human
performance in narrowband noise. Most cells in the auditory CNS (below the
IC) receive sub-threshold convergent inputs and have short membrane time
constants, making coincidence detection a realistic neural implementation of a
wide variety of psychophysical auditory functions.

The energy-based multiple channel model predicted human performance
in wideband noise for both fixed-level and roving-level conditions but failed to
predict human performance in narrowband noise in the roving-level condition.
A lateral inhibition network (LIN, Shamma, 1985) is a candidate for neural
implementation of the energy-based channel model. The LIN is similar to cross-
channel correlation if the integration time of the model cell is short. Slow
across-channel interactions based on LIN can only extract information from AN
fibers that change their rate responses when the stimulus level changes; this
mechanism discards the spatio-temporal information from AN fibers that have
saturated responses.

The results from an envelope-detector model illustrated that the envelope
fluctuations in narrowband noise were an important cue for both detection of
tones in noise and level discrimination of tones in noise. There were more
envelope cues available when the bandwidth of the noise increased, consistent
with the enhancement of human performance in experiments of level
discrimination in noise. The performance of an envelope detector is not affected
by the roving-level paradigm in narrowband noise and is worse than human
performance in fixed-level experiments, suggesting that the envelope cue may
not be used alone in fixed-level experiments. It is also reported (Wakefield and
Viemeister, 1990) that human performance for modulation-depth
discrimination is much worse than predictions from a model envelope detector
at high modulation depths, suggesting that envelope cues may not be a reliable
cue in detection experiments for which the envelope fluctuations are large.

6.4 Limitations and Directions for Future Studies

The central issue in the investigation of nervous system function is to
understand how information is encoded and processed by neurons. The fact
that we often have to ignore physiological details, even though they are
potentially important, reveals a lack of insight into the dynamics of the
underlying system. While the present study used computational nonlinear AN
models that are based on physiological data from various species, it is difficult
to test whether this model describes human AN physiological responses in a
quantitatively accurate manner. Also, the present study did not include AN
fibers with low spontaneous rates; coincidence-detecting cells that receive
these AN inputs may have different response properties from those that receive
high-spontaneous-rate fibers. The computational nonlinear AN model used in
the present study could simulate many effects of cochlear nonlinearity, but the
detailed effects of cochlear nonlinearity on coincidence-detecting cell responses
and model performance have not been addressed.
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The physiological responses of neurons involved in coincidence detection
in binaural processing have been well characterized (see Yin and Chan, 1988;
Irvine, 1991); however, there is still much to be clarified about the response
patterns of monaural cross-frequency coincidence-detecting cells. Coincidence
detection may be just one aspect of cell responses together with other response
dynamics (e.g. on-frequency inhibition), thus the performance of coincidence
detection should be evaluated with a model that incorporates other processing
mechanisms. It is also possible that coincidence detection happens at several
stages along the auditory pathway. A more detailed understanding of the
neural circuits will improve the accuracy of computational modeling and thus
help gain insights about neural functions.

Coincidence detection (or cross-correlation) is a fundamental operation
that underlies almost all models related to binaural processing as well as many
models in monaural processing (e.g. models in pitch perception). Essentially,
this operation transforms the spatio-temporal pattern of AN responses into
another domain (space). Many questions remain for future studies: which
features of sounds are more clearly represented in this new domain? What
psychophysical tasks can benefit most from such transformations? How is
such a transformation affected by hearing impairment, and what information
we can get from studying hearing impairment in this context? Generally, for
psychophysical tasks that potentially benefit from coincidence detection, this
operation should result in response patterns that are easier to identify and are
more tightly clustered with respect to the sound information to be extracted.

The present study provides potential suggestions for future physiological
experiments, and new insights into the physiological response properties of
neurons. Specifically, cross-frequency coincidence cells should have complex
tuning (e.g. multiple peaks) at high stimulus levels, and these cells must
exhibit predictable response properties to temporal changes across AN fibers.
The changes of temporal correlation across AN fibers could be manipulated by
adding a tone to the noise stimulus, and coincidence-detecting cells should
decrease their response rate when a tone near CF is added to noise. There are
also several possible ways to distinguish the contributions of coincidence
detection and lateral inhibition to decrements in response rate: the coincidence
detection cell should generate a decrease in response rate when a tone is added
at CF, and such a decrement should be observed at noise levels for which the
cell response is saturated. In contrast, a LIN cell should have a decrease in
response rate when a tone is added away from CF, and inhibition should be
less obvious at noise levels for which the cell response is saturated.

As advances in physiology continue to provide a more detailed description
of the underlying neural system, the use of more complex and computational
models that incorporate realistic neural circuits to predict psychophysical
experiments is inevitable. Molecular psychophysical (Gilkey and Robison, 1986)
techniques offer a valuable approach for the demanding tests of these complex
models. Molecular psychophysics studies the relationship between human
performance on individual waveform and the microstructure of that particular
waveform. Molecular psychophysical measures consider the stimulus-response

126



relationship with little regard to “correctness” and provide descriptions and
insights about listening behavior in the context of the microstructure of the
stimulus. It is often the case that models providing good predictions of average
threshold data fail to explain the microstructure of the data. Regarding tone-in-
noise detection, for instance, the violation of the “power spectrum model”,
which successfully describes several masking phenomena, has been confirmed
in a number of molecular based studies (Gilkey and Robinson, 1986; Richards
and Buss, 1996). It is possible that individuals attend to very different aspects
of the available acoustic information (i.e., pitch, loudness, roughness), yet show
similar thresholds. Also, molecular techniques should not only pay attention to
the different model parameters for each microstructural aspect of the data, but
also to possible strategies that combine different models (or models with
different parameters) in a single task.
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Appendix A. Analysis of models for the synapse between the inner hair cell and

