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ABSTRACT 

The perception of speech and other behaviorally relevant sounds is strongly 

influenced by the amplitude-modulated (AM) properties of the signal (i.e., its temporal 

envelope).  To gain a better understanding of the representation of AM stimulus features 

in the normal auditory system, experiments were carried out in psychophysics, 

physiology, and computational modeling, using comparable parametric spaces.  Existing 

AM psychophysical data were supplemented with results from new translations of basic 

audio-frequency psychoacoustic paradigms into the AM-frequency domain to provide a 

wide range of stimulus conditions to test with the physiology and modeling.  A 

reasonable working hypothesis that has emerged because of the qualitative parallels 

between AM perception and physiology is that neurons in the inferior colliculus (IC) are 

physiological implementations of the “effective” signal-processing style modulation 

filters derived from psychophysics.  This testable hypothesis drove much of the 

experimental design and analysis, and several fundamental findings emerged as a result.  

To summarize the most basic results, we found that (1) the system appears to use a 

temporal code for AM at low modulation depths and an averaged or integrated response 

quantification at high depths, (2) temporal adaptation to AM is weak, as measured both 

perceptually and physiologically, and (3) some aspects of AM perception are context-

dependent, a feature that is not present in either the IC responses or the simulated model 

responses.  These findings have direct implications for models of AM processing and 

interpretation of proposed neural coding strategies.  Other potential applications include 

the refinement of devices designed to assist the hearing impaired and the development of 

signal-processing strategies for speech recognition and audio coding systems. 
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CHAPTER 1 

General introduction 
 
1.1 BACKGROUND AND APPROACH 

Naturally occurring sounds vary in magnitude along two dimensions: frequency 
and time.  It is common for the auditory system to first be described as a frequency-
spectrum analyzer, but it is the temporal aspects of hearing that are strikingly different 
from those of the other senses.  And while many of the foundations of psychoacoustics 
and auditory physiology have been built on studies of responses to static tonal 
stimulation, recent work in both fields has turned toward more behaviorally relevant 
sounds, dynamic in frequency, time, or both. 

Two approaches can be used to gain a better understanding of responses to real-
world stimuli in the auditory system.  One tactic is to analyze responses to the sounds that 
are actually encountered in real-world situations, such as human speech or animal 
vocalizations.  The other style is to build up to such complex sounds, by starting with 
more synthetic stimuli which can be described with a manageable parameter space.  Such 
a gradual approach improves the chances of identifying the specific features of sounds 
that underlie the responses of listeners (in psychoacoustics) or neurons (in physiology).  
The experiments described here are examples of the second method: the stimuli used 
have time-varying amplitudes but essentially static frequency spectra.  These amplitude-
modulated (AM) signals represent a middle ground in complexity and practicality 
between pure tones and speech or other natural sounds. 

When discussing temporal cues in sounds, it is necessary to differentiate features 
that change on different time scales.  On a relatively short time scale, a sound’s pressure 
waveform fluctuates about zero; these variations are referred to as fine structure, and are 
determined by the instantaneous (audio, or spectral) frequency of the stimulus.  In 
contrast, a signal’s temporal envelope changes on a longer time scale and is always 
positive; the envelope is a description of the slow variations in overall level that define 
the instantaneous amplitude.  It is useful to describe complex temporal envelopes in the 
modulation- (or envelope-) frequency domain.  Virtually all natural sounds have complex 
audio-frequency domain spectra and complex modulation-frequency domain spectra. 
 
1.2 PERCEPTUAL AM PROCESSING 

Certain parallels have emerged by comparing investigations of processing in the 
audio- and modulation-frequency domains.  One clear example is the tuning, or 
frequency selectivity, that has been observed in both domains.  Perceptual tuning is most 
easily demonstrated in masking experiments, where a noise masker makes detection of a 
signal most difficult when the masker and signal are close in frequency.  Psychophysical 
masked-threshold patterns that clearly indicate tuning have been measured in both the 
audio-frequency and AM-frequency domains (e.g. Wegel and Lane, 1924; Houtgast, 
1989).   

Although perceptual frequency selectivity to both envelope and fine structure has 
become widely accepted in recent years, there is less agreement on the appropriate 
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response quantification of the putative modulation filters.  Perhaps the most fundamental 
question that has been entertained in the literature is whether the perceptually relevant 
decision variable (DV) is averaged or integrated across time, or is computed from local 
features of a limited portion of the temporal envelope representation.  Previous 
psychophysical work has addressed this problem by using different aspects of stimulus 
envelope (or signal-processing “black-box” model responses) to predict behavioral 
thresholds.  Chapter 2 describes another contribution to this field by comparing 
psychophysical masked AM detection thresholds to predicted performance based on a 
battery of DVs.  Some of the tested DVs are based on average (“long-term”) 
representations of the stimulus, and other DVs depend on local temporal features of the 
stimulus envelope.  The AM detection psychophysical paradigms were adapted from 
audio-frequency tasks that were designed to minimize or disrupt the availability of long-
term cues; this strategy allowed for a direct examination of the relative impact of such 
manipulations.  In addition to previously proposed signal-based DVs, the responses of a 
physiological model designed to predict neural responses to envelope fluctuations 
(described in the Appendix) were also quantified and tested in their ability to predict 
behavioral performance.  The neural model’s success in reproducing a specific aspect of 
the psychophysical data (where the signal-based DVs failed) led to a conclusion 
regarding the structure of the effective perceptual envelope-processor.   

The experiments of Ch. 3 are related to those of Ch. 2 in that they were both 
direct translations of basic audio-frequency psychoacoustics into the envelope-frequency 
domain, and computational modeling was used in both chapters to analyze and interpret 
the empirical results.  The psychophysical investigations described in Ch. 3 were geared 
towards understanding the perceptual salience of second-order envelope fluctuations 
(referred to as the “venelope” in the literature) in modulation depth discrimination and 
masked detection tasks.  The results implied a relatively weak contribution of the 
venelope, in that the system did not appear to emphasize transient changes in the 
venelope as it did with the envelope.  Another significant finding from Ch. 3 was the 
observed perceptual “sluggishness” in monaural AM processing, of interest because of its 
potential link between basic AM psychophysics and higher-order perceptual processes 
such as auditory grouping and streaming.  In contrast to the quantitative threshold 
predictions found in Ch. 2, the simulations of Ch. 3 were more qualitative in nature, 
providing intuitive explanations for performance trends measured in the listeners.  At the 
base of all of the modeling was a common assumed model structure, which was 
physiologically motivated but relatively straightforward in terms of its underlying 
assumptions and implementation details.  Details of the model structure and comparisons 
to physiological data are included as an Appendix to this document. 
 
1.3 PHYSIOLOGICAL AM PROCESSING 

A natural question to ask before considering specific features of neural responses 
to envelope fluctuations in the inferior colliculus (IC) is, “Why should behavioral AM 
sensitivity be compared to physiological data from the IC?”  Frankly, one reason that the 
recordings were made in the rabbit IC is purely practical: the physical organization of the 
Dutch-belted rabbit’s skull and brain allows for a straightforward approach to the IC, 
with minimal disruption of surrounding brain areas.  Fortunately, there are many more 
scientifically interesting answers to the question posed above.  The IC is an almost 
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obligatory synapse for ascending auditory information.  As such, the information required 
to explain perception must be present, even in its sub-cortical processing position.  
However, the form that this information takes in the context of AM coding at the level of 
the IC is neither immediately clear nor widely agreed upon. 

Previous work in the area has suggested that the qualitative response properties of 
IC neurons to sinusoidal AM are in some ways drastically different from those of more 
peripheral stations such as the auditory nerve (AN) and cochlear nucleus (CN).  
Specifically, many IC cells exhibit rate-tuning to modulation frequency: these neurons 
only respond strongly after stimulus onset if the envelope patterns occur within a limited 
range of fluctuation rates.  This behavior is not typically seen in AN fibers or CN cells – 
often, the average discharge rate does not vary systematically with modulation frequency 
in most cell types found in these more peripheral locations.  Instead, the temporal 
discharge pattern (synchronization to the envelope period, for instance) changes when the 
modulation frequency is varied.  Central to the IC (i.e. thalamus and primary auditory 
cortex), rate-tuning is also observed, although the best modulation frequencies are usually 
lower than those observed in IC recordings. 

Because of this apparent transition from rate responses that do not depend on 
changes in perceptually-relevant parameters (such as modulation depth and frequency) in 
the periphery to rate responses that are heavily dependent on the same variations in the 
central auditory system, there is a natural tendency to assume that information is being 
transformed into a “rate code,” and that this translation is perhaps complete by the level 
of the IC.  Chapter 4 of this document provides a reminder that these tendencies to relate 
AM perception and average-rate-based neurophysiology are built on foundations of 
speculation.  The missing link in the physiological literature is the fact that a key 
parameter space (modulation depth) has not been explored in a way that allows direct 
comparison to behavioral AM detection and discrimination thresholds.  That crucial gap 
is filled in by the results in Chapter 4. 

If envelope fluctuations are not represented by a pure rate code in the IC, then 
what is a more appropriate response quantification that might allow for a better prediction 
of perceptual results?  Of course, one can imagine any number of post-hoc calculations; 
physiologists have historically preferred several alternatives.  Most of them can be 
defined as representing some aspect of a Fourier analysis of the response.  Perhaps the 
simplest or most intuitive such computation is commonly referred to as synchrony or 
synchronization to the envelope: this metric can be thought of as the relative level of the 
Fourier response component at the signal modulation frequency with respect to the DC 
(average rate) component level.  Synchrony can also (equivalently) be conceptualized 
using circular statistics; if calculated in this context, the reported measure is often called 
vector strength.  In Chapter 4, predicted neural detection thresholds based on changes in 
average rate and synchrony are compared to determine which features of the response are 
correlated with perceptual limitations and abilities. 
 
1.4 CONNECTING PSYCHOPHYSICS AND PHYSIOLOGY 

Relating envelope-processing physiology and psychophysics is the central theme 
of this dissertation.  There are several issues that make direct quantitative comparison of 
existing physiological and psychoacoustical data inherently difficult.  (1) Perceptual 
detection and discrimination abilities and limitations are based on the net response of the 
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entire system; single-cell physiology only provides information about isolated elements 
within the system.  (2) The use of anesthesia in most physiological preparations raises 
questions of differences in attention- and alertness-related processes between behavioral 
and neural responses.  (3) Different parameter variations are often used in the two fields.  
Psychophysicists obtain measures of responses to small changes in a few parameters of 
the signal, while physiologists usually attempt to map out a neuron’s response properties 
over as wide a parameter space as time allows.  (4) Human listeners have provided the 
majority of perceptual data; animal models are used in physiology because of the 
invasiveness of the procedures necessary to collect single-cell data. 

The experiments described here directly address the first three of the four issues 
described above.  (1) Neural responses were collected from a large population of single 
cells in a division of the brain that has been called a “hub” of auditory signal processing.  
Because of the large sample size, we were able to predict the modulation-processing 
performance of the system as a whole by considering the most sensitive responses to 
stimuli that were optimized for each individual cell.  (2) Unwanted effects of anesthesia 
in the physiology were avoided by using an unanesthetized rabbit preparation that allows 
for daily recording sessions for several months.  (3) Parameter variations in the 
physiology were chosen based on the psychophysics.  In both approaches, the key 
parameter was the signal modulation depth, which was varied over comparable ranges in 
the two experimental techniques. 

The fourth concern (human psychophysics versus animal physiology) is not 
addressed here.  The most practical way to deal with the fact that the data from the two 
approaches are from different species would be to obtain behavioral thresholds in the 
animal model.  This is a clear direction for future work.  Another issue worth mentioning 
is that the rabbits were awake but not behaving during the recording sessions, while the 
human listeners were awake and behaving during the listening tasks.  The effects of 
attention on neural responses are likely to increase as the auditory pathway is ascended; 
the data needed to determine the magnitude of the effect in the rabbit IC are lacking, 
mainly due to the practical difficulties associated with recording neural responses in a 
behaving animal.  Despite these limitations, the empirical data presented in this thesis 
allow for the most direct comparisons of envelope perception and neural processing that 
have been provided to date. 
 
1.5 SUMMARY 

This thesis fuses perceptual and physiological experiments with computational 
modeling in an integrated effort to better understand the mechanisms of auditory 
temporal envelope perception.  It is the interdisciplinary nature of the approach that leads 
to the key results, which suggest a new set of constraints for models of modulation 
processing and provide insight into the fundamental coding strategies used by the 
auditory system to represent AM.   
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CHAPTER 2 
 
Cues for masked amplitude-modulation detection 
 
ABSTRACT 
 
The ability of psychoacoustic models to predict listeners’ performance depends on two 
key stages: pre-processing and the generation of a decision variable.  The goal of the 
current study was to determine the perceptually relevant decision variables in masked 
amplitude-modulation detection tasks in which the modulation depth of the masker was 
systematically varied.  Potential cues were made unreliable by roving the overall 
modulation depth from trial to trial or were reduced in salience by equalizing the 
envelope energy of the standard and target after the signal was added.  Listeners’ 
performance was significantly degraded in both paradigms compared to the baseline 
(fixed-level modulation masker) condition, which was similar to those used in previous 
studies of masking in the envelope-frequency domain.  Although this observation was 
broadly consistent with a simple long-term envelope power-spectrum model, there were 
several aspects of the data that were not.  For example, the steep rate of change in 
threshold with masker depth and the fact that an optimal amount of envelope noise could 
enhance performance were not predicted by decision variables calculated directly from 
the stimulus envelope.  A physiologically based processing model suggested a realistic 
nonlinear mechanism that could give rise to these second-order features of the data.   
Note: This chapter was submitted to the J. Acoust. Soc. Am as a paper with the same title, 
by P. C. Nelson and L. H. Carney. 
 
2.1 INTRODUCTION 
 Behaviorally relevant acoustic stimuli such as speech cannot be defined solely by 
their long-term audio-frequency composition.  Temporal variations in a signal’s spectrum 
and interactions between individual spectral components result in amplitude-modulated 
(AM) sounds.  Viemeister (1979) used concepts from linear systems analysis as a framework 
to determine the effective temporal modulation transfer function (MTF) of the auditory 
system by measuring the just-noticeable modulation depth of a sinusoidally amplitude-
modulated (SAM) noise for a range of modulation frequencies (fm).  Viemeister’s approach 
has proven highly valuable as a first-order approximation of the system’s (low-pass) 
properties and as a starting point for many other studies.  For example, the modulation filter-
bank model structure (e.g. Dau et al., 1997a), which assumes that the envelope of the output 
of each audio-frequency channel passes through a bank of band-pass filters (broadly) tuned to 
fm, is able to account for several perceptual findings that a low-pass pre-processor cannot 
explain (i.e. Dau et al. 1997a,b; Dau et al., 1999; Ewert and Dau, 2000). 
 To predict psychophysical thresholds, the output of any model must be concisely 
quantified with some decision variable (DV).  And while the pre-processing model structures 
are fundamentally different for the two models mentioned above, both the Viemeister (1979) 
model and the most recent implementations of the Dau model (the envelope power-spectrum 
model (EPSM), Ewert and Dau, 2000; Ewert et al., 2002; Ewert and Dau, 2004) assume an 
average root-mean-square (rms) DV at the output of their envelope-filtering process.  This 
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assumption has been shown to be reasonable for many types of AM-detection tasks, but it is 
not clear whether decision statistics that rely on local temporal envelope features (instead of 
average or long-term features) would be equally successful as quantifications of the model 
outputs.    
 The broad goal of the current set of experiments was to further elucidate which 
features of AM stimuli are perceptually salient and used by listeners in modulation detection 
tasks.  To accomplish this, empirical data are presented that provide critical tests for various 
DVs.  We have borrowed paradigms from the audio-frequency tone-in-noise (TIN) detection 
literature that highlight shortcomings of long-term decision statistics in the spectral-
frequency domain (roving-level and energy-equalized TIN detection), and translated them 
into the modulation-frequency domain.  Because the stimuli had envelope-frequency 
bandwidths smaller than the presumed modulation filter widths, the internal representation of 
the stimulus envelope was similar for the low-pass (Viemeister) model and the band-pass 
(Dau) model.  An alternative model, developed to predict responses of inferior colliculus (IC) 
neurons to AM signals (Nelson and Carney, 2004), was tested alongside the previously 
proposed psychophysical (signal-processing) models.  The working hypothesis was that a 
physiologically motivated model structure would shape the internal representation of the 
stimulus more like the real system than “effective” signal-processing models.   

There are two reasons to consider a masked AM-detection task (instead of pure, or 
unmasked, AM detection) to test our hypotheses.  First, several reasonable techniques can 
be used to adjust a given model’s unmasked detection abilities, which makes it difficult 
to dismiss one competing decision statistic over another.  A more interesting reason is 
that real-world sounds have complex modulation spectra, so it is useful to consider 
envelope detection abilities and limitations for stimuli other than pure sinusoidal AM.  
Previous studies of masked-AM detection have focused on the effects of varying the 
frequencies of the signal and/or masker modulation (Houtgast, 1989; Bacon and 
Grantham, 1989; Strickland and Viemeister, 1996; Dau et al. 1997a; Ewert and Dau, 
2000; Ewert et al., 2002).  Here, masker level (or masker modulation depth) was the only 
systematically manipulated stimulus dimension.  Predicted signal-detection thresholds 
based on a battery of potentially relevant DVs were compared to the masked thresholds 
measured psychophysically.  Because several decision devices predicted statistically 
similar thresholds, a more detailed analysis of the relationships between DVs and listener 
responses on a trial-by-trial basis was also carried out. 