the auditory nerve

A.1 Introduction

The inner hair cell (IHC) and auditory nerve (AN) complex is a critical
element in the peripheral auditory system that converts a mechanical signal
(the response of the cochlea to sound) into a neural signal. Physiological
studies (Westerman and Smith, 1984; Westerman 1985; Rhode and Smith,
1985) have provided insight into the temporal dynamics of IHC-AN synaptic
processing. The response of an AN fiber to a constant-intensity tone burst is
typified by very rapid firing at the onset that declines with time, rapidly at first,
then more slowly over a period of tens of milliseconds; the AN response at the
offset of the stimulus is greatly reduced and slowly recovers over several tens of
milliseconds (Harris and Dallos, 1979; Westerman, 1985). The likely source of
these effects can be inferred from other physiological studies. Since the
amplitude of the receptor potential of the inner hair cell (IHC) produced by a
constant amplitude stimulus (for example, a high-frequency tone) is essentially
constant (Russell and Sellick, 1978), adaptation is believed to occur at the level
of the transmitter release process in the IHC-AN synapse. The adaptation
process in the IHC-AN synapse results in greater sensitivity to transient stimuli
than to steady-state stimuli and underlies other temporal aspects of AN
responses. These properties also limit some aspects of temporal coding of
stimulus envelopes. For example, offset adaptation may be responsible in part
for the psychophysical phenomenon of forward masking (Harris and Dallos,
1979).

IHC-AN synaptic adaptation is very complex. Its characteristics depend on
stimulus intensity, duration, and previous stimulation history. Synaptic
adaptation at the onset of AN responses to tone bursts is usually characterized
functionally by two exponential components (Westerman, 1985; Westerman
and Smith, 1984; Rhode and Smith, 1985); adaptation at the offset of the
stimulus can also be described as an exponential recovery component, with a
different time constant than the onset, after a deadtime period (Fig. 1; Harris
and Dallos, 1979). Other measurements that have been made to help
characterize AN adaptation processes include responses to increments or
decrements in stimulus intensity with an ongoing tonal background (Smith and
Zwislocki, 1975; Smith et al., 1985). Adaptation characteristics also differ for
fiber types with different spontaneous rates (Rhode and Smith, 1985). The
diversity and complexity of IHC-AN synaptic adaptation provide a challenge for
successful modeling of synapse dynamics (Hewitt and Meddis, 1991).

The mechanisms that give rise to synaptic adaptation have often been
modeled using multiple reservoirs of neurotransmitter, with diffusion out of the
cell and between reservoirs within the cell (Furukawa and Matsuura, 1978;
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Schwid and Geisler, 1982; Meddis, 1986; Westerman and Smith, 1988). Each
diffusion step is controlled by a permeability parameter, and at least one of the
permeabilities in these models is determined by the stimulus (presumed to be
controlled by IHC calcium concentration, intracellular IHC voltage, or
equivalently stimulus
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Figure 1: Schematic diagram of the response of an AN fiber to a tone-burst
(Harris and Dallos, 1979; Westerman, 1985). The onset response of the AN
fiber can be described as a sum of two exponential components (see Eq. A19),
and the offset response can be fit with a single exponential recovery function
after a deadtime (Eq. A22).
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intensity). Adaptation of the synaptic output depends on the reduction of the
driving force for the diffusion of the synaptic material (transmitter) from the cell
into the synaptic cleft (Fig. 2). Mathematically, low pass filters are used to
implement the replenishment and diffusion mechanisms between different
transmitter reservoirs. These models can be implemented using either a
cascade of low-pass filters or parallel low-pass filters (depending on the
interconnection of the reservoirs).

The variation of adaptation characteristics across AN fibers makes it
desirable to have different sets of model parameters to predict individual AN
fiber responses more accurately, but determining these parameters is always a
tedious job. Depending on the model structure, simulation results may or may
not give insight into the model; that is, quantitative relationships between the
model parameters and adaptation properties may not be revealed by the
exercise of fitting the parameters to a single fiber response. For the model
proposed by Westerman and Smith (1988), equations were derived to determine
the model parameters from the desired shape of the onset PST histogram
(Westerman and Smith, 1988; Zhang et al., 2001), but a detailed exploration of
the relationship between model parameters and other adaptation properties is
still needed. The studies of model adaptation characteristics are limited by the
sets of parameters provided by the authors (e.g. Westerman and Smith, 1988;
Hewitt and Meddis, 1991; Sumner et al., 2003), which makes it difficult to
understand the relationship between the parameters and different adaptation
properties. A systematic study of the adaptation characteristics of these models
has never been completed, perhaps due to the lack of insight concerning the
parameters of these models.

In this article, we will use a unified approach to consider two models, that
of Meddis (1986) and of Westerman and Smith (1988; we will refer to this as
the Westerman model). In our approach, both models can be described as
circuits of interconnected low-pass filters. In this framework, the responses of
each model to a constant-intensity stimulus can be determined analytically,
and relationships between the response characteristics and model parameters
can be established. This mathematical method makes the difference and
similarities between the two models more clear, leading us to the conclusion
that, despite their different structures, the two models are essentially the same.
In addition, because the model equations provide better insight into the model
structure, we can easily derive the model parameters based on the desired
adaptation properties.

We propose a modified version of Westerman's model that has the same
onset adaptation but improved offset adaptation. The modified offset
adaptation enhances the modulation gain of the model AN fiber responses to
modulated stimuli, consistent with AN physiology (Joris and Yin, 1992).

Finally, we consider an efficient way to include refractoriness in a
phenomenological AN model. The refractoriness observed in AN fiber responses
is generally associated with the mechanism that generates the action potential.
A method developed by Gaumond et al. (1982, 1983) can be used to remove the
effect of refractoriness from measured PST histograms and thus estimate the
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underlying synapse output (transmitter release rate or instantaneous firing
rate) from AN fiber recordings (Westerman and Smith, 1988). When simulating
AN responses, the model synapse output can be used to generate a model PST
by including the characteristics of the refractoriness (Edwards and Wakefield,
1990). A computationally efficient, modified version of the Edwards and
Wakefield PST approximation procedure is introduced in this study.