A subset of the potential perceptually relevant decision devices investigated in the 
present study can be introduced in the context of previous work.  Perhaps the most 
influential and straightforward DV assumed in previous AM-coding work is the long-
term rms energy measured at the output of some envelope-filtering process.  Such a 
statistic can explain the shape of the temporal modulation transfer function (with low-
pass pre-processing: Viemeister, 1979; Strickland and Viemeister, 1996) and the 
envelope-frequency selectivity observed in experiments measuring sinusoidal AM-
detection thresholds in the presence of a narrowband-noise masker modulation applied to 
the same carrier (with band-pass pre-processing: Ewert and Dau, 2000; Ewert et al., 
2002).  Moore and Sek (2000) measured detection thresholds for stimuli with three AM-
frequency components for three different phase configurations, and found no dependence 
of thresholds on the components’ relative phases.  This finding is also consistent with 
predictions of an average (rms) envelope statistic.  Note that any local temporal structure 
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present in the stimulus (or its internal representation) is discarded with an average (rms) 
metric. 

Strickland and Viemeister (1996) concluded that the ratio of the maximum value to 
the minimum value of the envelope (max/min) was the best predictor of listeners’ 
thresholds in a tone-on-tone modulation masking experiment.  In contrast to the rms 
statistic, which averages over the entire temporal waveform, max/min makes decisions 
based on only two points in the envelope representation.  Crest factor (ratio of maximum 
envelope value to the envelope rms) represents a compromise in some sense: a single 
value of the waveform is normalized by an averaged value.  Lorenzi et al. (1999) 
accounted for performance in a (supra-threshold) modulation component phase 
discrimination task by basing decisions on the crest factor of a low-pass filtered version 
of the envelope of their stimuli.   DVs based on the higher-order moments of envelope 
amplitude distributions have also been tested in various envelope-processing tasks (i.e. 
skewness: Lorenzi et al., 1999; kurtosis: Strickland and Viemeister, 1996).   

Another aspect of a signal with a complex modulation spectrum is its venelope, or 
2nd-order envelope (Shofner et al., 1996; Ewert et al., 2002; Lorenzi et al. 2001a, b).  
Venelope cues could potentially be used in modulation masking experiments, especially 
in conditions with tonal maskers and noise signals (Ewert et al., 2002).  This line of 
reasoning parallels results from audio-frequency tone and noise masking experiments in 
which envelope cues have been shown to have various effects on detection performance, 
depending on the masker-signal configuration (i.e. the asymmetry of masking; see 
Derleth and Dau, 2000).  It is reasonable to hypothesize that venelope fluctuations may 
also provide a detection cue for conditions with sinusoidal signals and random maskers 
(as measured in the present study), especially when first-order envelope cues are made 
unreliable or completely removed.  

As an alternative to signal-processing-based DVs, we also made threshold 
predictions based on a physiologically motivated model for neural responses to AM tones 
(Nelson and Carney, 2004).  The average discharge rate of model inferior colliculus cells 
was tested as a physiologically realistic DV, alongside several of the signal statistics 
described above.  In the model cells, discharge rate increases monotonically with signal 
modulation depth.  Interactions between strong inhibitory and weaker excitatory inputs 
result in a ‘hard’ threshold modulation depth that limits the model’s detection 
performance even in the absence of internal or external (stimulus-induced) noise sources.  
Model-cell rate MTFs are band-pass, with Q-values (measured at the half-maximal-rate 
points) of approximately 1.  This broad tuning is realized in the physiological model by 
assuming different time courses in the effective low-pass filtering properties of inhibition 
and excitation.  The Q-values are consistent with the signal-processing modulation filters 
derived recently by Dau and co-workers to predict several aspects of psychophysical 
envelope coding (Dau et al., 1997a; Ewert and Dau, 2000; Ewert et al., 2002).  For the 
band-limited stimuli used in the present study, the filtering properties of the IC model 
cells have little effect on shaping the internal representation of the envelope.  Again, the 
focus is on understanding the perceptually salient quantifications of the internally 
represented envelope (as opposed to testing the validity of a band-pass modulation filter 
vs. a ‘smoothing’ or low-pass modulation filter).      
 Independent of the chosen DV, simulations of psychophysical experiments must 
include some mechanism to limit model performance in the detection and discrimination 
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of deterministic stimuli (without external noise).  The most common way to do this is to 
add some amount of internal noise, either to the internal representation, or to the final 
value of the decision statistic in each interval.  Ewert and Dau (2004) have provided some 
insight into the appropriate statistical description of the internal noise relevant to 
envelope-processing tasks.  They measured AM depth-discrimination thresholds for a 
wide range of standard depths, and found the Weber fraction for sinusoidal carriers to be 
independent of standard depth, as long as the standard was well above threshold.  This 
can be accounted for in a model by assuming a constant ratio between the DVs in the 
target and standard interval at threshold, or by including an internal noise whose variance 
is proportional to the value of the assumed decision statistic.  For low standard depths 
(i.e. –28 and –23 dB in 20 log m, where m is linear modulation depth), the situation was 
different.  In this range, a constant increase in modulation depth was required to reach 
discrimination threshold (independent of the standard depth).  This can be thought of as 
arising from a second type of internal noise process – one with a fixed variance, which 
dominates threshold measurements at low modulation depths.  We will address Ewert and 
Dau’s (2004) findings, but we will also consider model predictions with a fixed-variance 
noise only, as a “best-case scenario” for the various decision statistics (i.e. if a decision 
statistic predicts higher thresholds than the listeners’ performance with the fixed-variance 
noise alone, it would certainly not be able to account for thresholds if the constant-ratio 
noise, or Weber-fraction noise, were also included).  
 Two specific paradigms that have been used in the audio-frequency domain to test 
the power spectrum model of masking were translated into the envelope-frequency 
domain in the current study: roving-level and equal-energy TIN detection.  A within-trial 
rove in overall energy renders long-term rms cues unreliable, and models based on 
energy cues predict higher thresholds in a roving-level situation.  The absolute amount of 
increase over fixed-level conditions depends on the rove range (Green, 1983).  Kidd et al. 
(1989) found that roving the overall level by 32 dB in an audio-frequency TIN detection 
task did not have a significant effect on thresholds (for noise bandwidths greater than 
one-third of the psychophysically-measured auditory-filter bandwidth).  In another 
paradigm that challenges energy-based audio-frequency models of masking, Richards and 
Nekrich (1993) measured the detectability of tones in narrow bands of masking noise 
after the energy in the two observation intervals was equalized.  Pure long-term energy 
models predict that such a task would be impossible (for sub-critical bandwidths), but 
listeners performed the task reliably.  Richards and Nekrich (1993) attributed their results 
to differences in the envelopes of the noise-alone and tone-plus-noise stimuli.   

With this body of previous work in mind, we present here psychophysical masked-
AM detection data and predicted thresholds based on a diverse set of decision statistics.  
Measured and simulated thresholds in roving-level and equal-energy conditions are 
compared to those from a baseline fixed-level masker condition, over a wide range of 
masker modulation depths.   
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2.2 PSYCHOPHYSICAL EXPERIMENT 
 
2.2.1 Methods 
2.2.1.1 Subjects and procedure 
 Four listeners with normal hearing participated in the experiment.  Pure-tone 
thresholds for all of the subjects were less than 15 dB HL at octave frequencies between 
500 Hz and 8 kHz.  The authors served as two of the subjects (S2 and S3) and had 
experience in psychoacoustic measurements.  The remaining two listeners had no 
previous experience.  A training period, typically lasting three or more 1.5-hour sessions, 
was provided in which masked and absolute modulation thresholds were estimated using 
procedures similar to those described below.  Further training was provided for the 
roving-level and equal-envelope-energy (EEE) conditions (see below).  Data collection 
began when thresholds for a subject stabilized; there were typically no learning effects 
observed after 4-5 tracks on a given condition.  The listeners became familiar with the 
different stimulus conditions, and were aware of the particular condition prior to the start 
of a track.   
 Masked SAM detection thresholds were obtained using an adaptive two-interval, 
two-alternative forced-choice (2I, 2AFC) procedure with a two-down, one-up stepping 
rule that estimated the modulation depth necessary for 70.7% correct detection (Levitt, 
1971).  This combination of parameters resulted in a threshold estimate that corresponded 
to a d’ of about 0.8.  In the randomly chosen target interval, the signal modulation was 
imposed along with a masker modulation on the tone carrier.  The standard interval 
contained only the masker modulation.  The signal modulation depth m at the beginning 
of a track was set well above threshold, and was varied initially by 3-dB steps (in 20 log 
m), and in steps of 1.5 dB after the first two reversals.  The tracking procedure was run 
until 16 reversals were obtained; threshold for a given track was taken as the mean 
modulation depth of the last ten reversals.  For each stimulus condition, thresholds 
presented here are the mean of four such estimates.  Only tracks in which the standard 
deviation of the last 10 reversals was less than 3 dB were included in further analysis.  
Across-subject average data are presented as the mean and standard deviation of the 16 
threshold estimates (4 listeners x 4 tracks per condition). 
2.2.1.2 Apparatus and Stimuli 
 Subjects listened diotically through calibrated Sennheiser HD 580 headphones 
while seated in a sound-treated booth.  Stimuli were digitally generated at a sampling rate 
of 48.828 kHz and converted to analog signals via the TDT System III two-channel real-
time processor (RP2.1) digital-to-analog converter and the TDT System III headphone 
buffer (HB7), with its gain set to –27 dB (to eliminate background noise).  Signals were 
generated and presented with visual feedback using MATLAB.  Noise waveforms were 
saved for both intervals on every trial (by recording random-number-generator seeds) so 
that the exact stimuli could be reconstructed for post hoc analysis (see Modeling 
Methods). 
 The two intervals were each 600 ms in duration including 50-ms cos2 ramps, and 
were presented with a 500-ms inter-stimulus interval.  Both the sinusoidal signal (always 
in sine phase) and the narrow-band Gaussian-noise masker modulation were applied to 
the envelope of a 2800-Hz tone carrier for the entire duration of the stimulus.  The signal 
frequency was 64 Hz; the masker was centered on the signal frequency and had a 
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bandwidth of 32 Hz.  These parameters were chosen to satisfy several specific 
constraints.  First, the modulation frequencies were low enough to avoid the introduction 
of audio-frequency spectral resolution cues that arise when the sidebands generated by 
modulation are remote from the carrier frequency component.  In addition, the bandwidth 
of the masker was wide enough to allow for the slower 2nd-order (venelope) fluctuations 
to fall within a range that could potentially be detected in a 600-ms duration signal (the 
venelope energy was concentrated around 10 Hz).  The AM signal and masker 
parameters were also influenced by modeling considerations, as described below. 

Two statistically independent realizations of the masker were generated for the 
standard and target intervals.  An additive approach, as opposed to the multiplicative one 
used in several related studies (Ewert and Dau, 2000; Ewert et al., 2002; Houtgast, 1989), 
was used to combine the signal and masker.  This allowed for more careful control of the 
envelope-frequency domain magnitude spectrum (i.e. addition of time-domain 
waveforms results in the addition of their frequency-domain spectra, whereas 
multiplication of time waveforms is equivalent to a convolution of their frequency 
spectra).  The equation for the stimuli in both intervals is: 

)]}()2sin(1)[2{sin()( tMtfmtfcts mc ++= ππ  , 
where fc is the carrier frequency, m is the stimulus modulation depth (zero in the standard 
interval), fm is the signal modulation frequency, and M(t) is the masker waveform (zero 
when measuring absolute thresholds).  Masker level was defined in terms of the root-
mean-square (rms) of M(t).  The compensation factor c was included so the overall power 
in both intervals was equivalent to that of a 65-dB SPL pure tone.  Every stimulus was 
checked for over-modulation caused by the stochastic nature of the narrowband maskers; 
no envelope with a modulation index greater than one was presented to the listeners. 
2.2.1.3 Conditions 
 The acoustic stimuli used in this experiment were similar to those described in 
Ewert et al. (2002).  Different parameter variations, as well as minor procedural 
modifications distinguish the two studies.  Ewert et al. (2002) focused on frequency 
effects (of both signal and masker).  Here, we explicitly considered the effect of masker 
level (i.e. the masker rms modulation depth) and the consequences of systematically 
controlling the availability of envelope-detection cues.  Thresholds for three conditions 
were measured: (1) SAM detection with a fixed-level modulation masker, (2) SAM 
detection with a random 10-dB within-trial rove in masker level, and (3) SAM detection 
with EEE in the standard and target intervals (after the signal was added).  The roving-
level condition effectively made envelope energy an unreliable cue; the EEE condition 
strongly attenuated first-order envelope energy differences as a cue for detection.  
Thresholds from the fixed-level condition provided a baseline for evaluating the 
consequences of these two manipulations.  Note that the fixed-level condition was 
comparable to those of previous studies (i.e. Ewert et al., 2002). 
 
2.2.2 Results & Discussion 
2.2.2.1 Fixed-level modulation masker 
 General trends in the results were similar across the four listeners, but individual 
sensitivity varied considerably in the masked-AM detection task.  Both individual (upper 
panel) and mean thresholds (lower panel) are shown in Fig. 2-1 for the detection of a 64-
Hz sinusoidal modulation in the presence of an additional masker modulation.  The 
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masker had a bandwidth of 32 Hz, and was always centered on the signal frequency.  
Signal thresholds are shown for a 10-dB range of masker modulation depths. 
 Thresholds increased monotonically as the masker level increased over this range 
of masker depths.  Listener S4 was less sensitive than the other three subjects, while the 
thresholds of subject S3 increased at a rate less than 1 dB/dB.  Mean thresholds were 1-2 
dB (20 log m) lower than the masker modulation depth (dB rms), and increased with a 
slope of 1 dB/dB.  These results are consistent with those of Houtgast (1989), who 
measured detection thresholds for an 8-Hz sinusoidal signal modulation in the presence 
of a 2.8-Hz bandwidth masker modulation.  In contrast with the present study, Houtgast 
(1989) combined the signal and masker multiplicatively and imposed them on a noise 
carrier.   

   
FIG 2-1. Individual (top) and mean (bottom) masked-SAM detection sensitivity.  
Thresholds at these supra-threshold masker depths increased at a rate of about 1 dB (20 
log m) per 1 dB (masker rms); the dashed lines in the two panels serve as a reference with 
a 1 dB / dB slope.  Signal fm = 64 Hz; masker bandwidth = 32 Hz, centered on signal 
frequency; SPL = 65 dB; carrier fc = 2800 Hz; duration = 600 ms.  Standard deviations of 
individual listener threshold estimates were between 2 and 4 dB (error bars omitted for 
clarity). 
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 Somewhat less intuitive are the patterns of thresholds measured for lower-level 
maskers.  In efforts to map out the entire range of masker modulation depths that 
produced masking while still avoiding over-modulation, for the purpose of the roving-
level experiment (below), it became clear that some of the listeners’ masked thresholds 
were lower than their pure AM-detection thresholds.  This ‘facilitation’ is illustrated in 
Fig. 2-2 in the form of non-monotonic threshold vs. masker level functions for two of the 
four listeners (S2 and S3).  The thresholds for the three right-most points in each function 
are re-plotted from Fig. 2-1.  Unmasked detection thresholds ranged from –25 dB to –30 
dB (masker level = –99 dB rms; left-most point on each plot), and were consistent with 
previously-reported pure-tone SAM detection thresholds for comparable fc, fm, and SPL 
(i.e. Kohlrausch et al., 2000).  The external variability of the noise maskers began to 
influence thresholds between –40 dB and –30 dB rms.  The presence of the region of 
facilitation was not related to absolute sensitivity to AM; the two subjects that exhibited 
the clearest facilitation had the lowest (S2) and highest (S3) thresholds in unmasked AM 
detection.  In addition, the masker level that resulted in the most facilitation was the same 
for both listeners (–28 dB rms).   
 

                  
FIG 2-2. Masked-detection thresholds for a wide range of masker modulation depths.  
Two of the listeners (S2 and S3) exhibited a non-monotonic dependence of sensitivity on 
masker level; their thresholds were lower for a masker level of –28 dB than in the 
unmasked condition.  The three right-most points in each panel are re-plotted from Fig. 2-
1; these masker levels consistently caused ‘positive’ masking without causing over-
modulation.   
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 Strickland and Viemeister (1996) and Bacon and Grantham (1989) reported 
facilitation in some of their tone-on-tone modulation masking conditions, when the 
frequency of the masker was well below that of the signal.  They accounted for this type 
of negative masking by assuming that their listeners were able to attend to the valleys of 
the masker when its fluctuations were slow enough, resulting in a temporally localized 
larger effective modulation depth.  The facilitation illustrated in Fig. 2-2 is fundamentally 
different: the masker and signal occupy the same frequency region, and inherent 
fluctuations in the narrowband masker made the timing of its valleys unpredictable to our 
listeners.  Also, the negative masking effects in previous studies increased as the masker 
modulation depth increased; the effect observed in the current study is only measurable at 
very low masker depths (near or even below detection thresholds).  Potential mechanisms 
underlying on-frequency, low-level noise-masker facilitation will be evaluated in the 
Modeling section below. 
2.2.2.2 Roving-level modulation masker 
 The effect of introducing a random 10-dB within-trial rove in masker level on 
listeners’ thresholds is shown in Fig. 2-3.  Because the masker modulation depth was 
different in every interval, it was necessary to track on the level of the signal with respect 
to the level of the noise (i.e. the difference between the two in dB).  Detection thresholds 
are plotted for a fixed-level (–18 dB rms) noise masker (filled bars) and for the roving 
level (uniformly distributed from –23 to –13 dB rms) noise masker (open bars).  
Individual and across-subject average thresholds are included in the figure. 