A.2 Analysis of the Meddis synapse model

The model proposed by Meddis (1986, 1988) has three neurotransmitter
reservoirs that are arranged in a cycle: the immediate store (g); the synaptic
cleft (¢); and the reprocessing store (w) (see Fig. 2). The transmitter
replenishment and release in the model can be described by the following
equations:

= y(M g0+ aw(0) - k()g 1) (A1)
dc
- =kg) =+ e, (A2)
dw
=" _ — . A
5 re(t)—xw(t); (A3)

The first equation describes the dynamics of the amount of transmitter in the
immediate store: new transmitter in the immediate store is either
manufactured from the factory (at a rate of y(M-q), where M is the

Concentration CG

GLOBAL

Permeability * PG
LOCAL

Permeability * PL

Concentration CL
Volume VL

IMMEDIATE |Concentration  CI

Volume VI
Permeability & PI

(a) Westerman’s Model: Sout(t) = Pi(t) Ci(t)
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Figure 2: Schematic diagram of two synapse models (Meddis, 1988, and
Westerman and Smith, 1988). (a) In the Westerman model (see Eqs. A14 and
15 below), three transmitter reservoirs are cascaded, each with their own
concentration and volume. The transmitter diffuses from global to local and
then from local to immediate reservoirs. The output of the synapse model, Sout,
is determined by the product of the concentration in the immediate reservoir
and diffusion permeability from the immediate reservoir into the synaptic cleft.
(b) In the Meddis model (Egs. A1-3), the transmitter in the cleft is either lost or
reprocessed by the reprocessing store (w). The free transmitter pool receives
transmitter either from the reprocessing store or from a global factory and
releases the transmitter into the cleft (with instantaneous release probability
density k). The model synapse output is a value proportional to the amount of
transmitter left in cleft (c) or the rate of transmitter released into the cleft
(Meddis, 1988; Sumner et al, 2003).
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concentration of neurotransmitter in the global store), provided by a
reprocessing store (at a rate of xw, see Eq. A3), or released from the immediate
store into the synaptic cleft at a rate of kq. Transmitter in the cleft is either lost
at a rate of lc or recycled at a rate of rc (Eq. A2). The instantaneous release
probability of a vesicle from the immediate store, k(f), is usually a function of
intracellular IHC voltage (defined as Vixc, referenced to the IHC resting potential)
which is determined by the input sound stimulus. For a high-frequency tone
burst, the IHC receptor potential Vi is dominated by the “DC” component
(Cheatham and Dallos, 1993; Russell and Sellick, 1978) and it is reasonable to
assume that k(f) is a constant after the onset (denoted as k2; the value of k()
before the onset is denoted as kl). For further analysis, Eqs. A1-3 can be
transformed into the Laplace (complex frequency) domain as follows for t > O:

sQ(s)—q(0-) = yM /s — yQ(s)+xW(s)—k20(s) , (A4)
sC(s)—c(0-)=k20(s)—(I+r)C(s), (AS)
sW(s)—w(0-)=rC(s)—xW(s), (A6)

where g(0-), c(0-) and w(0-) are the reservoir concentrations before the onset.
After solving for Q(s),

_ (sq(0=)+ ym)(s+ x)(s+1{+r)+c(0—)rxs + w(0—)xs(s+1+r)

s , A7
Qo(s) s(s+x)(s+y+k2)(s+1+r)—k2rxs (AT)

the characteristic function of g(f) can be represented by
qt) =P, + D" + P + P, (A8)

where -1/t are pole of Q(s). The values of t;, t2, t3 and ®o, P1, P2 can be
calculated from Q(s) directly.

Based on the parameters given in Meddis (1986, 1988), we can assume
that land r — o (or [,»>>x,y,k), and we will let u=r/(l+r. Thus, the following
equations can be used to describe the above results:

d
7‘; = y(M —q(1))— kg (1) + xw(1) (A9)

DY gty —w(0), (A10)
dt
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k(0+)Q(s)+c(0-)

C(s)= (A11)
s+l+r
0(s) = (sq(0=)+ ym)(s + x)+ w(0—)xs ’ (A12)
s(s+x)(s+y+k2)—k(0+)uxs
q(t)=®' +P' e+ '\ e, (A13)

Figure 3a shows the comparison of the analytical solution of k(t)qg(t) for
both the original model (Eq. A8) and the simplified model (Eq. A13) using the
parameters given in Meddis (1988). In Fig. 3b, simulation results from both
models with the same input k(t) (a sinusoid waveform at 1kHz) are compared.
Both plots show that solutions from the simplified equations and the original
equations are essentially identical.
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Figure 3: Comparison of synapse output for the original Meddis model (solid
line) and the simplified model (dotted line) described in the current study. Both
models use the parameter values given in the Meddis study (1988): [= 2500, r
= 6580, x=66.31, M= 1, y = 5.05. The responses from two models are
essentially identical, as illustrated by the overlapping curves. (a) The analytical
solution of k(t)g(t) for both models for a constant stimulus, with ki = 40.49 and
k2 = 1660. (b) Simulation results of k(t)g(t) for both models with a time-varying
input k(t) (a half-wave rectified sinusoidal waveform at 1 kHz with amplitude of
ko: k(t)=0.5k2 [ sin(2000 m t)+|sin(2000 wt)| | ).

135



These results also hold for other parameter sets given in various studies
(Meddis, 1986; Meddis 1988; Sumner et al., 2003; not shown). Thus, the
simplified equations provide a good description of the Meddis model, and the
solution (Eq. A13) has two components with different time constants that are
similar to the characteristics of onset adaptation in AN fibers.

The accuracy of the simplified equations describing the Meddis model
across different values of the sum [+r is illustrated in Fig. 4. Each individual
component of g(t) (t and ®;) are plotted as a function of I+r for both models (Fig.
4). The values of these components are constant for the simplified model
because u is kept the same for different values of l+r. The values of
corresponding components in the original model reach the values in the
simplified model as the value of [+r increases, and the values are
indistinguishable from each other when (I+r) > 5000 (the values of l+r used in
the Meddis (1986, 1988) were usually greater than 15000). The amplitude (P3)
of the additional component in the original model can be neglected compared to
the other components when the value of l+ris large.