               
FIG 2-3. Comparison of fixed-level thresholds at a masker depth of –18 dB (closed bars) 
and roving-level thresholds, where the masker depth was randomly chosen from a 
uniformly-distributed 10-dB range centered on –18 dB (open bars).  Asterisks indicate 
cases where the difference between the fixed- and roving-level thresholds was significant 
(* p < 0.02; ** p < 0.0001). 
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 In general, thresholds in the roving-level condition were 3-5 dB higher than those 
in the fixed-level case.  The effect was significant (t-test, p<0.02) for three of the four 
individual listeners, and highly significant (p<0.0001) when the across-subject mean and 
variance was considered.  The 10-dB rove in masker level increased the mean thresholds 
by 4 dB.  Unfortunately, the small dynamic range of AM maskers precluded the use of 
larger rove ranges in the present study (i.e. the masker must be intense enough to cause 
masking, but not so strong as to result in over-modulation, especially in the signal 
interval).  Despite the limitations, the significant effect of this relatively small rove range 
contrasts with results from audio-frequency TIN detection experiments, where even a 32-
dB rove in masker level did not significantly affect listeners’ thresholds (except at the 
narrowest bandwidth tested, Kidd et al., 1989).  The convincing results of Kidd et al. 
(1989) provide a critical test that challenges the power spectrum model of masking in the 
audio-frequency domain.  Qualitatively, models which assume the long-term energy of 
the (AC-coupled) envelope as the perceptually relevant quantity (e.g. Viemeister, 1979; 
Ewert and Dau 2002) are not seriously challenged by the current results obtained with the 
roving-level modulation masker.  A more careful analysis of this general statement is 
provided in the Modeling section of this paper.  
2.2.2.3 Equalized-envelope-energy modulation masker 
 As an alternative approach to test energy-based models, (long-term) first-order 
envelope cues were removed by forcing the rms modulation depth of the standard and 
target intervals to be the same, regardless of the level of the signal (in 20 log m).  The 
task was the same as in the fixed-level and roving-level condition: listeners chose the 
interval containing the sinusoidal signal modulation.  Pure long-term energy decision 
statistics did not provide any cues for detection in this paradigm (as long as the masker 
bandwidth was within the pass-band of the envelope-filtering process).  Over-modulation 
was not an issue in the EEE condition: the average depth in both standard and target 
intervals was determined by the depth of the masker-alone modulation.  Qualitatively, the 
signal-interval envelope fluctuations became more sinusoidal as m increased (but the 
overall depth was the same in both the standard and target envelopes).   
 Example waveforms for a –13 dB rms standard depth are illustrated in Fig. 2-4(a) 
along with individual listener and mean thresholds for a 10-dB range of masker-alone 
modulation depths [Fig. 2-4(b)].  Note that absolute thresholds are not plotted in Fig. 2-4; 
instead, increases in threshold over the corresponding fixed-level masker condition are 
shown.  The key result illustrated in Fig. 2-4 is that the listeners were able to perform the 
task, although measured thresholds were about 10 dB worse on average than in the fixed-
level condition (in which the overall rms modulation depth was allowed to naturally vary 
across intervals).  Perhaps the most striking aspect of the individual thresholds is the high 
variability both within and across listeners (note the expanded scale of the y-axis).  
Anecdotally, the task became considerably more difficult in the EEE condition, and 
listeners reported the use of a very different strategy compared to that employed in the 
fixed-level case.  The following sections quantitatively explore potential cues that could 
explain thresholds in all three masker configurations (fixed-level, roving-level, and EEE). 



 

 

15

          
FIG 2-4. Effect of equalizing the overall modulation depth in the two observation 
intervals after the signal was added.  a) Example waveforms: Masker depth = –13 dB 
rms; signal added to target interval masker at a +20 dB SNR.  b) Increases in thresholds 
over comparable fixed-level conditions are plotted (absolute thresholds are shown along 
with model predictions in Fig. 2-7).  Individual listener standard deviations are plotted 
above the corresponding means (b, top panel). 
 
 
2.3 MODELING 
 
2.3.1 Methods  
2.3.1.1 Simulating threshold runs 
 Masked-detection thresholds were determined for each assumed DV using the 
same procedure, stimuli, and conditions as described in the psychophysical methods.  The 
mean and standard deviation of 16 estimates were obtained (for comparison to the 4 
subjects x 4 repetitions measured psychophysically).  Only the steady-state portion of the 
envelope (the central 500 ms) was used to compute decision statistics. 
 Several DVs were calculated from the stimuli’s Hilbert envelopes and used in 
simulated tracking procedures:  (1) root-mean-square (rms) AC-coupled envelope energy, 
(2) average local modulation depth, (3) average rate of model IC cell, (4) crest factor, (5) 
maximum local modulation depth, and (6) max/min ratio.  The first three DVs can be 
considered ‘long-term’, as they are based on an integrated representation of the entire 



 

 

16

steady-state envelope.  The remaining three statistics assume that short-term fluctuations 
are salient perceptual cues in the masked modulation-detection task.   
 DVs based on local modulation depths (2 and 5 in the list above) were calculated 
from a running ratio of the ac to dc envelope energy in each cycle of the signal 
modulation.  More specifically, the max/min ratio was computed for every cycle of the 
steady-state envelope, and divided by the mean value of the envelope for that same time 
period.  From the resulting 32 points (500 ms of a 64-Hz signal), an average value was 
computed (in the case of the average local depth DV), or the maximum value was 
extracted (for the maximum local depth DV). 
 Because the envelope-frequency spectra of the stimuli were always within the 
pass-band of a 64-Hz modulation band-pass filter and a modulation low-pass filter with a 
cutoff frequency of 150 Hz, there was no filtering applied to the Hilbert envelopes before 
determining the signal-based decision statistics.  In this respect, predictions based on the 
model IC cell average rate are different from the others: rate MTFs of simulated IC 
neurons are band-pass.  Again, this difference has very limited consequence for the 
stimuli presented in this study (but see EEE predictions).  Only the cell tuned to the 
signal frequency (64 Hz) was considered.  Implementation details for the physiological 
model were the same as in Nelson and Carney (2004), except the convolution of alpha 
functions and instantaneous rate functions was carried out in the frequency domain for 
computational reasons (see website for code: web.syr.edu/~lacarney).  Model parameters 
were matched to those describing the cell in Figs. 8(c), 9, 10, and 11 in Nelson and 
Carney (2004), except the auditory-nerve (AN) characteristic frequency (CF) was set to 
the stimulus carrier frequency (fc=2800 Hz), and the strength of inhibition (re: excitation) 
at the level of the IC model cells (SIC,INH) was set to 1.1.  Also, the stimulus presentation 
level was set to 24 dB SPL for simulations with the model IC cells.  This SPL resulted in 
near-maximal synchrony at the level of model AN fibers (compared to responses at other 
SPLs), which translates into higher rates in model IC cell responses.  Similar responses 
would be expected from off-CF AN fibers for stimuli presented at higher SPLs [e.g. Joris 
and Yin (1992), their Fig. 8(c)].  The decision to use low-SPL stimuli as inputs to the 
physiological model carries with it an assumption that the central nervous system is able 
to weight responses from peripheral channels that are least affected by saturation and/or 
compression.  Such assumptions are at least indirectly supported by psychophysical work 
that shows improvements in modulation detection performance as the overall SPL is 
increased (i.e. Kohlrausch et. al., 2000) despite the fact that saturation and compression 
are likely to be affecting near-CF responses. 
 Since the stimuli were deterministic, it was necessary to limit model performance 
in conditions without a masker (pure AM detection, or a masker level of –99 dB) by 
adding a Gaussian random variable to the final values of the decision statistics in each 
interval.  The variance of this noise was adjusted to yield pure SAM detection thresholds 
of about –27 dB, and was held constant for all of the experimental conditions once it was 
determined. 
2.3.1.2 Ruling out some potential cues 
 Several DVs were unable to predict trends or absolute thresholds comparable to 
the listeners in any of the masked-AM detection conditions (except at the lowest masker 
depths, where the task is essentially pure AM detection).  Because of their poor 
performance in general, simulations based on skewness (the 3rd central moment of the 
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envelope amplitude distribution), kurtosis (the 4th moment), and venelope fluctuations are 
not included in the figures presented here.  Predicted thresholds based on these three DVs 
were too high, often immeasurable, and also highly variable across the 16 estimates.  The 
skewness of the point-by-point envelope distribution did not reliably change when the 
sinusoidal signal was added for any of the noise levels in this task.  Values of venelope 
standard deviation and kurtosis consistently decreased when the tone was added, but only 
at modulation depths much higher than the listeners’ thresholds.  

 Another decision statistic that was unable to predict performance in the current set 
of experiments was one based on a quantification of the instantaneous frequency (IF) of 
the envelope time waveform.  A noise-alone modulated carrier would be expected to have 
higher variability in its envelope IF than that of a tone-plus-noise-modulated carrier.  The 
bandwidth of the modulation maskers (32 Hz), along with external stimulus variability 
and the use of relatively low modulation depths, made envelope IF an unreliable cue for 
SAM detection in the present study.  Tracking simulations based on a target-interval drop 
in envelope IF variance resulted in predicted thresholds that were highly variable across 
tracks and higher than the listeners’ thresholds.   
 Several recent studies have used a cross-correlation calculation between a 
template response derived at some supra-threshold signal level and the “current” stimulus 
representation as a method to quantify model responses and predict psychophysical 
thresholds (i.e. Dau et al., 1997a,b; Ewert and Dau, 2004).  This technique is optimal in 
the sense that the signal is assumed to be known exactly, both in terms of its magnitude 
and phase, and has been shown to reasonably predict performance in a wide variety of 
psychoacoustical experiments, including modulation detection and modulation masking 
(Dau et al., 1997a,b; Dau et al., 1999).  Accounting for performance with such a strategy 
comes at the expense of being able to identify the specific perceptually relevant features 
of the stimulus or response.  As such, a correlation-based DV is fundamentally different 
from the other DVs considered in this study.  It is interesting to point out that a template-
based approach predicts no effect of masker-depth-roving or energy-equalization 
(simulations not shown).  Furthermore, the templates for all three masker conditions 
(averaged over many noise tokens) are essentially identical: the sinusoidal signal is the 
only portion of the stimulus that remains after averaging many repetitions of the signal-
plus-noise waveform.  This aspect of the cross-correlation model contrasts with the 
tracking simulations and qualitative listener comments that all point to the use of a 
different cue in the EEE conditions as compared to the fixed-level and roving-level 
masker conditions. 
2.3.1.3 Trial-by-trial response analysis: decision-variable-reconstructed psychometric 
functions  
 The ability of a given decision statistic to track on realistic detection thresholds is 
necessary but not sufficient as a requirement for concluding that listeners are using the 
cue on a trial-by-trial basis.  To further test each potential cue, several key conditions 
were analyzed by comparing the values of different DVs that were derived from the exact 
stimuli presented to the listeners during the tracking procedure.  The first step in this 
analysis (which required no additional time of the listeners) was to save the standard and 
target interval waveforms as the listeners performed the 2I,2AFC task (in practice, only 
the MATLAB random number generator seeds were saved).  To re-create the stimuli 
presented during the track, the only other variables needed were the modulation depths of 
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the signal and masker in both intervals, and the masker-level configuration (i.e. fixed, 
roved, or equal-energy). 
 The logic behind the decision-variable-reconstructed psychometric (DVRP) 
functions was as follows: if listeners were using the assumed DV as a primary cue, then 
their performance should have systematically depended on the magnitude of the 
difference between the DVs calculated from the two intervals.  If there was no difference, 
performance should have been at chance; for big differences, performance should have 
been near 100% correct.  When percent correct was plotted as a function of the difference 
in DVs (target interval DV – standard interval DV), two shapes of the DVRP function 
were possible if the DV was salient and being consistently used by the listeners: 
monotonically increasing with high values of percent correct at large positive differences, 
and monotonically decreasing with the best performance when the difference between the 
target and standard DV was negative (i.e. the presence of the tone modulation was 
consistently signaled by a lower value of the DV).  In general, the sign of the slope of the 
function indicated whether the signal interval corresponded to the higher or lower value 
of the DV. 
 Three representative masker conditions were analyzed with DVRP functions: (1) 
fixed-level masker (–18 dB rms), (2) roving-level masker (chosen from a uniform 
distribution from –23 dB to –13 dB rms), and (3) EEE masker (masker-alone depth of –
18 dB rms).  To generate each function, responses were combined across the four 
listeners and four tracks per condition.  This resulted in approximately 80 observations 
per point in each function [16 tracks x ~50 trials per track / 10 points (bins) per function].  
The spacing of consecutive points was not fixed; instead, a fixed number of responses 
were placed into unevenly spaced bins.  There was no internal noise introduced to 
construct the DVRP functions; external stimulus variability was the only random factor 
included.   
 
2.3.2 Results and Discussion 
2.3.2.1 Fixed-level modulation masker 
 Predictions for each of the decision statistics along with the average listener 
thresholds for the fixed-level masker condition are shown in Fig. 2-5.  The solid 
horizontal line in each panel indicates the listeners’ mean threshold with no masker.  
Dashed lines without symbols in Fig. 2-5 show corresponding unmasked detection 
performance for each tested cue, which was determined in the simulations by a fixed-
variance noise added to the DVs.   

First, consider the simulated thresholds in the left column of Fig. 2-5.  These DVs 
(envelope rms, average local modulation depth, and IC cell average rate) make up the 
subset of the ‘long-term’ statistics that predict performance broadly consistent with that 
of the listeners.  However, each of them has shortcomings, even in this straightforward 
fixed-masker-level task (in which no detection cues have been manipulated).  Average 
local depth and rms thresholds were almost identical (this is also true for the roving-level 
and equal-energy conditions), and suffered the same inconsistencies with the data.  
Specifically, the external variability of the stimulus caused increases in threshold at 
masker depths considerably lower than in the data.  As a result, predicted thresholds 
based on envelope rms and average local depth were higher than the listeners’ thresholds 
in the observed ‘dip’ around -30 dB rms.  Because the slope of the function was lower in 



 

 

19

the rms and average depth predictions than it was in the data, the curves re-converged at 
the highest masker levels tested. 
 

 
FIG 2-5. Model thresholds from simulated tracks based on six DVs (o), along with the 
listeners’ fixed-level data from Fig. 2-2 (solid lines, no symbols).  Unmasked (pure) SAM 
detection thresholds are shown with the solid horizontal lines.  Unmasked model 
thresholds (thick dashed lines) were set by adding a fixed-variance internal noise to the 
DV in each interval.  Predictions based on long-term DVs are shown in the left column; 
local temporal features were included in the simulations summarized in the right column. 
 
 Thresholds based on the average discharge rate of a model IC cell are shown in 
the bottom row of the left column in Fig. 2-5.  This threshold-masker level function 
distinguishes itself from any of the signal-based DV predictions in two important 
respects.  First, the IC model correctly predicted a non-monotonic dependence of signal 
sensitivity on masker modulation depth.  Second, simulated thresholds were lower than 
the data at masker depths above –23 dB.  The non-monotonic shape was a direct result of 
the ‘hard’ modulation-depth threshold that arises from the strong inhibitory inputs present 
in the model cell.  In the absence of any internal noise or external signal variability, the 
model IC cell did not respond until the signal modulation depth was above ~ –32 dB.  
This value was set by the strength of inhibition relative to the excitation: stronger 
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inhibition results in higher thresholds.  When an appropriate amount of noise was added 
to the sinusoidal signal (i.e. at a masker modulation depth of –28 dB rms), the 
instantaneous modulation depth rose above this hard threshold more often than it did with 
an equal-amplitude signal in ‘quiet’, resulting in lower detection thresholds and a 
pronounced ‘dip’ in the threshold-masker level function.  At higher masker modulation 
depths (> –23 dB rms), the external variability of the masker swamped out this subtle 
effect.  The fact that the absolute values of thresholds at these higher masker levels were 
lower in the simulations than in the data does not represent a fatal flaw.  In fact, the 
inclusion of a Weber-fraction-type noise (i.e. one that is proportional to the stimulus or its 
response, see Ewert and Dau, 2004) would improve the match between model and data at 
these masker depths.  The fit between other DVs and the data would not be improved by 
including this multiplicative type of internal noise because they predicted thresholds 
higher than the data, even with ‘fixed-variance’ internal noise alone.   
 Local temporal features were incorporated in the simulated thresholds shown in 
the right column of Fig. 2-5.  In general, the fit to the data was slightly better for these 
DVs than the other signal-based statistics: the overestimation of thresholds in the data’s 
shallow notch was less severe, especially for the crest factor and max/min DVs.  In a 
sense, it was surprising that predictions based on only two points of the modulating 
waveform (i.e. the max/min statistic) were more consistent with the listeners’ 
performance than traditional long-term (rms) measures.  Ewert and Dau (2002) showed 
that a pure long-term cue could account for several trends in the frequency effects of 
modulation masking, using a masker modulation depth of –10 dB rms.  Interestingly, at 
comparable masker levels in the present study, long-term and local feature cues were all 
reasonable predictors of modulation detection thresholds (i.e. model thresholds were 
either similar to or lower than the data).  From the thresholds measured here across the 
range of low masker depths, it seems fair to conclude that predicted performance based 
on DVs that incorporated temporally-local features were as consistent with the listeners’ 
performance as rms (time-averaged) cues.  Implementation of the physiological model 
suggested a mechanism (namely, a modulation-depth threshold nonlinearity) that could 
be incorporated into models for envelope processing to account for the non-monotonicity 
observed in the listeners’ threshold-masker level functions. 
2.3.2.2 Roving-level modulation masker 
 When the masker modulation depth was randomly chosen from a 10-dB 
uniformly-distributed range of values centered at –18 dB rms on a trial-by-trial basis, 
mean psychophysical thresholds increased by about 4 dB over the –18 dB fixed-level 
condition (Fig. 2-3).  We can ask the simple question: how much are thresholds based on 
these different DVs affected by the same manipulation?  Figure 2-6 answers this question 
by comparing the fixed-level and roving-level thresholds for each DV (the listeners’ 
mean data are re-plotted from Fig. 2-3 at the far left).  The simulated thresholds for fixed-
level conditions in Fig. 2-6 are identical to those illustrated in Fig. 2-5 at a masker 
modulation depth of –18 dB rms, but re-plotted as a SNR for direct comparison to the 
roving-level condition, where the SNR was the tracking variable.  Simulations using 
long-term DVs are represented in the first three columns to the right of the mean data.  
Thresholds with various combinations of local features included are shown in the last 
three pairs of bars. 
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FIG 2-6. Roving-level masker simulations and comparison with listeners’ mean data.  
Format is the same as Fig. 2-3, but the thresholds of different DVs are shown instead of 
the performance of different listeners.   
 
 Two aspects of the simulations are worth noting.  First, all six of the tested DVs 
were affected by an amount that was consistent with the effect seen in the data: 
thresholds were increased by 2-6 dB when the masker level was roved.  Also, thresholds 
based on the model IC cell’s average discharge rate were lower than those obtained with 
the signal-based statistics.  Again, this is not a serious failure of the physiological model.  
The inclusion of a second noise source, proportional to the magnitude of the stimulus or 
response fluctuations, would increase thresholds at these (relatively high) masker 
modulation depths, while maintaining the difference between the fixed-level and roving-
level conditions.  The other DVs would not benefit from such a modification (with the 
possible exception of the max/min statistic), as their predicted thresholds were at or 
above the actual data with a fixed-variance noise source alone.  

Despite the subtle differences between the effects predicted by the different DVs, 
the variability of the threshold estimates with respect to the small observed threshold 
elevation does not allow for strong conclusions supporting or disputing the validity of a 
specific DV in the roving-level task.  The use of a larger rove range would have 
potentially produced more pronounced effects that could have critically tested the 
different DVs; unfortunately, the limited dynamic range that was available in the 
amplitude-modulation domain for this manipulation did not allow for definitive answers 
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to these questions.  In our paradigm, only masker modulation depths that clearly caused 
masking while also avoiding over-modulation were used.   
2.3.2.3 Equalized-envelope-energy modulation masker 
 Predictions based on each of the tested DVs for the EEE conditions are compared 
to listeners’ thresholds in Fig. 2-7 (dashed lines).  The fixed-level thresholds are also re-
plotted (solid lines) to provide a baseline for comparison to the EEE thresholds.  Actual 
data are shown in each panel without symbols or error bars; DV predictions are shown 
with symbols and error bars (◊ = EEE; o = fixed-level).  By definition, rms and average-
local-depth metrics were unable to track on thresholds in the EEE conditions (the signal-
plus-noise modulation depth was adjusted to have the same long-term rms depth as the 
corresponding noise-alone interval).   

 
FIG 2-7. Comparison of measured thresholds (lines with no symbols) and predicted 
thresholds (connected symbols with error bars) for EEE (dashed lines) and fixed-level 
conditions (solid lines).  DVs are arranged as in Fig. 2-5.  If a given combination of DV 
and masker condition resulted in over-modulation or tracks that did not converge, 
simulated thresholds were not plotted (this occurred with the rms and average local depth 
DVs in EEE conditions). 
 
 The only long-term DV that was able to consistently track on a reasonable signal 
level at threshold was the discharge rate of a model IC cell.  The predictions of the 
physiological IC model were comparable to the listeners’ thresholds at masker depths of 
–18 and –13 dB rms.  However, the IC model predicted that the difference between fixed-
level and EEE thresholds should decrease with masker depth.  This was not observed in 
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the data.  The fact that the IC rate DV could predict EEE thresholds at all was a result of 
the effective band-pass envelope filtering that preceded the decision device.  Although 
the bandwidth of the stimuli was within the pass-band of the filter (the half-rate Q-value 
is about 1, corresponding to a 64-Hz pass-band for the cell tuned to the signal modulation 
frequency), the resulting output spectra were nevertheless shaped by the cell’s 
modulation-tuning properties.  There was less attenuation of the energy concentrated near 
the peak of the modulation filter, so target-interval stimuli in the EEE conditions could 
elicit a larger response (higher discharge rate) than the standard-interval stimuli.  A 
similar effect would be expected for an rms DV following any realistic envelope band-
pass filtering process.  Still, such a cue did not predict the appropriate variation in EEE 
thresholds with masker depth, and the absolute difference between fixed-level and EEE 
thresholds was higher than observed in the data.  The use of an invariant cue across all 
conditions was also not consistent with listeners’ anecdotal reports suggesting that their 
strategy was very different between the fixed-level and equal-energy conditions. 
 The DVs that were the best predictors of the listeners’ EEE data were those based 
on local temporal envelope features (Fig. 2-7, right column).  Max/min, crest factor, and 
max local depth all accounted reasonably well for the difference in performance between 
the fixed-level and EEE thresholds as well as the absolute values of the thresholds and 
the higher variability associated with the EEE data.  Importantly, the decision rule had to 
be switched for these three statistics: simulations selected the interval with the larger 
value of the DV in fixed-level conditions and the interval with the smaller value in EEE 
conditions as the target interval.  This sign-flipping was qualitatively consistent with 
subjective accounts from the listeners that they had developed a different strategy (based 
on feedback) in the EEE paradigm: often the ‘smoother’ or ‘more regular’ envelope was 
reportedly chosen as the signal interval.  Given this, the success of the local feature 
statistics in predicting the data was somewhat surprising, since the calculations were all 
heavily weighted by a small temporal portion of the envelope waveform.  Nevertheless, 
the match to the data was quite good, and it was clear that the most straightforward way 
to account for the listeners’ performance in the EEE conditions was to incorporate 
information about local fluctuations into the decision device.  The finding that local 
temporal features were crucial for explaining the EEE data was different than the 
conclusions drawn from analogous audio-frequency energy-equalized TIN detection tasks 
(i.e. Richards and Nekrich, 1993), in which the overall flattening of the (long-term) 
envelope when a tone was added could explain performance.  The corollary cue in the 
current experiment would be a drop in the (long-term) venelope energy, which we 
determined to be incapable of predicting performance consistent with the listeners.   
2.3.2.4 Decision-variable-reconstructed psychometric functions 
 As an alternative method to compare and contrast different DVs (beyond 
predicting thresholds), we analyzed trial-by-trial decisions made by the listeners and 
considered how those choices correlated with the magnitude and direction of variation in 
each DV between the two stimuli presented to the listener.  Figure 2-8 shows DVRP 
functions for three masker conditions and six DVs.  The masker modulation depth for all 
of the conditions shown was nominally –18 dB rms (note that this value was randomly 
chosen from a 10-dB range in the roving-level conditions, and was effectively attenuated 
in the target interval for the EEE conditions).  Fixed-level results are contained in the first 
column; roving-level and EEE analyses are shown in the second and third columns, 
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respectively.  The vertical dashed line in each panel indicates the point where the target 
and standard DVs were the same (i.e. their difference was zero).  The ordinate limits are 
set at 0 and 100% correct in each panel.  The x-axes are fixed for each DV; they were 
determined by the largest range of variation observed across the three conditions (usually 
the roving-level case; see figure caption for exact values). 
 DVRP functions for the fixed-level condition (left column) can be placed in one 
of two categories.  The first three DVs (AC-coupled envelope rms, average local depth, 
and IC rate) all showed a consistent increase in percent correct as the target interval DV 
became larger than the DV measured in the corresponding standard interval.  Also, these 
three cues were typically not ‘confused’ by the task: the vast majority of the trials 
resulted in a positive difference between target and standard DV.   

The second group of statistics is made up of DVs based on local temporal features 
(crest factor, max local depth, and max/min ratio).  Listeners’ percent correct increased 
for positive differences (target DV>standard DV) as they did for the long-term statistics 
in the top three rows, but a higher proportion of trials resulted in standard-interval DVs 
that were larger than the target-interval DVs (>20%; represented by points to the left of 
the vertical dashed line).  This confusion suggested that long-term DVs may have been 
more reliable cues in the fixed-level masker conditions, because they were less 
susceptible to changes in local features caused entirely by the stochastic nature of the 
maskers.   
 Roving-level masker DVRP functions (Fig. 2-8, middle column) spanned a wider 
range of DV differences than fixed-level or EEE-masker conditions, as expected.  
Because the roving-level DVRP functions were qualitatively similar, none of the six DVs 
(Fig. 2-8, middle column) can be considered more or less consistent than any of the 
others in this paradigm.  In about one-quarter of the trials, percent correct dropped below 
chance (50%) when the cue in the standard interval was bigger than that in the target 
interval for all six of the tested DVs.  It would be possible for the functions to be 
symmetric about zero if the listeners recognized conditions where the level-roving caused 
such a reversal in cue direction.  This was not seen in any of the DVRP functions; the 
listeners tended to choose the interval with the larger DV value, regardless of the 
particular random combination of standard and target masker level.  The similarity of the 
DVRP functions for the roving-level results makes it difficult to point out one DV as 
being more consistent with the data.  Similar conclusions were made with the roving-
level threshold-tracking simulations (Fig. 2-6). 
 The target-interval rms modulation depth was normalized to match that of the 
standard interval in the EEE conditions.  DVRP functions for a –18 dB EEE masker are 
shown in the right column of Fig. 2-8.  Compared to the fixed- and roving-level cases, the 
spread of DV differences is highly compressed for rms, average local depth, and IC rate 
decision statistics (Fig. 2-8, top three panels, right column).  This reflects the stimulus 
manipulation; the fact that there was any spread in the rms DVRP was because only the 
steady-state portion (the central 500 ms) of the stimulus was used to compute the DVs, 
while the entire duration of modulation was equalized in the stimuli presented to the 
listeners (including the onset and offset ramps).  Still, there were no strong trends in the 
upper three EEE DVRP functions of Fig. 2-8: percent correct was nearly independent of 
the DV difference, which was always close to zero.  The situation was different for the 
local-feature-based DVs (bottom-right three panels in Fig. 2-8).  High signal modulation 
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depths resulted in low values of crest factor, max local depth, and max/min ratio.  The 
tracking simulations (Fig. 2-7) and DVRP functions suggested that listeners were using a 
drop in the value of a DV that incorporated some local feature; max/min ratio predicted 
absolute thresholds that were slightly closer to the listeners’ thresholds than crest factor 
or max local depth. 
 Analysis of DVRP functions provided a different angle on the same question that 
was addressed with the tracking simulations; the consistency between the two approaches 
is reassuring.  The technique is promising for pulling apart decision statistics in other 
psychophysical tasks that include external stimulus variability, especially those with 
competing DVs that are weakly correlated with one another.  The procedure requires no 
assumptions to be made about internal noise, and no additional time from the listeners.  
Analysis of adaptive tracking procedure responses has previously been validated as an 
efficient and accurate way to extract psychometric functions (Dai, 1995); the current 
implementation simply considered statistics based on the actual stimuli presented, instead 
of the signal level, or modulation depth, presented in each trial.  In the context of the 
current simulations, two specific and important pieces of information are reinforced with 
the DVRP functions.  First, they reiterate the notion that the sign or direction of the cue 
flips in EEE conditions for the local-feature DVs with respect to the direction of the cue 
in fixed- and roving-level masker conditions.  Second, the proportion of DV calculations 
that elicit a larger value in the standard interval in the fixed-level conditions is higher for 
the short-term DVs than for the long-term DVs.   

           
FIG 2-8. Decision-variable-reconstructed psychometric functions for six DVs and three 
key masker configurations: fixed-level (–18 dB masker depth; left column), roving-level 
(masker depths randomly chosen from a 10-dB range centered at –18 dB; middle 
column), and equal-envelope-energy (–18 dB standard-interval masker depth).  The range 
of differences plotted for each DV was determined by the range covered in the roving-
level conditions.  The ranges were: envelope rms: [-0.07 0.23]; average local depth: [-
0.004 0.013]; model IC cell rate: [-6 18]; crest factor: [-0.3 0.5]; maximum local depth: [-
0.01 0.02]; max/min ratio: [-1.46 4.00].  Vertical dashed lines indicate the zero-difference 
point on the x-axis. 
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2.4 GENERAL DISCUSSION 
 The remainder of this article is divided into three parts.  In the first section, 
potential mechanisms underlying specific features of the fixed-level results are further 
discussed.  Directions for future work are detailed in the second section.  Finally, the key 
psychophysical and modeling results are summarized. 
 
2.4.1 Negative masking 
 The non-monotonic relationship between sensitivity and noise level apparent in 
two of the four listeners in the fixed-level masker condition (Fig. 2-2) can be interpreted 
as stochastic resonance (for a recent review, see Wiesenfeld and Jaramillo, 1998).  There 
are (at least) two straightforward mechanisms that could underlie such an effect.  One 
possible explanation is that the listeners used a non-optimal criterion that remained 
constant across noise level [see Tougaard (2000) for an analysis of such an assumption].    
This interpretation is less than satisfying for several reasons.  First, the presence of the 
non-monotonicity is not related to the listeners’ pure AM-detection thresholds (with no 
masker).  If the effect was simply an epiphenomenon of poor criterion placement, the two 
listeners whose data suggest stochastic resonance should have been less sensitive than the 
other listeners at low masker depths.  Another problem with the poor-criterion 
explanation is related to the types of mistakes that such a mechanism would predict.  In 
low-masker-level conditions, the fixed DV criterion is never reached, and as a result, the 
signal is never “perceived” as being present.  The opposite is true for the high masker 
levels, where even the noise-alone DV distribution lies above the fixed criterion: the 
above explanation suggests that the signal should sound as though it is present on every 
trial.  These bias-related observations are also inconsistent with subjective impressions 
given by the listeners, and they suggest that some other mechanism may underlie the 
stochastic resonance effects. 
 Another mechanism that can explain the non-monotonicity in our data is based on 
a combination of weak signals and a threshold nonlinearity (i.e. Ward et al., 2002).  If a 
system does not respond to a sub-threshold periodic stimulus, the addition of noise may 
push the input amplitude above threshold at a mean frequency related to the periodicity of 
the weak signal.  An example of such a system with an envelope (modulation-depth) 
threshold is the physiological model tested here (Nelson and Carney, 2004).  The ability 
of such a simple model to account for the effect highlights the potential advantages of 
using physiologically-motivated model front-ends when predicting psychophysics to gain 
insight into underlying mechanisms.  In addition to modeling work, there is also direct 
physiological evidence suggesting that central auditory neurons respond in a way 
consistent with a modulation-depth threshold device.  Adding a low-level noise 
modulation to a sinusoidal AM can both enhance neural synchronization to the tone and 
increase the average discharge rate over responses to the SAM tone alone in the frog 
auditory midbrain (Bibikov, 2002).  The negative masking effects observed in the current 
study are also likely related to similar psychophysical measures in cochlear implant 
listeners of masked (electrically stimulated) modulation detection thresholds (Chatterjee 
and Robert, 2001). 
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2.4.2 Future directions 
 A main focus of future work will be to quantitatively relate actual (as opposed to 
modeled) midbrain physiological responses to psychophysical performance in AM 
detection tasks.  To date, the relative roles of timing (i.e. synchronization to the envelope) 
and average rate information as neural substrates for AM perception at low modulation 
depths (near behavioral thresholds) remain unclear.  The rate versus timing debate can be 
thought of as a discussion of underlying neural DVs, similar to the classifications of 
signal-based DVs as long-term or local-feature-containing.  It is typically assumed that 
information about AM is largely transformed into an average-rate-based scheme by the 
level of the IC (which is one reason we only considered the rate responses of our model 
IC cell here), but the majority of data supporting that view comes from stimuli with high 
modulation depths (for a review, see Joris et al. 2004).  The fact that our listeners could 
perform the EEE task suggests that the local temporal structure of AM stimuli is available 
as a cue under certain conditions.  To reconcile these inconsistencies, we are currently 
recording responses in the awake rabbit IC to both pure SAM and noise-masked SAM 
across a wide range of modulation depths (from –35 dB to 0 dB in 20 log m).   
 Another issue that deserves further study is the effect of including a “Weber-
fraction noise,” along with the fixed-variance internal noise that was used here to limit 
performance with deterministic stimuli.  Existing data suggest that tone-carrier AM-depth 
discrimination sensitivities may be determined by a fixed-variance noise at low 
modulation depths and a noise that is proportional to the elicited response at high 
modulation depths (i.e. Ewert and Dau, 2004).  Assuming that the listeners were using an 
overall depth-related cue, then the fixed-level masker SAM detection paradigm can be 
thought of as depth discrimination task, with both external and internal noise processes 
playing a role.  At the highest masker depths tested (–13 dB rms), most of the DV-
derived thresholds are at or below the listeners’ data (Fig. 2-5), suggesting the need for an 
additional source of noise at high modulation depths.  This is consistent with the findings 
from the AM-depth discrimination literature.  To better account for all of the data 
presented here, it seems necessary to implement a model with a modulation depth 
threshold, along with some form of local feature detection and two types of internal noise 
(fixed-variance and Weber-fraction).  
 