A.3 Comparison of Meddis and Westerman models

Westerman and Smith (1988) proposed a model with three transmitter
release reservoirs (global, local and immediate, see Fig. 2). The governing
equations for the transmitter release between these reservoirs are

v, S = —pC, (1) = P (C, () + PLCL (), (Al)
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Figure 4: The difference of each individual component (ti and ®;) of g(t) between
the Meddis (1986) model and the simplified model as a function of [+r. The
values of these components are constant for the simplified model (dotted line)
because u=r/(l+r) is kept the same for different values of [+r. The amplitude of
the component (®j) is scaled by k so it can be interpreted as the instantaneous
firing rate of the synapse output. The values of corresponding components in
the original model (solid line) all converge quickly to the values in the simplified
model as [+r increases, and the values are indistinguishable from each other
when [+r > 5000. The amplitude (®;) of the additional component doesn't exist
for the simplified model; in the original model, this amplitude converges to zero
as l+rincreases and it can be neglected when [+ris large.
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and

dC,(t) F,C, P, P +P,
T +VLC(t) (—— 7 )C.(1) (A15)

where Cj, CL, and Cg are the immediate, local and global reservoir
concentrations; Vi and Vi are the immediate and local reservoir volumes; and
PL, Pg are the permeabilities between the local and immediate and between
global and local reservoirs. The release permeability Pjt), which is the same as
k(t) in the Meddis model, is a function of intracellular IHC voltage (Vihc), which
is determined by the input sound stimulus. The model has the same
characteristic function as the simplified Meddis model (Eq. A13):

C,()=D' +D' e+, e, (A16)

Because k(t) and Pj(t) are the only stimulus dependent variables in these
two models, to compare the two models more directly we substitute k(f) with
PM(t) and g(f) with CM(f) in Eqs. A9 and A10 and the constant yM in Eq. A9 can

be removed by substituting w(t) W1th C (©-yM/x-uC;' () | We can then get

the following equations describing the Meddls model:

ddCzI =—(y+xu)C)' ()= P" )C}" (1) + (y +xu)C} (1), (A17)
ac, _ oM +xu(———-DC" (1) - x(1-u)C" (1) . (A18)
dt y+xu v+ xu

Since there is one free parameter in Westerman’s model, we can always
assume V=1 (that is, we can decrease Vi, Vi, P1, P, Pg, and increase Cj, C., Ca
by same scale Vi, and the synapse output PiCi remains the same). It is obvious
that the equations describing the two models (Egs. A14-15 and Egs. A17-18)
are directly comparable with each other. If we set the corresponding
parameters to the same values (e.g. PL=y+xu), then the synaptic response of
the Meddis model (kq) and that of the Westerman model (P:Ci) to arbitrary
inputs should be exactly the same.
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A.4 Deriving Model Parameter Values from PST properties -The relationship
between the model parameters and adaptation characteristics

Extensive measurements of adaptation characteristics (Rhode and Smith,
1985; Westerman and Smith, 1984; Westerman, 1985) show that the onset
adaptation of AN fiber can be described as a sum of two exponential functions:

R (1)=A +Ae"""+A e (A19)

on

where Ar and Ast are the components of rapid and short-term adaptation, t and
tst are the respective decay time constants, and Ass is a steady-state component.
Fitting the characteristic equation (Eq. A19) to the PST histogram will
determine the values of these parameters; the refractoriness from the PST
histograms can be removed before fitting (Westerman and Smith, 1988) so the
IHC-AN synapse output (instantaneous firing rate) can be more accurately
represented by the characteristic function.

The parameters in the Westerman model can be derived (Westerman and
Smith, 1988; Zhang et al., 2001) from the adaptation parameters (Ass, Ar, Ast, (R,
tst) and the spontaneous rate (Asp) of the AN fibers. It is also possible to derive
the values of the parameters in the Meddis model from these characteristic
parameters (See Appendix B), since both models can be described with
essentially the same set of differential equations (see above).

Though the same desired adaptation responses could be obtained from
both models, the dependence of the different parameters in each model upon
different adaptation characteristics is different. Also, because the models have
different structures, these parameters have different physical meanings in each
model. Figures 5 and 6 show the changes of the parameters in the two models
for different model AN fiber types. The peak-to-sustained ratio
(PTS=(Ar+Astt+Ass) [ Ass) of the onset adaptation changes with spontaneous rate
(Asp), as described by the following equation:

PTS =1+9x A, /(9+A,). (A20)

The other adaptation parameters are held constant across model AN fibers (tr =
2ms, tst = 60ms, Ar/Ast=6, Ass=350). Figure 5a shows that the value of M in the
Meddis model changes nonmonotonically with increasing spontaneous rate; it
drops initially, and then increases from 3 to 10 for spontaneous rates
increasing from 1 to 100 spikes/sec. All the
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Figure 5: The relationship between parameter values (M, x, y and u) and
spontaneous rate for the Meddis model. Other adaptation parameters used to
derive the model parameters are: PTS=(Ar+Ast+Ass)/ Ass=1+9Asp/ (9+Asp), tr=2 ms,
tst=60 ms, Ar/Ast=6, and Ass=350. The value of M in the Meddis model changes
nonmonotonically with increasing spontaneous rate; all other parameters
decrease as spontaneous rate increases.
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Figure 6: The relationship between parameters (P., Ps, Vi, Vi) and the
spontaneous rate in the Westerman model. The other adaptation parameters
are the same as in Fig. 5. The parameters were derived with global
concentration (Cg) set equal to 1.
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other parameters (%, y, u) in the Meddis model decrease continuously as the
model’s spontaneous rate increases. The changes of parameters in
Westerman’s model are plotted in Fig. 6. The global concentration (Cg) was
always set to 1 before determining the other parameter values. The immediate
volume, Vi (Fig. 6d), has similar trends as M observed in Fig. 5a. Other
parameters (Pg, PL, and V1) decrease at first and then are insensitive to the
spontaneous rate above 5 spikes/sec.

The Ass defined in the adaptation parameters is the sustained rate at a
certain stimulus level (the level is not specified here, but is presumably a high
level which will be determine by the level-permeability function in the rest of
the composite model for the AN response). When the permeability increases,
the sustained rate in both models saturates at a value

Y _PPC, . WM
A uax = lim PG, “hap fim kg =1—- (A21)

The value of Ass Max also changes with AN fiber spontaneous rate (see Fig. 7):
the value for high-spontaneous model fibers is comparable to Ass, whereas
Ass_Max increases rapidly with decreasing of the spontaneous rate. The results
above may suggest there is a fundamental difference between the low and high
spontaneous rate AN fibers. When spontaneous rate is low, the onset
adaptation is not sensitive to the values of the parameters tg, tst, Ar/Ast, which
reduces confidence in analysis based solely on these parameters.

It is also possible to study the effects of the model parameters on
adaptation characteristics analytically with the solution given above (Eq. A12,
for example, gives the analytical solution for the simplified Meddis model).
Figure 8 shows the change of components of the model onset adaptation as a
function of the value of immediate permeability P (or k in the Meddis model) for
a model IHC-AN synapse with spontaneous rate of 50 sp/sec. Since P is level
dependent, the figure also represents the effect of level on model onset
characteristics. (A full composite model for the auditory periphery is needed to
study the effects of level on onset adaptation characteristics, e.g. Sumner et al.,
2003.) The model has a spontaneous response with permeability of P11 when
there is no stimulus input. The sustained rate (Ass) is roughly saturated at
permeability P2 which generates the desired onset adaptation while the
contribution of short-term and rapid components continues to change as the
permeability P increases (Fig. 8a). Both the rapid decay time constant and
short-term decay time constant decrease as P increases (Fig. 8b, note that tr is
multiplied by 10 in this plot). The short-term time constant is about 120 ms at
rest and decreases to 50 ms at high levels; and the rapid time constant is 8 ms
at rest and decreases continuously as the input sound level increases (the
value we choose to derive the model parameters was tsr=60 ms, tr=2 ms). The
prediction here does not fit the physiological data quantitatively, which may
suggest that the model is a poor description of the IHC-AN-fiber (it is possible
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that other model parameters are also stimulus dependent, see Westerman and
Smith, 1988).
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Figure 7: The maximum sustained rate (Ass_max, solid line; see Eq. A21) (for
both Meddis and Westerman models) as a function of model spontaneous rate.
The other adaptation parameters are set as in Fig. 5 (thus Ass has a constant
value, as shown by the dotted line). The value of Ass_max for high-spontaneous
rate model fibers is comparable to Ass, whereas the value increases rapidly as
spontaneous rate decreases.
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Figure 8: Effects of the model parameter, P, (for Westerman model) on onset
adaptation characteristics. The model parameters were derived from adaptation
properties specified in Fig. 5 with a spontaneous rate of 50 spikes/sec. The
values of P;; and P2 are the values of the immediate permeability before and
after the stimulus onset. (a) The contribution of each PST onset component.
The contribution of the rapid component (solid line) and short-term component
(dotted line) are the integrals of their exponential functions (and thus have
units of spikes). The contribution of the constant component (sustained rate —
spontaneous rate; dashed line) saturates as P increases. (b) Both rapid and
short-term time constants decrease as the permeability increases. The rapid
time constant (fr, solid line) is multiplied by 10 to allow it to be plotted with the
short-term time constant (tst, dotted line).
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It is important to note that the relationship between Vinc and P;rshould
change together with the fiber adaptation characteristics: different adaptation
characteristics need different sets of the model parameters (including the
permeability at rest and permeability at any other desired level); the
spontaneous rate, rate threshold, and rate-level function curve are different for
different fiber types that require different Vin-P;relationships. An appropriate
Vine-Pr representation is critical for a composite model that successfully
describes AN responses and will be discussed in more detail below.

A study of the effect of adaptation characteristics on model parameters
and of the model parameters on adaptation characteristics can be
accomplished with this analytical method (we only show the effects of
spontaneous rate and P). For example, it is also possible to derive the model
parameters from adaptation characteristics for different stimulus levels. When
more than one model parameter (P, Pg, V., etc) varies with level (Westerman
and Smith, 1988), which invalidates the underlying assumption of the method
used here to generate the model parameters, it is more difficult to build up the
relationship between adaptation characteristics and model parameters. On the
other hand, when the model parameters are derived to produce the desired
adaptation at each level, the effects of the model parameters on adaptation
characteristics can be studied in detail and more information about the
synapse dynamics can be retrieved.

A.5 Modifying the synapse model to obtain the desired offset adaptation
response

The above analysis shows that the model parameters can be determined
based on the onset adaptation characteristics (at a certain stimulus level).
When the model parameters are set, the other adaptation characteristics of the
model synapse are automatically determined. If we set the level-dependent
permeabilities P;; and P2 (k1 and k2 in the Meddis model) to the values before
and after the offset, the analytical solution from Eq. A16 provides the offset
responses of the model synapse. A direct conclusion is that the offset
adaptation of the model synapse is also a sum of two exponential functions.
The time constants of these two components are determined by P after offset
and limited by the time constant at the onset (since only P affects the time-
constant, see Westerman and Smith, 1988, for Westerman’s model, Eq. A12 for
the Meddis model, Fig. 8b also shows how the time constant in the offset
adaptation changes with the permeability after offset). While physiological
studies (Smith, 1977; Smith and Zwislocki, 1975; Westerman, 1985) suggest
that AN fibers with medium or high spontaneous rate usually stop responding
right after the offset (deadtime period) and recover slowly with a time constant
longer than that of short-term adaptation, the rapid component of the model
recovery function causes the synapse to recover quickly after the stimulus
offset. Since F(t) and Ci(t) can not be negative, the magnitude of these recovery
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components (P, 2 in Egs. A13, A16; the sign of these components is negative
at stimulus offset) is also limited by the value of ®¢ (determined by the
spontaneous rate). These limitations make the offset adaptation of the model
response unrealistic as compared to the observed physiological data.