2.4.3 Summary 
(i)  SAM depth thresholds in an on-frequency masked AM-detection task were influenced 
by external stimulus variability at very low masker modulation depths (i.e. –40 to –30 dB 
rms).  Negative masking, or stochastic resonance, was observed in two of the four 
listeners at masker levels around –30 dB rms (Fig. 2-2). 
(ii)  Roving the overall modulation depth (Fig. 2-3) or equalizing the long-term envelope 
energies (Fig. 2-4) from trial to trial both resulted in significant increases in threshold.  
These findings contrast with observations in comparable TIN detection tasks in the audio-
frequency domain. 
(iii)  Tracking simulations showed that several competing DVs were able to qualitatively 
account for performance for the fixed-level (baseline) and roving-level masker conditions 
(Fig. 2-5).   
(iv)  Reconstruction of psychometric functions based on a variety of DVs revealed that 
long-term statistics (averaged across the entire stimulus duration) may have been more 
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robust cues in the fixed-level condition than statistics based on local temporal features.  
This was inferred because of the larger proportion of trials that resulted in the standard 
interval DV being larger than the corresponding target interval DV when local features 
were assumed to be the primary detection cues (Fig. 2-8).   
 (v)  Thresholds in the EEE conditions could only be accounted for with a “local feature” 
DV, as long-term cues were minimized by equalizing the overall energy of the standard 
and target envelopes, after the sinusoidal signal was added.  Listeners apparently chose 
the interval with a lower max/min ratio, crest factor, maximum local depth, or some other 
local feature cue in these conditions (Fig. 2-7). 
(vi)  Implementing a physiologically motivated model structure and comparing 
predictions based on its rate responses to the fixed-level data showed that a hard 
modulation-depth threshold mechanism can predict negative masking at low masker 
depths.  This suggests that such a nonlinearity could be included (along with an internal 
noise source) to limit performance in the absence of external variability in a more 
complete model of envelope processing (Fig. 2-5).   
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CHAPTER 3 
 
Comparison of intensity discrimination, increment 
detection, and comodulation masking release in the 
audio- and envelope-frequency domains 
 
ABSTRACT 
In general, the temporal structure of stimuli must be considered to account for certain 
observations made in the audio-frequency domain.  Two such phenomena are (1) a 
heightened sensitivity to amplitude increments with a temporal fringe compared to gated 
intensity discrimination performance, and (2) lower tone-in-noise detection thresholds 
using a modulated masker compared to those using an unmodulated masker.  One 
qualitative interpretation of these findings is that temporal envelope cues provide an 
additional dimension which listeners can monitor, alongside cues in the spectral 
dimension.  In the current study, translations of these two experiments were carried out to 
test the hypothesis that analogous cues might be used in the envelope-frequency domain.  
Pure-tone carrier amplitude-modulation (AM) depth-discrimination thresholds were 
measured using both traditional gated stimuli and using a temporally modulated fringe for 
a fixed standard depth (ms = 0.25) and a range of AM frequencies (4-64 Hz).  In the other 
experiment, masked sinusoidal AM detection thresholds were compared in conditions 
with and without slow and regular fluctuations imposed on the instantaneous masker 
depth.  In contrast to the audio-frequency results, in the modulation-frequency domain 
thresholds in both tasks were largely independent of the stimulus temporal structure.  A 
physiologically motivated model that effectively acts as a first-order envelope change 
detector accounted for several, but not all, of the key aspects of the data.  Note: A version 
of this chapter will be submitted to the J. Acoust. Soc. Am. as a paper with the same title, 
by P. C. Nelson, S. D. Ewert, L. H. Carney, and T. Dau. 
 
3.1 INTRODUCTION 

A variety of fundamental experimental paradigms originally used in audio-
frequency psychoacoustics have recently been translated into their envelope-frequency 
equivalents.  In the process, certain parallels have emerged between the effective signal 
processing that is inferred to take place in the two domains.  Masked tone-detection 
experiments that compare the amount of masking with different spectral relationships 
between the signal and masker indicate perceptual frequency tuning in both audio 
frequency (e.g. Wegel and Lane, 1924) and envelope frequency (e.g. Houtgast, 1989).  
Also, the “asymmetry of masking” has been observed in both domains [e.g. Moore et al., 
1998 (audio frequency); Ewert et al., 2002 (envelope frequency)], with tones proving to 
be relatively ineffective maskers of noise signals.  Wojtczak and Viemeister (2005) 
showed non-simultaneous (forward) masking in the envelope-frequency domain that has 
direct counterparts in audio-frequency psychophysics (e.g. Luscher and Zwislocki, 1949).  
Tonal intensity resolution performance in both domains is also broadly similar, with an 
approximately 1 - 2 dB increase in the standard level (SPL in audio frequency, 20 log m 
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in envelope frequency) required to reliably discriminate the levels of two supra-threshold 
sounds [i.e. Florentine et al., 1987 (audio); Ewert and Dau, 2004 (envelope)].  These 
qualitative similarities suggest that the processes underlying perception in the two 
domains may be conceptualized in a single framework, despite the fact that the 
underlying neural mechanisms are presumably quite different.   
 In the current study, we tested the hypothesis that two other robust audio-
frequency phenomena would be observed in the envelope-frequency domain.  These 
phenomena are (1) a heightened sensitivity to increments with a continuous carrier (or a 
temporal fringe) relative to gated intensity discrimination performance, and (2) lower 
thresholds in a tone-in-noise detection task with a temporally amplitude-modulated (AM) 
masker than in conditions with a random (unmodulated) masker.  The second observation 
has been termed comodulation masking release (CMR) because it is most robust when 
several audio-frequency channels are simultaneously and coherently modulated.  Both 
spectral-frequency observations can be at least partially attributed to AM-related cues 
(e.g. Gallun and Hafter, 2006; Schooneveldt and Moore, 1989).  Therefore, upon 
transposition into the envelope-frequency domain, the analogous cues in such tasks 
would be related to the 2nd-order envelope, or ‘venelope’ (Ewert et al. 2002).  The results 
presented here point out some limitations of describing the fundamental processes in the 
two domains within a common framework.   
 Listeners are more sensitive to audio-frequency intensity differences presented as 
continuous-carrier level increments than presented as gated tones with different SPLs 
(e.g. Campbell and Lasky, 1967; Viemeister and Bacon, 1988; Bacon & Viemeister, 
1994).  An energy-based detection model cannot explain the difference in thresholds in 
the two conditions.  Instead, the temporal structure of the standard, target, and inter-
stimulus intervals must be taken into account.  This finding can be considered from 
several perspectives.  One possibility is that the memory requirements of the system are 
higher in gated-carrier intensity discrimination than for increment detection, where 
listeners could potentially perform the task without comparing across intervals (Harris, 
1963).  This explanation is less than satisfactory, because near threshold, there is 
certainly an element of comparison across intervals in the continuous-carrier task: the 
listener must decide which interval sounded the most like it contained an increment or 
‘bump’.  Also, the relatively short intervals between stimuli probably render memory 
noise negligible with respect to sensation noise in most two- or three-interval paradigms 
(Durlach and Braida, 1969).   

Another related explanation holds that the improved sensitivity results because the 
system could be making decisions by detecting changes in the increment task 
(Macmillan, 1971; Hafter et al., 1997).  The phrase ‘change detector’ is rather nebulous; 
one specific difference that arises between gated and continuous paradigms is in the 
envelope spectra of the stimuli.  Onsets and offsets of gated stimuli result in excitation of 
the putative modulation filterbank (i.e. Dau et al., 1997) that depends on the shape and 
duration of the ramps applied to the carrier (Gallun and Hafter, 2006).  The presence or 
absence of a small difference in the modulation properties between two gated stimuli 
might be masked by neural onset adaptation (Irwin & Purdy, 1982).  Increments to a 
continuous pedestal, on the other hand, yield a more well-defined change in the envelope 
of the signal interval, without the complications that arise when the signal and pedestal 
are gated simultaneously.  Physiologically, absolute firing-rate changes in single 
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auditory-nerve fiber (ANF) responses to increases in intensity do not depend on the 
temporal position of the increment (e.g. Smith and Zwislocki, 1975; Smith and 
Brachman, 1982; Smith et al., 1985).  Instead, the relative increase in instantaneous rate 
increases as the delay between pedestal onset and increment is lengthened, because the 
response to the pedestal decreases with time.  Short-term peripheral neural adaptation is 
essentially complete after about 100 ms (e.g. Smith, 1979); psychophysical fringe effects 
in increment detection are delay-dependent over time courses of several hundred 
milliseconds (e.g. Green, 1969; Leshowitz and Cudahy, 1972; Bacon and Viemeister, 
1985).  
 Tone-in-noise detection tasks that compare masking by modulated and 
unmodulated maskers have emerged more recently as challenges to pure long-term 
power-spectrum models of audio-frequency masking (e.g. Schooneveldt and Moore, 
1989; Verhey et al., 1999).  For the purposes of this article, we will focus on a simple 
class of CMR experiments: those that use one band-limited noise, centered on the signal 
frequency.  This class of CMR paradigms usually yields the most significant and robust 
release from masking.  At least three cues could potentially underlie a release from 
masking (i.e. lower thresholds with a modulated masker compared to unmodulated 
masker conditions).  A ‘dip-listening’ model suggests that the listeners are able to 
selectively attend to the periods of the masker with low modulation depths, thus 
improving the local signal-to-noise ratio (SNR; Buus, 1985).  Another possible within-
channel cue is the overall smoothing of the masker fluctuations upon addition of the 
signal (Schooneveldt and Moore, 1989; Verhey et al., 1999).  Across-channel 
comparisons of target-interval differences might also be used if the bandwidth of the 
masker is sufficiently broad (Hall et al., 1984).  All of these mechanisms have been used 
to understand CMR in the audio-frequency domain.   

With these spectral-frequency empirical observations in mind, we present here 
envelope-frequency-domain versions of the experiments that led to them.  The perceptual 
salience of venelope cues will determine whether differential effects will be observed in 
(1) continuous- and gated-carrier AM depth discrimination and (2) sinusoidal AM 
detection in the presence of a noise modulation masker with and without slow and regular 
fluctuations in overall depth.  Our current understanding of venelope perception can be 
summarized as follows:  Sinusoidal modulation of the depth of a first-order AM carrier is 
detectable (e.g. Lorenzi et al. 2001), but the perceptual salience of venelope components 
is generally found to be weaker than that of first-order envelope fluctuations (Ewert et al. 
2002).  Venelope fluctuations can interact with envelope detection and vice versa (e.g. 
Ewert et al. 2002).  For example, the detection of a 5-Hz modulation can be affected by 
the presence of a masker modulation tone complex consisting of components with 5 Hz 
spacing (e.g., 45 and 50 Hz) in a phase-sensitive way; the venelope of the masker (at 5 
Hz) thus interacts with the signal modulation (Moore et al. 1999).  In terms of qualitative 
underlying mechanisms, venelope energy is not present in the envelope spectrum, but 
several physiologically realistic nonlinearities could transform 2nd-order energy into 1st-
order envelope features (Shofner et al., 1996).  Alternatively, venelope cues could take 
the form of temporal variations in the output of envelope-frequency-tuned modulation 
filters (i.e. Ewert et al., 2002; Füllgrabe et al., 2005; Füllgrabe and Lorenzi, 2005). 

The remainder of this article is divided into three main sections.  Two lines of 
psychophysical experiments are described and discussed in the first two sections.  The 
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third part focuses on interpretation of the findings with the help of a physiologically 
motivated computational model. 
 
3.2 EXPERIMENT I.  INTENSITY DISCRIMINATION AND INCREMENT 
DETECTION IN THE ENVELOPE-FREQUENCY DOMAIN 
 The goal of the first set of experiments was to determine whether continuous-
carrier AM-depth-discrimination thresholds were lower than traditional gated-carrier 
thresholds.  Two reasonable hypotheses lead to predictions of a difference in performance 
between the two paradigms.  First, adaptation at the output of modulation-tuned channels 
could mask across-interval depth differences, resulting in poorer performance in the gated 
conditions.  Alternatively, because energy increment detection in the audio-frequency 
domain is at least partly associated with modulation detection and coded along the 
modulation dimension (Gallun and Hafter, 2006), a corresponding task in the envelope 
domain may provide another cue along an additional dimension, the venelope dimension, 
which might lead to lower thresholds in the continuous-carrier condition relative to the 
gated case. 
 
3.2.1 Methods 
3.2.1.1 Listeners 
 The experiments were carried out at the Centre for Applied Hearing Research at 
the Technical University of Denmark (DTU).  All of the listeners participated voluntarily 
and had pure-tone detection thresholds less than 20 dB HL at octave frequencies between 
125 and 8000 Hz.  Their ages ranged from 23 to 39 years.  Three of the four subjects in 
the main experiments had significant experience in related psychoacoustic testing; two of 
the authors (PCN, TD) were part of this group.  Four additional listeners were recruited to 
participate in ‘auxiliary experiments’ because of the relatively large across-subject 
variability. 
3.2.1.2 Apparatus and stimuli 
 Subjects listened diotically via Sennheiser HD 580 circumaural headphones in a 
double-walled sound-attenuating booth.  Stimulus generation and presentation were 
carried out in MATLAB using the AFC software package developed at the University of 
Oldenburg and at DTU.  A 48-kHz sampling rate was used to digitally generate stimuli.  
The carrier was a 70-dB SPL, 5.5-kHz pure tone.  Sinusoidal AM was applied for the 
entire 500-ms duration, and a 50-ms Hanning window was applied at the onset and offset 
of observation-interval stimuli.  Inter-observation-interval durations (between possible 
target interval presentations) were also 500 ms in duration.  
 The modulating waveforms in the gated conditions were identical to those 
described in Ewert and Dau (2004).  The observation-interval stimuli are described by the 
following equation: 

)]2sin(11)[2sin()( tfmmtfts mincsc ππ ++= ,      
where fc is the carrier frequency (5500 Hz), ms is the standard modulation depth, minc is 
the relative depth increment (zero in the standard intervals), and fm is the modulation 
frequency.  The comparison (target interval) depth can be related to the standard depth 
and depth increment simply as incsc mmm += 1 .  Using notation more in line with audio-
frequency intensity discrimination literature, minc can also be thought of as the Weber 
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fraction, i.e. 222 /)( sscinc mmmm −= .  Whereas the earlier study (Ewert and Dau, 2004) 
focused on the effects of standard-interval modulation depth for a fixed-frequency (16-
Hz) sinusoidal AM, the current experiments used a fixed standard depth (ms) of -12 dB 
(in 20 log m; linear m = 0.25), and varied two other parameters.  Here, the influences of 
modulation frequency (fm = 4, 8, 16, 32, and 64 Hz) and gating choices were investigated.  
We will refer to the traditional AM depth-discrimination stimuli (i.e. Wakefield and 
Viemeister, 1990; Lee and Bacon, 1997; Ewert and Dau, 2004) as “gated” and the 
envelope-domain equivalent of increment detection as “quasi-continuous” or “fringe” 
conditions.   

The critical difference between the gated and fringe conditions was confined to 
the stimulus presented between observation intervals in the three-interval paradigm.  In 
gated conditions, a silent interval separated three modulated tones (the two standard 
intervals contained tones with a modulation depth of 0.25; the target interval was a tone 
with some AM depth higher than 0.25).  In contrast, the quasi-continuous conditions were 
comprised of a 500-ms, 25% modulated tone that was present in the two inter-observation 
intervals and also before the first interval and after the third and final interval.  Example 
stimulus waveforms for the gated and fringe conditions are shown in Fig. 3-1C.  Stimulus 
amplitudes in all three intervals were gated with 50-ms ramps, regardless of the gating 
mode (this was also the case for the audio-frequency level discrimination stimuli, which 
are described next). 

For comparison, thresholds for the audio-frequency versions of pure-tone gated 
intensity discrimination and quasi-continuous increment detection (i.e. with a temporal 
fringe), were also measured in the same subjects.  Signal duration, inter-observation-
interval, gating parameters, SPL, and carrier frequency were the same as in the AM-
frequency experiments.  The corresponding example stimulus waveforms are shown in 
Fig. 3-1A.  
3.2.1.3 Procedure 
 Listeners were trained until four consecutive threshold estimates in each condition 
showed no evidence of learning.  Two additional threshold estimates were obtained if the 
standard deviation of the four estimates was greater than 3 dB (this happened once in all 
of the experiments described here).  Average data are presented as the mean and standard 
deviation of the subjects’ final depth-discrimination threshold estimates.   
 A three-interval, three-alternative forced-choice paradigm with visual correct-
answer feedback was used along with a two-down, one-up adaptive tracking procedure 
(Levitt, 1971).  This combination of parameters yields convergence on the 70.7% point of 
the psychometric function and a threshold estimate that corresponds to a d’ of unity.  The 
listeners’ task was to identify the observation interval containing the higher signal AM 
depth.  Observation-interval timing was identified with visual cues presented 
synchronously with the standard and target interval stimuli on the computer monitor.  The 
stimulus parameter that was varied in the tracking procedure was the fractional AM depth 
increment in dB (10 log minc).  The initial 4-dB signal-interval step size was halved after 
each of the first two track reversals occurring after consecutive correct responses.  Six 
reversals were required after the final 1-dB step size was reached; threshold for a given 
track was taken as the mean signal level corresponding to the target-interval AM depth 
used at those six points.  The order of stimulus presentation was randomized across 
parameters (gating mode and AM frequency) for each listener.   
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 The audio-frequency intensity-discrimination experimental procedures were 
essentially identical to those used to measure AM depth-discrimination sensitivity.  The 
tracking variable used was also similar.  The Weber fraction in dB (10 log ∆I/I) was 
adjusted until the target interval was just noticeably different from the two standard 
observation intervals.   
 
3.2.2 Results 
3.2.2.1 Discrimination thresholds with gated and fringe presentation modes 
 The magnitude of the audio-frequency gated-continuous difference was measured 
first; mean intensity discrimination results are shown in Fig. 3-1B.  Enhanced sensitivity 
to increment (fringe) conditions has been demonstrated in previous studies; the average 
difference for the listeners in the current study was 4-5 dB.  The magnitude of the effect 
in our listeners is in line with the average 4.6 dB difference found at SPLs above 35 dB 
by Viemeister and Bacon (1988), who used a continuous 1000-Hz carrier and 200-ms 
observation intervals.  Absolute discrimination thresholds in the gated conditions in the 
current study (10 log ∆I/I = -6.5 dB) are slightly better than the thresholds for matching 
carrier frequencies and standard levels reported by Florentine et al. (1987); this may be 
attributable to differences in presentation mode (monaural vs. diotic).   

                 
FIG 3-1. Comparison of the gated-continuous difference in the audio (left) and envelope 
(right) frequency domains.  Schematic illustrations of stimulus waveforms in the two 
experiments are shown in A and C (horizontal bars between the stimuli indicate the 
timing of the 500-ms observation intervals).  B: Audio-frequency intensity discrimination 
thresholds measured with gated (closed circles) and quasi-continuous pedestals (closed 
squares).  D: AM depth discrimination thresholds for a 25% modulated standard obtained 
with traditional gated intervals (open circles), and with quasi-continuous modulation 
presented before, between, and after the observation intervals (open squares).  For both B 
and D: fc = 5500 Hz; standard SPL = 70 dB.  Each symbol is the average threshold for 4 
listeners; error bars indicate standard deviations of the individual mean thresholds. 



 

 

35

 Average depth discrimination thresholds are shown in Fig. 3-1D for a range of 
modulation frequencies.  The most relevant aspect of the data for the purposes of the 
current study is the similarity in performance for the gated and fringe conditions, which is 
in contrast to the findings in the audio-frequency domain.  Performance was broadly 
consistent across listeners, as suggested by the size of the standard deviation bars (<1.6 
dB).  Listener L4 was slightly more sensitive in the fringe conditions, while L2 exhibited 
lower thresholds in the gated conditions.  Because these individual differences were 
similar in magnitude and stable across AM frequency for both listeners, they effectively 
cancelled out in the mean data. 
 Mean absolute thresholds [in 10 log ((mc

2-ms
2)/ms

2)] dropped from approximately 
0 dB at 4 Hz to -4 dB at 32 and 64 Hz.  This is equivalent to target-interval depths at 
threshold ranging from 0.35 to 0.30 in 20 log m for a 25% modulated standard, and is 
consistent with previous studies that have found decreases in threshold at higher AM 
frequencies with a fixed-duration stimulus (i.e. Lee and Bacon, 1997).  Thresholds in the 
gated condition at 16 Hz (-2.1 dB) were within 1dB of those reported by Ewert and Dau 
(2004), who used a 16-Hz signal with a standard depth of 22.5% (among others) imposed 
on a 65-dB SPL, 4-kHz carrier.  
3.2.2.2 Gated and fringe AM detection thresholds and comparison with ‘static’ 
intensity discrimination performance 

Previous studies have reported an enhancement of SAM detection thresholds at 
low modulation rates (≤ ~ 10 Hz) when a temporal fringe was used instead of gating the 
carriers (Viemeister, 1979; Yost & Sheft, 1997).  Our finding of identical discrimination 
thresholds in the first experiment (with ms= 0.25) appears incompatible with these earlier 
findings, since detection is a special case of discrimination (ms= 0 for pure detection).  
We wanted to determine whether the listeners in the current study also exhibited a gated-
continuous difference for AM detection.  In this extension of the first experiment, 
thresholds in several related envelope-processing tasks were directly compared in an 
effort to better map out the differences between AM discrimination and detection, and to 
establish relationships between “dynamic” AM cues and “static” audio-frequency 
intensity discrimination.  How are gated and continuous level discrimination and AM 
detection thresholds related?  Based on the results of the first experiment, one hypothesis 
is that AM detection should not depend on the choice of gating parameters if the same 
mechanism underlies AM detection and AM depth discrimination. 

To test this hypothesis, the dynamic AM stimuli were matched to the static level-
increment stimuli in their carrier frequency (5.5 kHz), standard level (70 dB SPL), overall 
duration (500 ms), and onset / offset ramp duration (50 ms).  Restricting the ramp 
duration parameter to be the same resulted in an AM stimulus that contained 5 cycles of 
10-Hz SAM signal (50 ms on + 50 ms off = 100 ms period).  Different combinations of 
gated vs. fringe presentation modes and static vs. dynamic fluctuations in the target 
interval resulted in the five test stimuli used in the second experiment.  Schematics of the 
envelope waveforms in each condition are shown in Fig. 3-2B.  Conditions with temporal 
fringes were identified as INC (static increment), AM1 (dynamic AM increment, with a 
DC offset), and AM2 (dynamic AM increment, no DC offset).  Gated stimuli were 
labeled ID (static gated intensity discrimination) and AM (gated AM detection).  

Mean data across 8 listeners are shown in Fig. 3-2A.  Performance is defined in 
terms of a Weber fraction, where ∆I is determined by the difference between the 
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maximum and minimum value of the envelope in the target interval for the AM 
conditions (open symbols), and by the difference in peak intensities across the standard 
and target intervals in the audio-frequency level-discrimination conditions (closed 
symbols).  In Fig. 3-2B, a two-interval task is represented for clarity (a 3AFC task was 
used in the actual experiment), with the target interval onset beginning at 0.5 s and the 
standard interval beginning at 1.5 s. 

        
FIG 3-2. A: Mean audio-frequency level discrimination thresholds (solid symbols) and 
envelope-frequency detection thresholds (open symbols) under different gating 
conditions.  Squares represent performance with a quasi-continuous carrier; circles depict 
thresholds with gated carriers.  Conditions AM1 and AM2 are distinguishable based on 
the presence (AM1) or absence (AM2) of a DC component in the target interval.  B: 
Schematic illustrations of the stimulus envelopes used in each condition.  Conditions INC 
and ID are re-plotted from Fig. 3-1B. 
  

One main result is that thresholds were similar for all three fringe conditions [Fig. 
3-2(A)], and for both gated conditions, when performance was defined as 10 log (∆I/I).  
This result suggested that the system was not more sensitive when several dynamic 
temporal envelope fluctuations were presented than when a fixed energy increment with a 
single onset and offset was used.  Apparently the contribution of energy integration over 
500 ms in the static conditions was approximately equal to the temporal fluctuation cues 
provided in the dynamic conditions (AM and AM2 had no level increment imposed by 
the modulation).  The similarity between thresholds in AM1 and AM2 suggests that the 
listeners were probably not using an overall level cue in condition AM1.  The finding that 
the INC and AM1 and AM2 stimuli produce similar thresholds supports the hypothesis 
that increment detection is linked to modulation detection (and not primarily based on the 
detection of an energy change).  

Another comparison to make in Fig. 3-2(A) is across the open symbols 
(conditions with SAM in the target interval).  In line with noise-carrier studies of 
Viemester (1979) and Sheft and Yost (1990), and with the tone-carrier experiments of 
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Yost and Sheft (1997), but seemingly at odds with our hypothesis based on the depth-
discrimination task, we found that our listeners were more sensitive in a low-fm AM-
detection task with a temporal fringe than with gated carriers.  Converting the thresholds 
to 20 log m, the difference between thresholds in the AM2 condition (-32 dB) and the 
gated AM condition (-26.5 dB) amounts to about 5.5 dB.  Both the gated-continuous AM 
detection difference and the gated-continuous AM discrimination similarity can be 
qualitatively accounted for with a simple phenomenological model (see section IV. 
Modeling). 
 
3.2.3 Discussion 
3.2.3.1 Adaptation and change detection  

The similarity between gated and quasi-continuous AM depth discrimination 
thresholds can be interpreted in terms of the adaptation mechanisms that have been used 
to qualitatively explain the audio-frequency asymmetry in performance seen in gated-
carrier intensity discrimination and continuous-carrier increment detection (see 
Introduction).  If an increased amount of adaptation in gated conditions underlies gated-
continuous differences, then the current results suggest one of at least two conclusions in 
the envelope-frequency domain.  Either there is little or no adaptation at the output of 
modulation-tuned channels, or if there is adaptation, then the response to an increment in 
AM depth must decrease with the same time course as the adaptation, so that the relative 
response increment remains constant as a function of time.   

There is some peripheral physiology that initially appears consistent with a 
transformation supporting the latter interpretation.  Smith et al. (1985) reported a 
decrease in the response modulation of ANFs as a function of time: the response 
modulation depth decreased with short-term adaptation (i.e., the effect lasted for 
approximately 10 ms).  In contrast with the current study, Smith et al. (1985) used stimuli 
with high AM frequencies (150-600Hz), and imposed them on gated carriers with short 
(2.5 ms) rise-fall times.  For the lower fluctuation rates (4-64 Hz) and slow (50 ms) ramp 
functions used here, it is unlikely that the small effect observed in peripheral physiology 
could have an impact on the observed similarity between gated and continuous AM 
depth-discrimination thresholds.  This leads back to the alternative explanation, namely 
that there is negligible perceptual adaptation to AM stimulation. 

Perceptual coding of AM is usually assumed to be strongly influenced by central 
processing factors.  This is because modulation-tuned channels are not found in the 
periphery, and the temporal responses of auditory-nerve (AN) fibers can robustly follow 
modulations to significantly higher rates than the several hundred Hertz (Joris and Yin, 
1992) that human listeners can detect as a temporal (i.e. not spectrally resolved) cue 
(Kohlrausch et al., 2000).  The responses of cells in the inferior colliculus (IC) appear to 
be more tightly coupled to psychophysical measures than peripheral responses (Joris et 
al., 2004), although temporal adaptation (or a lack thereof) in IC neurons to AM stimuli 
with relatively long offset and offset ramps has not been previously reported. 

An alternative way to conceptually account for the audio-frequency gated-
continuous difference is to assume the existence of a modulation filter bank that 
processes the stimuli at the output of peripheral filters, generating an effective additional 
dimension.  An increment in the intensity of a sound activates at least the low frequency 
modulation channels, where the amount of activity depends on the exact stimulus 
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characteristics and the transfer functions of the modulation filters. As recently shown by 
Gallun and Hafter (2006), increment detection thresholds can be quantitatively accounted 
for by assuming a modulation frequency selective analysis.  In contrast, in the gated-
carrier intensity discrimination conditions, the most effective cue is reflected in the dc 
component (or in the lowest available modulation filter) in such a model.  The finding 
that a similar asymmetry between increment detection and intensity discrimination was 
not found in the AM domain may suggest that analogous circuitry, i.e. another 
“independent” (venelope) domain, does not exist, or has a negligible influence on 
perception.   
3.2.3.2 Relation to previous work 

Wojtczak and Viemeister (1999) compared intensity discrimination and low-fm 
SAM detection with continuous-carrier pure tones across a wide range of standard SPLs, 
and arrived at an empirical formulation of the relationship between the two measures:  

),()log20(44.0log10 mfDm
I
I

+⋅=
∆  where D(fm) is a constant that depends only on 

modulation frequency.  For a 4-Hz signal AM, Wojtczak and Viemeister determined this 
constant to be 1.7; for the 10-Hz signal AM used in the current study, D(fm) would 
probably take on a slightly lower value.  With continuous 70-dB SPL carriers, a 10-Hz 
modulation rate, and assuming D(fm) to be 1.7, our data are somewhat inconsistent with 

the proposed empirical formula: 9.10log10 −=
∆
I
I dB (INC condition in Fig. 3-2), and 

5.127.1)log20(44.0 −=+⋅ m dB (AM2 condition in Fig. 3-2).  Decreasing the value of 
D(fm) or inserting the modulation thresholds measured with the AM2 stimuli (SAM with 
a DC component) would only make the equation’s predictive ability worse.  The 
difference might be a result of the difference in onset and offset ramp durations used in 
the two studies: Wojtczak and Viemeister (1999) used 5-ms ramps for the increment 
detection task, and much longer effective ramps in the AM detection task (1/2 cycle of a 
4-Hz sinusoid = 125 ms).  We matched the ramp durations in both conditions to eliminate 
this potentially confounding factor: both INC and AM2 conditions used 50-ms ramps.  
Wojtczak and Viemeister (1999) also speculated that the empirical relationship might 
also hold for gated carriers, but did not test this hypothesis explicitly.  The current data 
allow for such a test.  In the gated intensity discrimination task (ID) here, 

6.6log10 −=
∆
I
I dB, while in the gated AM detection condition (AM), 

0.107.1)log20(44.0 −=+⋅ m dB.  The match to the proposed formula is worse in this 
condition, suggesting that it does not directly generalize to describe the relationship using 
gated stimuli. 
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3.3. EXPERIMENT II.  TONE-IN-NOISE DETECTION WITH A MODULATED 
MASKER IN THE ENVELOPE-FREQUENCY DOMAIN  
 The goal of the second experiment was to determine the extent to which listeners 
could use slow and regular temporal fluctuations in the instantaneous depth of a 
stochastic masker modulation to aid in the detection of a deterministic (SAM) signal 
modulation.  The stimuli were designed to maximize the availability of potential release-
from-masking cues in an envelope-domain transposition of a typical audio-frequency 
CMR paradigm. 
 
3.3.1 Methods 
 Details of the listeners, apparatus, and procedure were the same as in the first set 
of experiments.  This section addresses any remaining differences, which were mainly 
limited to stimulus parameters. 
 The carrier was again a 5.5-kHz pure tone with 50-ms Hanning windows applied 
to the onset and offset.  The overall SPL of the standard and target were normalized to 
have the same rms level as a 70-dB SPL pure tone.  Observation intervals were separated 
by a 500-ms silent interval.  In the two standard intervals, the tonal carrier was modulated 
by a Gaussian noise, which had a 120-Hz bandwidth (BW) and was geometrically 
centered around 32 Hz, from 8 to 128 Hz.  The average masker modulation depth was -
13.2 dB rms, (m = 0.22; for a 120-Hz BW, the noise had a ‘spectrum level’ of -34 dB).  
This combination of masker depth and BW was chosen to (1) ensure significant masking 
of the 32-Hz signal AM (presented only in the target interval), (2) avoid over-modulation 
(no stimuli with modulation depths greater than one were presented to the listeners), and 
(3) provide the opportunity for across-modulation-channel processes to enhance detection 
performance (by using a BW greater than that of the putative modulation filters, which 
are typically described as having half-power Q-values between 0.5 and 2, or effective 
BWs between 16 and 64 Hz for a channel tuned to 32 Hz).   
 Masker waveforms in each interval were independent noise realizations, 
generated digitally by setting the Fourier coefficients outside the desired pass-band to 
zero.  In the baseline conditions (analogous to unmodulated conditions in audio-
frequency CMR experiments), no further manipulations were made of the masker 
waveform before the 32-Hz sinusoidal AM (always in sine phase) was added and the 
resulting envelope signal imposed on the carrier.  A general equation for the final 
stimulus is: 

)]}()2sin(1)[2{sin()( tMtfmtfcts mc ++= ππ , 
where c is a scalar that equalizes the overall audio-frequency power in each interval, fc is 
the carrier frequency, m is the stimulus modulation depth (zero in the standard interval), 
fm is the signal modulation frequency (32 Hz), and M(t) is the masker waveform.   
In contrast to the baseline condition, the comparison, or ‘comodulated’ masker 
waveforms were further processed before being combined with the signal SAM.  Slow, 
coherent, and regular (sinusoidal or square wave) temporal fluctuations were imposed on 
the instantaneous masker modulation depth, M(t).  This resulted in a stimulus with a time-
varying venelope.  In all of the comparison conditions, the imposed venelope fluctuations 
were maximal in the sense that the nominal envelope depth of the masker varied between 
zero and the peak value.  Examples of the time waveforms that were used to modulate the 
carrier are shown in Fig. 3-3; masker-alone (standard) waveforms are illustrated on the 
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left, signal-plus-noise envelopes are shown on the right.  Baseline unmodulated masker 
(R), sinusoidally modulated masker (CSAM), and square-wave-modulated masker (CSQ) 
conditions are shown.     