The physiological response of AN fibers following the tone-burst offset can
be fit (Westerman, 1985) with one exponential recovery function with a desired
deadtime period

R_(t)= o < (A22)
T A, =y

where Asp is the spontaneous rate, t is the dead time period and tsp is the
recovery time constant of the offset responses. The fitting function has another
general form (Harris and Dallos, 1979)

Roﬁ‘ (t) = (Axp - Iqmin )(1 - e_’/fo ) + ATnin
for R(t)>0 , (A23)
=0 for R(t)<0

where Aminis a negative value which accounts for the deadtime period of the
offset response.

Since an AN fiber doesn’t respond during the deadtime period, the
recovery process during this period is not well studied, and it is possible there
exists a rapid recovery component corresponding to the onset rapid adaptation
during this period. The offset characteristic function thus can be described as

R, (1)=(A,— A, )(1—e""™)+ A +AT e
for Roff (t)>0 (A24)
=0 for R  (t)<0

where Aff is the magnitude (with a negative value) and t°ff is the time constant
of rapid recovery component. Since the model synapse output PCiin the
Westerman model cannot be negative, we can assume that the measured
synapse output is

R{)f(t) = PI (t)CI (t)_ Ashift

forR ; (©)>0 (A25)
=0 for R _;; (<0
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where Ashift is a shift value to guarantee A C > O while making Rof(t) the same
offset adaptation function as in Eq. A24 (which means 4, >|A”|+|A,,|)- The

onset of the model synapse output now becomes

P(OC,()=R (D+A

on shift

4 (A26)

A A A g
Thus, by including this shift, the same equations can be used to describe both
the onset and offset adaptation.

Figure 9 shows the onset and offset responses of the synapse model with
or without the shift added. The value of the model parameters was derived to
have the same onset adaptation. The permeability F(t) jumps from P to P2 at
5 ms and drops back to P at 55 ms. When the shift (Asnit = 50) was added, the
model parameters (e.g. P1 in Figs. 9c and 9d) were changed to keep the same
onset response. The original model and modified model have the same onset
responses (Fig. 9a) while the modified model has a greatly improved offset
adaptation response (Fig. 9b).
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Figure 9: Onset and offset responses of the Westerman model with (dotted line)
or without (solid line) the shift value added. The shift value is set to 50
spikes/sec. (a) The model onset responses are unchanged because the model
parameters were derived to have the same onset adaptation. (b) The model
offset response with the shift recovers more slowly than the model offset
response without the shift and has the desired deadtime period. (c), (d) The
permeability Pi(t) jumps from P to P2 at the onset (5 ms) and drops back to P
at the offset (55 ms). The model parameters (e.g. Pi1) were changed to keep the
same onset response.
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The effect of Asnit on the offset components is illustrated in Fig. 10. Since
the rapid component recovers quickly during the deadtime period, the offset
adaptation process is dominated by the short-term component. The magnitude
of the short-term component (Amin-Asp in Eq. A23) determines the duration of
the deadtime period and the time-constant (tsrt) determines the value of
recovery time constant tsp. The recovery time constant is always greater than
that of onset short-term adaptation (60 ms), though the value decreases as the
shift is increased. The value of Amin (Eq. A23) becomes more negative with a
larger shift, which produces the desired deadtime period.

The offset adaptation properties of IHC-AN synapse could be used to
account for the enhanced phase locking to the stimulus envelope in AN fibers.
The AN fibers were less responsive during the dip of envelope due to the offset
adaptation, and thus the fibers were more synchronized to the peak of the
envelope. Figure 1120 illustrates the effects of offset adaptation on the
modulation transfer function (MTF, see Joris and Yin, 1992 for a
comprehensive experimental study) for a model AN fiber (Zhang et al., 2001) to
sinusoidally amplitude-modulated (AM) stimulus. The IHC-AN synapse
component of the model was replaced with the synapse model presented here
(the onset adaptation parameter were the same as in previous study), and
different shift value was used to represent different offset adaptation (a shift
value of O means the synapse model was the same as the original one). The
stimulus was always fully

%0 The model results presented here are just illustrative. More extensive explorations have been conducted in another
study (Nelson and Carney, submitted).
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Figure 10: Effects of the parameter Asnirt in Eq. A26 on the model offset
components. The model parameters are derived so they have the same onset
adaptation with different Asnitt values (spontaneous rate Asp=50, Ass=350,
PTS=(ArtAsttAss) [ Ass=9, tr=2 ms, tst=60 ms, Ar/Ast=6.0; see Eq. A19). The
upper plots illustrate how the magnitude and time constant of the offset rapid
component changes as a function of shift; the middle plots show changes of the
offset short-term component. The time constants for both components decrease
as shift increases and are larger than the corresponding onset time constants.
The rapid component recovers quickly (usually during the deadtime period) and
the recovery time constant is thus determined by the short-term component.
The magnitude of this component is always negative and decreases (becomes
more negative) as shift increases. Amin (bottom right; see Eqs. A23, A24)
changes from positive to the desired negative as the shift value increases; Amin
and the time constant of the short-term component determine the duration of
the deadtime period. The plot at the bottom left shows the most negative value
(including the contribution of the rapid component, which recovers quickly) of
the model response without rectification (Rof(t=0) in Eq. A24) as a function of
the shift value.
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Figure 11: Modulation transfer function for the model AN fibers. The stimulus
was always fully modulated at 10 dB SPL with carrier frequency at AN CF of 21
kHz, gated with 10 ms cosine-square function. The modulation gain was
defined as 20 log[(modulation of responses)/(modulation of stimulus)] (i.e.,
modulation gain = 20 log(2R/m), where R was the vector strength of the AN
responses and m was the modulation depth; see Joris and Yin, 1992). The
model AN fibers with larger shift in synapse had higher modulation gain, and
were more consistent with the data from physiological experiments (asterisks in
the figure, from Joris and Yin, 1992).
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modulated (modulation index m = 1) at 10 dB SPL, with carrier frequency set
equal to the AN CF of 21 kHz. The model AN fibers with offset adaptation (e.g.
with larger shift value) had increased modulation gain, and an enhanced
modulation transfer function more consistent with the data observed from
physiological experiments (Joris and Yin, 1992).

A.6 Including the refractoriness in the synapse output to approximate the PST
response of AN fibers

As for many neurons, auditory-nerve (AN) activity can be modeled as a
renewal process described by its instantaneous rate function A(t) (also referred
to as a hazard function in renewal process theory; see Cox, 1962). The synapse
output s(t) is equal to k(t)g(t) for the Meddis model and Pit) C{t) for the
Westerman model. The synapse output usually represents the instantaneous
discharge rate of AN fibers without considering the effects of refractoriness. To
generate realistic AN discharge spike trains, refractory characteristics must be
incorporated into the stimulus-dependent synapse output s(t). Model AN
discharge generators (e.g. Carney, 1993) often use a multiplicative relationship
between the synapse output and refractoriness to model the instantaneous
firing rate A(t)=s(t)(1-r{t- tz)), where r(t) is the refractoriness factor (0~1)
determined by the time since the most recently discharge (tz). The
refractoriness function is represented by a sum of two exponentials
(Westerman and Smith, 1985; Carney, 1993; Zhang et al. 2001):

—(f—i i 0 — 1
r(t—tL)zcoe (t=tp =R )/ +Cl€ (t—tpRA)/s ,

fort—t, 2R, (A27)
=1, fort—t, <R,

where Ra is the absolute refractoriness period, and co, c1, So, S1 (co + ¢c1 = 1) are
the parameters for two exponentials.

The unconditional firing rate function of a renewal process can be
represented by (Cox, 1962)

p=["_p(xP,, @t 1pt x)dx, (A28)

where p(t, x) and Psur(t, X) are the hazard and survival functions, respectively,
for the renewal process given the previous spike time at x. The survival
function Psur(t, X) can be calculated from the hazard function directly (Cox,
1962)

- (s,x)ds
P (t,x)=e Jo .

sur

(A29)
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For the model AN spike generator with refractoriness factor given in Eq. A27,
we can described the unconditional firing rate function of the model AN fiber as

p@O=[_pOOP,, . )sO)[1-rt-x)]dx
- ., (A30)

=50 PP, (. 0)[1-r(t-0)]dx+s®] " pP,, 1. x)dx

where T is the time period over which the refractoriness can be neglected ( r(t,
x)=0 when t-x>T).

One popular technique used to characterize the neural response during
the time course of a stimulus, known as the post-stimulus time (PST)
histogram, is a discrete form of the above representation and can be described
as

k=np—1

pk)=3()A > P, (k.D+5(K)A Y PP, (k.D[1-F(k—i)]

, (31

k

:s<k>A[éA,L<k>+ > ﬁ(i)éuxk,i)[l—f(k—i)]j

i=k—ny

where p (k) is the unconditional probability of firing during the discrete time
bin, of length A, from # to t&+1; nt is the number of time bins during time period
T (nr = T/A); 7(), 5(), and P su(’) are the discrete functions corresponding to
their own continuous version; and P ran(k) represents the first summation in
the first line of the equation. For the small time bin A (e.g. §(k)A<O.1, for all k)
the Poisson process can be approximated by a Bernoulli process (Edwards and
Wakefield, 1990), so 5(k)A and 1-5 (k)A represent the probability of one
discharge or no discharge during one bin, respectively. The firing probability
including the refractoriness, given a previous discharge at time ¢, can be
represented as s(k)A[1-ri(k)] and the survival probability can be represented by

Psurlk+1, ) = Psur(k, 9 (1- §(k+1)A[1-F (k+1-7)]) (A32)

When refractoriness due to the previous discharge can be ignored (i.e. for i<k-
n), we have P sur(k+1)= P sur(K)(1-5 (k)A) and thus P ran(k+1) can be calculated
recursively:

B (k4 1) = (1= 500 By, (K)+ plk=np)B,, (k+1k=n,) (A33)

The PST histogram thus can be calculated directly from Egs. A31-33, given
the refractoriness effect r{t) and synapse output s(t). The computational result
can precisely represent the PST generated by the discharge generator based on
the same input (Fig. 12), and provides an
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accurate description of the PST without the need to simulate thousands of
repetitions using discharge times.

A.7 Discussion

This study shows that two phenomenological IHC-AN synapse models that
were designed to explain the onset adaptation characteristics of AN responses
are essentially the same. The Meddis model was simplified based on the
assumption of a large value of the sum of two parameters, [+r, which is
appropriate based on the parameter values used in previous studies of this
model (Meddis, 1986, 1988; Sumner et al., 2003). A low value of [+r primarily
changes the value of c(t) [c(t) is low-pass filtered version of g(t), see Eq. A11]
and choosing hc(t) (Meddis, 1986, 1988) as the synapse output results in a low-
pass filtered version of the desired onset adaptation responses (in a recent
study by Sumner et al, kq(t) is used as the synapse output instead of hc(t)).
Also, when [+ris too small, the filter has imaginary roots and the model onset
response have undesired oscillations. A high value of [+ris thus desirable in
the Meddis model, which can then be simplified to the same form as the
Westerman model.

Since the Westerman model and the Meddis model have different
structures, they provide different insight to the underlying physical
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Figure 12: Comparison of PSTs derived from different methods based on the
same synapse output Seut), with and without refractory characteristics. To
illustrate how the method applies to arbitrary inputs, the synapse output Sout)
(dashed line) is a periodic amplitude-modulated signal defined as Sout) =
100[sin(400 = t)+1][sin(2000 = t)+1]. The refractoriness is described by Eq. A27
using the parameter values described in Carney (1993; c0=0.5, c1=0.5, Ra=0.75
ms, so=1 ms, s1 = 12.5 ms). PST: was constructed using a discharge generator
(dotted line) and 40,000 repetitions of the Sout(t) period, with a bin size of Sus.
PST> was calculated directly from Sout) based on Eq. A31 (solid line) using a
sampling rate of 200 kHz.
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system. The similarity between the two models comes from the assumption
that only one parameter in the model is affected by the stimulus (P({) for the
Westerman model and k(t) for the Meddis model). It is possible that other
parameters should change with the stimulus and such a change would provide
different interpretations of the IHC-AN synapse process for both models. For
example, if changing the value of u in the Meddis model (percentage of the
reuptake transmitters) upon stimulation gave a more accurate description of
the actual IHC-AN synapse responses, it would be easy to gain insight using
the Meddis model. However, the same change in Westerman’s model would
affect several variables: P;, Pg, VL would all change with level to obtain the
same response properties of the model, and in that case this model would not
provide intuition concerning the actual processing of AN-IHC synapse.