 
FIG 3-3. Example temporal envelopes of the stimuli used to test for AM-domain 
modulation masking release.  Standard-interval envelopes (left) are defined by the 
masker-alone waveform; target interval envelopes (right) are made up of an additive 
combination of masker and sinusoidal signal AM.  A: Baseline (unmodulated) condition.  
CSAM: Sinusoidal venelope fluctuations.  CSQ: Square-wave venelope fluctuations.  fc = 
5500 Hz; standard SPL = 70 dB; masker BW = 120 Hz, geometrically centered on the 32-
Hz signal frequency; observation interval duration = 500 ms; signal depth m = 40%; fm’ = 
4 Hz. 

Imposing slow fluctuations in the envelope can affect the resulting modulation 
spectra (i.e. sidebands are generated when the envelope is modulated, just as they are in 
the audio-frequency spectrum when a carrier is modulated).  One way to avoid this 
complication is to filter the noise after it is modulated; the trade-off when using this 
strategy is that the temporal waveform can be changed, usually in the form of ringing 
caused by the band-limiting.  To control for this issue, thresholds were measured when 
the masker envelope bandwidth was limited either before (condition CSAM) or after 
(condition C’SAM) imposing the slow venelope fluctuations in both the baseline and 
comparison conditions. 

In the first part of the experiment, the venelope modulation rate, fm’, was fixed at 
4 Hz (two cycles were presented for each 500-ms signal), and the waveform used to 
modulate the (first-order) AM noise was varied, both in terms of its shape and its 
amplitude.  In the extension of the experiment, the duration of the signals was extended 
to 2 s to allow for the use of even slower venelope fluctuation rates (from 0.5 Hz to 4 
Hz).  An equal-energy (in terms of the envelope rms), square-wave venelope modulator 
was used with the 2-s signals. 
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For comparison, thresholds were also measured for the same listeners in an audio-
frequency CMR paradigm with parameters designed to (loosely) parallel those used in the 
envelope-frequency experiment.  In both the audio- and envelope-domain experiments, 
detection thresholds of a mid-frequency sinusoidal signal embedded in a moderately 
intense and wideband (re: relevant filtering properties) Gaussian masker were measured.  
Slow and regular fluctuations were imposed on the masker in both domains; release from 
masking was defined as improved thresholds in the conditions using modulated maskers 
over those using noises with flat temporal envelopes.  Specific audio frequency 
parameters were: signal frequency = 2 kHz; masker BW = 800 Hz (geometrically 
centered on the signal frequency); masker spectrum level = 30 dB SPL (overall rms level 
= 59 dB SPL); AM imposed on masker = 32 Hz sinusoid.  Observation and inter-stimulus 
intervals were 500 ms.  The tone level was adaptively varied initially in steps of 8 dB; the 
initial step size was halved after each of the first two track reversals occurring after 
consecutive correct responses until it reached 2 dB.  Again, the mean of six reversals was 
taken as threshold for a given track. 
 
3.3.2 Results 
3.3.2.1 No release from masking in the envelope-frequency domain for 500-ms stimuli 
 The magnitude of audio-frequency CMR with a wideband masker centered on the 
tone frequency and fully modulated with a deterministic waveform in the comodulated 
conditions is illustrated in the left panel of Fig. 3-4.  Thresholds were about 10 dB lower 
in conditions with a comodulated masker (C) than in the random (flat masker) case (R).  
The magnitude of the effect is close to that observed in a previous study using similar 
stimulus parameters (Verhey et al., 1999).   

The new contribution of the current experiment was to translate the parameters 
that result in significant audio-frequency CMR into the envelope-frequency domain.  
Pure-tone carrier SAM detection thresholds were measured in the presence of several 
types of additive modulation maskers.  A release from masking would take the form of 
lower thresholds in the conditions with slow and regular variations imposed on the 
instantaneous masker modulation depth when compared to performance in the conditions 
with a flat-envelope (Gaussian) masker modulation. 
 Within the right panel of Fig. 3-4, SAM detection thresholds are shown for the 
four masker conditions described above.  The average thresholds were all between -12 
and -15 dB (20 log m), and none of the comodulated condition thresholds were 
significantly different from those measured in the random condition (t-test p-values = 
0.18, 0.34, and 0.68).  In other words, the listeners were unable to take advantage of the 
slow and regular venelope fluctuations imposed on the first-order masker.   
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FIG 3-4. Effects of imposing slow and regular fluctuations on the masker amplitude in 
the envelope- and audio- frequency domains.  Conditions correspond to different 
temporal shapes imposed on the masker amplitude.  Left panel: Audio-frequency 
thresholds. R: random flat masker envelope (unmodulated).  C: 32-Hz SAM masker 
envelope, filtered after modulation and not equalized for overall energy increment caused 
by modulation.  Right panel: Envelope-frequency thresholds.  R: flat venelope masker 
(unmodulated).  CSAM: 4-Hz SAM venelope, noise filtered after modulation.  C’SAM: 4-Hz 
SAM venelope, noise only filtered prior to modulation.  CSQ: 4-Hz square-wave 
venelope, noise filtered after imposing the 4-Hz fluctuations.  Conditions CSAM, C’SAM, 
and CSQ were compensated for the small overall increase in masker energy caused by the 
modulation.   
3.3.2.2 Extending the time course of the slow masker fluctuations 
 In the square-wave venelope masker conditions above, the listeners were 
presented with two 125-ms segments of the unmasked pure SAM 32-Hz signal (4 
complete cycles) between two 125-ms segments containing both the signal and masker 
modulation.  This duration of pure-signal AM was insufficient to give rise to a release 
from masking.  However, intuitively, one expects that there must be a release from 
masking if the periods of low masker depth are long enough.  To further investigate the 
time course of the effect, it was necessary to increase the overall duration of each interval 
to 2 s to accommodate more than one cycle of the slow masker modulation.  Square-wave 
venelope waveforms with rates of 0.5, 1, 2, and 4 Hz were imposed on the same 
modulation masker used with the 500-ms signals (120-Hz BW geometrically centered on 
the 32-Hz signal rate, with an average depth of -13.2 dB rms), and detection thresholds 
were determined again for a 32-Hz signal AM.   
 Detection thresholds for the 2-s stimuli are shown in Fig. 3-5.  Individual 
thresholds are shown in addition to the mean results because of the relatively high inter-
subject variability.  For all four of the listeners, performance improved with decreasing 
venelope fluctuation rates over the range of frequencies tested.  The parameters of the 
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stimuli used in the 4-Hz condition were identical to those used with the 500-ms stimuli 
(condition CSQ in Fig. 3-4); mean performance improved by about 2.5 dB as a result of 
increasing the stimulus duration. 
 Thresholds asymptote near the expected pure-AM detection thresholds for 
listeners L1, L2, and L3; the remaining listener (L4) was less sensitive overall, and 
continued to show improvement between the 1 Hz and 0.5 Hz conditions.  Overall, the 
listeners required at least 500-ms periods of unmasked SAM signal between masker 
bursts to reach performance near the 32-Hz SAM detection thresholds expected for a 70-
dB SPL, 5.5 kHz pure tone carrier (between -25 and -30 dB; Zwicker, 1952; Fleischer, 
1982; Kohlrausch et al., 2000).  The relatively high thresholds observed for the 2- and 4-
Hz venelope frequencies suggests that the perceptually relevant decision variable is either 
integrated over a long interval, or that the internal representation of the signal AM is 
affected by preceding masker modulations for several hundred milliseconds.  
Anecdotally, listeners reported that the masker bursts were perceptually fused for 
venelope rates above 2 Hz and gradually became identifiable as temporally distinct and 
separable events at rates below 2 Hz. 
 
  

 
FIG 3-5. Individual and mean 32-Hz SAM detection thresholds as a function of the 
frequency of the square-wave venelope fluctuations imposed on the 1st-order masker 
modulation.  Stimulus parameters were the same as those in condition CSQ of Fig. 3-4, 
except the overall duration was increased to 2 s. 
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3.3.3 Discussion 

The findings from Experiment II are consistent with those of Experiment I in that 
venelope fluctuations did not appear to contribute to performance in envelope-frequency-
domain versions of either task.  Both sets of experiments were designed to show that the 
analogous audio-frequency paradigms were strongly influenced by first-order envelope 
fluctuations.  In other words, there does not appear to be an additional independent 
coding dimension that the listeners have access to in the transposed (modulation domain) 
experiments as there apparently is in the audio-frequency domain.     
3.3.3.1 Relation to previous work 

The results of our effort to measure CMR in the envelope-frequency domain are 
in qualitative agreement with the findings of several previous studies.  Wojtczak and 
Viemeister (2005) also showed that a modulated envelope preceding a SAM signal 
imposed on the same carrier could affect detection performance for masker-probe delays 
of up to 200 ms.  Their AM forward masking paradigm used a wideband noise carrier, a 
sinusoidal masker AM, and a short (50-ms) signal that was present only after the masker.  
The broadly similar time course of masking observed in the two studies suggests that a 
single mechanism could underlie both effects, and that it is independent of the statistical 
description of the carrier and masker.  It is not immediately clear what this mechanism is; 
in fact, it would be reasonable to predict that neither effect would be seen based on the 
broadly tuned nature of the putative modulation filters: the “trade-off” for implementing 
broad signal-processing filters is that the response recovers quickly from stimulation.   

One aspect of the stimulus that changes with the venelope fluctuation rate is the 
duration of the segments of pure unmasked SAM.  If the listeners were ignoring the 
masked portions of the stimulus and basing decisions solely on a single period of 
unmasked SAM, then one could predict a purely duration-based improvement in 
thresholds at low venelope rates.  Again, this argument assumes that detection is not 
mediated by analysis of the masked segments, or by multiple looks at the unmasked 
segments.  While these assumptions are probably not realistic, it is worth pointing out 
what is known about duration effects on AM detection.  Füllgrabe and Lorenzi (2003), 
using a 75-dB SPL, 9-kHz tone carrier and stimulus durations of 250, 500, and 2000 ms, 
showed that (1st-order) AM detection depends on duration, but thresholds for a 250-ms, 
32-Hz signal were still < -25 dB.  Thresholds for a 2-s pure SAM signal were about -32 
dB.  Füllgrabe and Lorenzi’s results are consistent with the idea that our listeners’ 
performance was affected by the masker (even at very low venelope fluctuation rates), 
and that the observed time course of masking was not simply a result of increasing the 
duration of the pure (unmasked) signal AM. 

The information available to cochlear implant (CI) users is provided largely in the 
form of temporal envelope fluctuations imposed on the amplitude or duration of current 
pulses presented to stimulating electrodes.  Nelson et al. (2003) and Nelson and Jin 
(2004) measured performance of CI users in a speech recognition task with a temporally 
modulated noise masker, and varied the “gate frequency” from 1 Hz to 32 Hz.  They 
found that CI users did not benefit from temporal gaps in the noise masker as long as 500 
ms (performance was independent of the gate frequency).  Conclusions from the CI 
experiments can be rephrased to exactly match those from the current study: in conditions 
with severely impoverished spectral-frequency cues, listeners are unable to use relatively 
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long temporal gaps in a noise masker to aid in the detection of a signal.  It is likely that 
the comparable quality of masker and signal in both studies leads to the fusion of 
temporally distinct masker events connected by a perceptually similar signal. 
3.3.3.2 Interpreting time courses 
 The extended-time-course AM-detection experiment suggests a long integration 
time constant operating at some stage presumably central to the putative envelope-
filtering process.  Such a statement is consistent with “long-term” masked AM detection 
decision statistics that quantify responses based on an averaged representation of the 
processed stimulus envelope, such as envelope rms (e.g. Strickland and Viemeister, 1996; 
Ewert and Dau, 2000; Ewert et al., 2002) or the average firing rate of a model IC cell 
(Nelson and Carney, in review).  However, it is worth pointing out the current data set 
does not necessitate the assumption of such a time-averaged decision variable.  It remains 
possible that a “local feature” decision variable (e.g. envelope max/min ratio or 
maximum local modulation depth) could be used, but that the listeners combine 
information from multiple looks (e.g., Sheft and Yost, 1990; Viemeister and Wakefield, 
1991; Dau et al., 1997) of the details of the local features.   

Cortical physiological studies have provided evidence for long-lasting modulation 
of responses to envelope fluctuations that might underlie the apparent perceptual 
sluggishness observed here.  Using pure-tone forward masking paradigms in the primary 
auditory cortex (A1), several groups have shown that the response to a short probe signal 
could be affected by the presence of a masker that preceded the probe by as much as 
several hundred ms or longer  (e.g. Calford and Semple, 1995; Brosch and Schreiner, 
1997; Ulanovsky et al., 2004).  If the masker had a similar audio-frequency composition 
to that of the probe (as it did in the current study), the response to the probe was usually 
suppressed.  In a recent study of the unanesthetized marmoset A1 that used stimuli more 
similar to those used in the current psychophysical experiments, Bartlett and Wang 
(2005) examined the contextual dependence of AM responses on previous stimulation.  
Their findings were in qualitative agreement with those of the AM forward masking 
studies, but the observed suppression (or facilitation) of a probe AM stimulus could last 
longer than 1 s in some neurons and depended on the modulation properties of the 
preceding stimulus.  To date, we are not aware of physiological results at any level that 
address the effect of a masker modulation (simultaneous or non-simultaneous) imposed 
on the same tone carrier as a deterministic signal modulation.  In all of the studies 
mentioned above, the probe and masker were imposed on separate carriers (i.e. the 
stimuli were gated).  It would be interesting to know whether physiological time courses 
of adaptation to AM are different for gated and continuous carriers.   

An alternative explanation for the finding of similar thresholds in the random and 
comodulated envelope-domain detection task is that the listeners were basing decisions 
on the masked portion of the stimulus and largely ignoring the signal representation in the 
dips of the masker.  This seems unlikely, since the signal-to-noise ratio (SNR) was 
optimal in the masker dips, but possible if the masker bursts were grouped together into a 
single auditory object.  One hypothesis is that listeners chose the interval that contained 
the highest local modulation depth.  This would likely occur near the peaks of the 
masker, where the instantaneous SNR was the lowest, and predicted thresholds should be 
qualitatively similar in the random and comodulated conditions. 
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3.4 MODELING 
 
3.4.1 Methods 
 A physiologically motivated processing model developed to predict peripheral 
and central neural responses to pure SAM tones (Nelson and Carney, 2004) and 
psychophysical responses to masked SAM tones (Nelson and Carney, in review) was 
used to simulate responses to the stimuli used in the current study.  The peripheral model 
was a modification of previous AN models (Carney, 1993; Zhang et al., 2001; Heinz et 
al., 2001a), and the final model output can be compared to pure-tone onset responders in 
the IC.  Interactions between fast excitation and slow inhibition give rise to modulation 
tuning in the model IC cells; because the two inputs are matched in audio-frequency CF, 
the model is referred to as the same-frequency inhibition and excitation (SFIE) model as 
in Nelson and Carney (2004).  In the current study, the relative strength of inhibition with 
respect to excitation at the level of the model IC cells (SINH,IC) was set equal to 1.0.  This 
parameter was important for determining the threshold modulation depth required to 
elicit firing in the model cells: values of SINH,IC ≤ 1 resulted in lower depth thresholds 
than SINH,IC values greater than one (i.e. stronger inhibition re: excitation).  The time 
constants of inhibition (τinh) and excitation (τinh) were chosen to yield a cell that was 
tuned to the signal fm of interest (see Nelson and Carney, 2004).        
 