The study provides an analysis tool to link the parameters of the
adaptation characteristics directly to the model parameters and to determine
how the derived parameter values differ from each other. It is possible to pick
any one set of parameters and derive the value of the other model's parameters.
For example, the values of the onset component (tr, tst, Ar/Ast) may not be very
convincing based on a fit of the PST histograms for low spontaneous rate fibers,
and we may prefer some model parameters to be fixed across all model fibers
(e.g. x or u for Meddis model). We can fix these values (x, u, Asp, Ass, €tc.) and
derive the values of the others in the model. The new properties of the
parameter values derived in this way may provide more insight into the
differences underlying the different AN fiber types.

The study shows that a simple shift can improve the model's offset
adaptation without compromising the model’s onset adaptation characteristics.
Inclusion of offset adaptation in the model improves the model’s prediction of
the temporal aspects of the AN fiber responses and thus benefits other
modeling studies based on the temporal responses of AN fibers (e.g. modulation
studies). Such a shift in the model structure can be interpreted as a constant
leak in the synapse cleft before the transmitter reaches the post-synaptic site.
This interpretation is different from that in the Meddis model, where the loss of
transmitter in the cleft is proportional to the transmitter concentration. Since
the offset adaptation of the AN fiber is related to the spontaneous rate (Harris
and Dallos, 1979; Westerman, 1985), it is reasonable for the value of the shift
to vary as a function of the spontaneous rate of the fiber as well. A further
study of how the value of the shift is related to the other characteristics of the
model fiber responses will be helpful. Also, the results show that the offset
adaptation time constant is closely related to the short-term constant of the
onset adaptation for the model explored. In fact, if the model onset adaptation
is measured from level Lo to level L; (Lo is the level before the onset and L; is
the level after onset) and offset adaptation is measured from level L2 to L; (L2 is
the level before the offset and L; is the level after the offset), the time constants
for the onset short-term component and for the offset adaptation are the same,
based on Eq. A16. Whether this is a limitation of the model or reflects some
underlying mechanism of the synapse still requires examination.
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How the synapse dynamics are affected by the IHC voltage (or by the
stimulus) is very important to the synapse response properties, and yet this
relationship is highly simplified in most modeling studies. Even here, where we
assume that only one parameter (the immediate permeability, P) in the
synapse is affected by Vine, the model is complicated since the Viue-Pr
relationship varies across different fibers: the voltage responses of the IHC at
different BM locations to CF tone have different AC/DC components (Cheatham
and Dallos, 1993); and responses from different AN fiber types have different
threshold and rate-level curves that depend on the Vi P;relationship. The
analysis of the adaptation of the synapse model provides some general
constrains on the Vic-P;relationship. For example, the value of Prat rest (Vine=0)
and at a certain high stimulus level L (the value of Vi at level L can be
estimated from the composite model), with desired adaptation properties, can
be derived from the synapse model directly. The value of Prat threshold level
can also be determined from the synapse model responses. Another useful
conclusion from this study is that the saturation of the synapse response is
largely contributed by the synapse model itself, rather than by the value of P;
(Eq. A21). That fact that P;does not saturate as Vic increases at high levels
(Carney, 1993, Zhang et al., 2001) is important for the model to predict AN
fiber temporal response properties (e.g. synchronization index) across different
levels.

Modeling the IHC-AN synapse is still a very challenging task due to both
the synapse structure (how the reservoirs are connected to each other) and the
processing dynamics (how the Vi affects model parameters such as
permeabilities). While it is easy to complicate the IHC-AN synapse model with
more physiologically realistic structures, whether such complication will benefit
the model and provide more accurate responses should be carefully studied.
Also modeling studies of other adaptation measures (Hewitt and Meddis, 1991;
Sumner et al., 2003) which focused on models with preset parameters should
be extended. An analysis of the relationship of these adaptation measures and
how they are affected by the model parameters will greatly improve our
knowledge of both IHC-AN synapse models and of the underlying physical
system.
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Appendix B. Relationship between adaptation characteristics and the Meddis-

model parameters

The Meddis model with three neurotransmitter reservoirs (q, w, c) can be
described by the simplified Eqs. A9 and A10. The model parameters M, y, x, u
are all constant, and k is the level-dependent permeability that is denoted as
k1 before the onset and as k2 after the onset. If we assume kq is the model
synapse output which matches the characteristic function of the onset
adaptation

R,(1)=A, +Ae" " +A "™ (B1)
with a spontaneous rate of Asp, the relationship between the model parameters

and adaptation characteristics can be described by the following equations (-
1/t and -1/t are the poles of Q(s) in Eq. A12):

ﬁ:—AW (B2)
k, A+A,+A,
yMk, _ (B3)
y+k(A—u) v
oMk, _ B4)
y+k,(1—u)
x+k,+y=1/t,+1/t (BS)
x(y+k,(1—u)) = 1/(t,t ) (B6)
%(kZ _kl)Asp = Ar /tR + Asx /tST (B7)

1

Several intermediate parameters are useful for the derivation of the model
parameters:

S, = Ut +1/tg, (B8)
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Sr2 = Ar/tR +Avl/tST

P = 1/(tits)

From Eqgs. B2 and B7, k1 and k2 can be specified as:

ky, = S, /(A,-A)k = A, 1A, k.

sp on

Several other intermediate parameters are defined as:

IB = (Ass - Asp)kl kZ /(Asp kZ - Ass kl) ’

a=(f+k)B, b=-(S,-k)(B+k,), c=P..

_—b+\/b2 —4ac

2a

=

The other model parameters then are set as follows:

u=1-z,
y=pz,
x=S8, -k,—-y,

M= A, (y+kz) .
ki
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