3.4.2 Results and Discussion 
 Simulation results are described and discussed next with three specific 
psychophysical observations in mind: (1) audio-frequency level-discrimination thresholds 
depend on the choice of gating mode (Experiment I), (2) AM detection thresholds depend 
on gating mode (Experiment I extension) but AM depth-discrimination thresholds do not 
(Experiment I), and (3) masked SAM detection thresholds do not readily improve when 
the masker is comodulated (Experiment II).  The first finding is examined most carefully 
with the model, and those results are used as justification for the assumptions made with 
the remaining sets of data.  In general, the modeling work is meant to qualitatively test 
the ability of an existing envelope-processing model to account for broad and basic 
features of the data.  This approach intentionally lies between speculating on potential 
mechanisms and explicitly predicting listeners’ thresholds with a specific (i.e. fitted) 
model. 
3.4.2.1 Audio-frequency level discrimination with gated and continuous carriers 

By definition, modulation-tuned neurons are also envelope change detectors, and 
the properties that underlie AM responses in these neurons can also qualitatively explain 
the audio-frequency gated-continuous difference.  To illustrate this point and to provide a 
concrete example of a component of a realistic neural circuit that predicts a heightened 
sensitivity to increments over gated tone bursts, we applied the SFIE model to the audio-
frequency stimuli used in the current study. 
 Instantaneous firing rate (IFR) functions are shown in Fig. 3-6 for two levels of 
model responses.  The functions are comparable to physiological peri-stimulus time 
histograms (PSTHs) obtained at the level of the AN (i.e. Harris and Dallos, 1979) and the 
IC (i.e. Langner and Schreiner, 1988), and were generated for eight illustrative 
conditions.  Both AN and IC model responses are included in each of the panels of Fig. 
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3-6, which correspond to a specific combination of gating mode (gated or fringe) and 
standard SPL (20 dB or 60 dB).  The timing of the standard (S) and target (T) stimulus 
presentation is marked by the two horizontal bars from 0.5-1 s and 1.5-2 s.  A 3-dB level 
increment in the target interval was used.  Other parameters of the stimuli were matched 
to those used in the psychophysical experiment.  The IC model time constants (τexc = 10 
ms; τinh = 20 ms) were chosen to yield a cell tuned to the effective 10-Hz modulation rate 
caused by the 50-ms onset and offset ramps. 
 First, consider the model outputs in response to a 20-dB standard-interval SPL 
tone (upper panels of Fig. 3-6).  For our purposes, the most critical differences between 
the modeled AN and IC responses are in the steady-state portion: ANFs respond with 
sustained firing to pure-tone stimulation, while the IC model only fires when the stimulus 
envelope elicits a change in the peripheral response.  This is most clearly seen at 
envelope transitions with rising slopes, but offset adaptation in the peripheral model also 
results in a small response at the offset of the gated stimuli in the IC model.  Note also 
that the IC model responds to both standard and target intervals when the intervals are 
gated, but only to the target interval in the fringe conditions.  The AN model responses 
are always non-zero when a stimulus is present, although there is no change in the 
response from the baseline to the fringe-condition standard interval. 
  

     
FIG 3-6. Simulated responses to standard and target stimuli for the AN and IC levels of 
the SFIE model.  Upper panels: 20 dB SPL standard level; lower panels: 60 dB SPL 
standard level.  The target interval level was 3 dB higher than the standard.  Left panels: 
gated stimuli; right panels: fringe presentation mode. 
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Because of rate saturation effects in the AN model, the pattern of model responses 
was quite different when a 60-dB standard tone SPL was used (Fig. 3-6, lower panels).  
Specifically, the target interval increment did not elicit a change in the fringe-condition 
responses of either the AN or IC model.  As a result, a model consisting only of high-
spontaneous rate (SR), on-CF ANFs at medium to high SPLs predicts unrealistically high 
level discrimination thresholds (Colburn et al., 2003).  There are two popular ways to 
account for psychophysical performance at high SPLs and high frequencies.  One is to 
unevenly and heavily weight the contribution of low-SR ANFs (Winslow and Sachs, 
1988; Delgutte, 1987; Viemeister, 1988).  This approach is not completely satisfying, 
because such high-threshold, wide dynamic range ANFs make up only ~15% of the total 
population in cat (Liberman, 1978) and only exist at high CFs (> 1500 Hz, Winter and 
Palmer, 1991).  Another aspect of the response to high-level tones that may provide 
information for discrimination is in the spread of excitation across a population of 
neurons (Viemeister, 1972; Florentine et al., 1987; Heinz et al., 2001b; Colburn et al., 
2003).  To address this issue, standard and target stimuli were presented to a group of 
model cells with different CFs. 

Responses across the population were quantified in terms of their average rate 
over the entire 500 ms of the stimulus.  Peripheral (AN) differences in the model’s rate 
responses are shown in the upper panels of Fig. 3-7, and central (IC) rate differences are 
plotted in the lower panels.  The parameter in each panel of Fig. 3-7 is the standard level.  
As in Fig. 3-6, gated and fringe conditions are illustrated in the left and right panels, 
respectively.  For all four combinations of gating mode and model level, the biggest 
differences in rate between the target and standard interval moved progressively away 
from the tone frequency (5500 Hz) as the standard SPL was increased.  This is consistent 
with previous studies using simulations of high-SR ANFs (e.g. Siebert, 1968; Heinz et 
al., 2001b; Colburn et al., 2003), and is caused entirely by saturation in the present model 
(a linear basilar membrane model was used).  A model version with level-dependent 
bandwidth and gain (i.e. a time-varying compressive nonlinearity, Heinz et al., 2001a) 
was also tested, and a similar pattern was obtained, suggesting that effects caused by 
saturation dominate those caused by compression when low-threshold, high-SR ANFs are 
used to estimate the population response. 

Another feature of the differences in model rates was that the shapes of the 
profiles were similar at both levels of the model.  This was a direct result of the 
simplified nature of the SFIE IC model neurons.  Absolute values of the rate differences 
were significantly higher in the AN model (note the different scales for the upper and 
lower panels); this was not surprising given the sustained nature of responses to pure 
tones in the AN model and transient characteristics of the IC model responses.  Finally, 
comparing across the gated and fringe conditions, the changes in model rates were not 
strongly dependent on the mode of gating for either the AN or IC model population.    
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FIG 3-7. Rate difference profiles for different gating modes (left and right panels) and 
levels of the model (upper and lower panels) in response to a 3-dB level increment.  Each 
curve represents changes in the model rate responses for a 5500-Hz tone with a fixed 
standard SPL.  Twenty-five model cells, log-spaced from 1,375 Hz to 22,000 Hz, were 
simulated for each standard level and gating mode. 

 
The similarity of absolute rate differences for the gated and fringe conditions at 

both model levels does not provide a compelling explanation of the gated-continuous 
difference.  It does, however, lead us to a consideration of another feature of neural 
responses that must be known (or assumed) before predicting performance: the variability 
of rate estimates (i.e. Siebert, 1965).  In actual ANFs, rate variability can be reasonably 
described as Poisson, with spike-count variance approximately equal to the mean count 
(at least at low rates, see Young and Barta (1986) and Winter and Palmer (1991) for a 
description of the reduced-variance deviation from Poisson at high rates).  The situation 
is less clear in more central processing stations, but for simplicity, we will assume 
Poisson variance at both levels of the model responses.  These variance characterizations 
allow for a relatively simple formulation of the information provided by each frequency 
channel in the population rate response (following the approach of Siebert, 1965; for 
details and derivations, also see Heinz et al., 2001b):  
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where (rateT – rateS) is the rate difference term plotted in Fig. 3-7, Iinc is the size of the 
target-interval increment (3 dB in the examples shown), and σ2

rate is the variance of the 
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rate response.  Our Poisson assumption allows for a simple estimate of σ2
rate: it is simply 

equal to the average rate (across both standard and target responses).  
Information profiles, which incorporate both changes in rate and contributions of 

assumed neural variability, are shown in Fig. 3-8, in a format identical to that used to 
visualize the rate differences alone in Fig. 3-7.  The limits of the y-axes are identical in 
all four panels.  When the response variability is taken into account, the AN population 
model still predicts no advantage in the fringe condition relative to the gated presentation 
mode.  In contrast, the envelope-change-detecting IC model clearly predicts a heightened 
sensitivity to the fringe condition, for all three tested standard levels.  In addition, the 
overall summed population d’ (related to the area under the information profile curve) is 
higher for the fringe-stimulus IC model rate responses than for the peripheral AN model 
responses.  The gated-continuous difference in the IC model is strongly influenced by the 
lower average rate in the fringe condition, which translates into lower assumed variability 
and higher values of d’. 

   
FIG 3-8. Across-frequency information profiles, arranged in the same format as Fig. 3-7.  
This measure of sensitivity takes both neural variance and changes in average rates into 
account.  

While the exact values of predicted d’ and thresholds depend on details of the 
parameters of the model and the statistical description of the chosen internal noise 
assumption, overall trends and the difference between gated and fringe conditions for the 
SFIE model with equal amplitude inhibition and excitation do not.  One of the key 
features of the IC model that underlies the current explanation of the audio-frequency 
gated-continuous difference is the fact that there is some response to both intervals in the 
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gated condition, and only a response to the target interval in the fringe condition.  The 
other critical assumption is an internal noise process that predicts response variability that 
increases with average rate.  Such a change-detection mechanism could in theory be 
independent of peripheral adaptation, although there is an interaction between the two in 
the model, and some interplay probably exists in the real system as well. 
3.4.2.2 Envelope-frequency detection and discrimination with gated and continuous 
carriers 

AM detection thresholds (at least at low modulation rates) depend on whether the 
carrier is gated or quasi-continuous (Fig. 3-2 of the current study; see also Viemeister, 
1979; Sheft and Yost, 1990; Yost and Sheft, 1997): thresholds are significantly higher 
when a gated carrier is used.  In contrast, we found AM depth discrimination thresholds 
(ms = 0.25) to be statistically identical with gated and quasi-continuous carriers.  Based 
on the results from the preceding section, we will focus the analysis of the model in this 
section to off-CF IC model responses, where the biggest differences between standard 
and target were found. 

IC model IFR functions are shown in Fig. 3-9 for 10-Hz SAM detection (top two 
panels) and 10-Hz SAM depth discrimination (bottom panels) paradigms.  The 
observation intervals were 0.5 s; the standard interval started at 0.5 s, and the target at 1.5 
s.  Labels in the upper left corner of each panel indicate the gating mode for each 
response.  Simulated PSTHs for the AM-detection paradigm were similar to the IC model 
responses in Fig. 3-6 for audio-frequency level discrimination, in that the gated stimuli 
elicited a response in both the standard and target interval, while the fringe stimulus 
resulted in a model response only in the target interval.  Again, if differences in both rate 
and variance are considered, model responses predict an enhanced sensitivity to the 
fringe condition compared to the gated condition (see preceding section). 

In contrast, for AM depth discrimination (lower panels of Fig. 3-9) the IC model 
responded to both standard and target interval in the gated and fringe conditions.  Since 
both rate differences and assumed rate variability are similar in these conditions, the IC 
model predicts little or no difference in thresholds between the gated and fringe 
presentation modes (as observed in Experiment I). 
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FIG 3-9. SFIE model responses are qualitatively consistent with a fringe advantage in 
AM detection and no fringe advantage in AM depth discrimination.  Model responses are 
shown for a 2.5-s window centered on the presentation of a standard followed by a target 
modulation.  Simulated PSTHs are shown for an AM detection paradigm (top two panels) 
and an AM depth discrimination task (bottom two panels); gated and fringe conditions 
are included for both tasks.  Stimulus parameters: fc = 5.5 kHz; SPL = 70 dB; fm = 10 Hz; 
detection mt = -20 dB; discrimination ms = -12 dB, mt = -7 dB.  Key model parameters: 
τexc = 10 ms; τinh = 20 ms; SINH,IC = 1; AN CF = 2000 Hz. 
  
 
3.4.2.3 CMR experiment 

Two questions were investigated concerning the ability of the model responses to 
qualitatively predict psychophysical trends observed with the stimuli used in the 
envelope-frequency-domain CMR experiment.  First, does the model correctly predict the 
absence of a release from masking with the 4-Hz venelope modulation rate and 32-Hz 
signal SAM rate, as used in the base experiment?  Second, is there an effect of venelope 
modulation rate over the range considered in the extension to the base CMR experiment?   

To address the first question, a fixed-level signal SAM (-15 dB in 20 log m) was 
added to the masker in the target interval; model responses were quantified in terms of 
their average firing rates (across ten independent noise waveforms) in the random (R) 
unmodulated condition and in the 4-Hz square-wave comodulated masker condition for 
both standard and target intervals.  If the model was consistent with the listeners’ 
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thresholds, the difference in the response to the standard and target intervals should be 
independent of the masker condition (random or comodulated at 4 Hz).  Fig. 3-10 shows 
that this was not the case; average rates in the random condition (gray symbols) were 
more similar in the standard (o) and target (�) intervals than the rates in the 4-Hz 
comodulated condition (right-most connected points).  The disparity is caused by reduced 
response magnitude in the standard intervals of the comodulated conditions; target-
interval rates were largely independent of the fluctuation patterns imposed on the masker.  
The overall long-term envelope rms energy was identical in all of the noise-alone 
(standard) intervals shown in Fig. 3-10; the suppression in rate for the comodulated 
condition was therefore caused by a non-linear relationship between envelope rms and 
model IC cell average rate.  The main factor contributing to this relationship was the 
change in the slope of the rate vs. stimulus modulation depth function: at low m, the rate 
of change in rate was lower than at higher m.  For example, when the modulation depth 
of a pure 32-Hz SAM signal was varied and presented to the cell simulated in Fig. 3-10, 
the slope of the function was ~0.1 sp/s/dB for -30 dB < 20 log m < -25 dB, and ~0.9 
sp/s/dB for -5 < 20 log m < 0 dB.  In other words, responses to small effective 
modulation depths (such as the “ripples” caused by post-modulation filtering of the 
masker, or fluctuations in the masker away from the cell’s best modulation frequency) 
were strongly attenuated in the model, which resulted in a reduced overall response to the 
modulated standard-interval stimulus.  To reiterate, the rate responses of the model IC 
cell were not consistent with the listeners’ inability to use the fluctuations in the masker 
to improve thresholds in the masked detection task.  The schematic IFR functions 
included in Fig. 3-10 along with the rate quantifications show that the signal 
representation in the temporal responses of the model IC cells also suggest an increased 
salience of the signal in the comodulated conditions.  

The second question posed at the beginning of this section was whether the model 
responses varied as the venelope frequency changed from 0.5 Hz to 4 Hz, as the 
psychophysical thresholds did.  The long effective time constants apparently necessary to 
explain the time course of release from masking observed in the extension of Experiment 
II (on the order of hundreds of ms) are not included in model IC cells tuned to a 32-Hz 
signal frequency.  This statement is supported by the simulations, which did not show any 
evidence for long time constants: rates in the standard and target intervals for the 
comodulated conditions were independent of the venelope fluctuation rate (connected 
symbols in Fig. 3-10.) 
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FIG 3-10. Model IC cell average rates and example IFR functions in response to the 
stimuli used in the envelope-frequency CMR paradigm.  Model parameters were the 
same as those used to generate the responses in Fig. 3-9, except the AN CF = 2250 Hz, 
τexc = 3 ms and τinh = 10 ms, which resulted in a cell rate-tuned to the 32-Hz signal AM 
frequency.  The signal depth was fixed at -15 dB (20 log m) in the target interval, and a 
square-wave venelope was imposed on the masker in the comodulated conditions (as in 
the extension to Experiment II).  For comparison, rates and IFRs elicited by the random 
(R), or unmodulated condition, are also included in the plot (the duration of stimuli and 
IFRs were 2 s). 
 
 Although not explicitly tested with the stimuli used here, it is worth noting that 
the signal-processing-style envelope power-spectrum model (EPSM, Ewert and Dau, 
2000) can also conceptually account for certain aspects of the current data.  For instance, 
the absence of a gated-continuous difference for depth discrimination can be predicted by 
the EPSM, as there is no explicit adaptation or other context-dependent features included 
in the model.  Also, the lack of a release from masking in the CMR task is predictable 
based on a calculation of the long-term envelope energy (as in the EPSM), since the rms 
modulation depth of the masker was identical in the random and comodulated conditions.  
However, the slow time course of masking release observed in the extension of 
Experiment II cannot be accounted for without modifying the most recent versions of the 
EPSM to include some relatively long temporal dependence of the model response or its 
quantification.   
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3.5 SUMMARY AND CONCLUSIONS 
 Two specific audio-frequency paradigms were transposed into the modulation 
domain to assess the perceptual salience of venelope cues in continuous-carrier depth 
discrimination and SAM detection in the presence of a slowly varying masker.  The 
experiments described here suggest a minor effect of temporal structure on performance 
in the two envelope-processing tasks.  Several specific conclusions can be drawn from 
the empirical data and modeling results: 
(i) Tone-carrier SAM-depth discrimination thresholds are not dependent on the gating 
mode of the carrier (i.e. gated or quasi-continuous), for a standard modulation depth of -
12 dB (ms = 0.25) and modulation frequencies from 4 to 64 Hz.  This contrasts with 
audio-frequency level-discrimination results, which clearly indicate a heightened 
sensitivity to intensity increments when compared to gated-carrier threshold 
measurements. 
(ii) SAM detection thresholds (or discrimination with a standard depth ms = 0) are 
approximately 5-6 dB lower when a quasi-continuous carrier is used than when the 
observation-interval stimuli are gated (for fm = 10 Hz). 
(iii) Masked detection thresholds of a 32-Hz signal AM do not improve when the masker 
is slowly and coherently modulated with a 4-Hz venelope fluctuation rate.  This is true 
for both sinusoidal and square-wave shaped comodulation.  Audio-frequency tone 
detection thresholds, on the other hand, are strongly affected by the properties of the 
masker modulation. 
(iv) To observe CMR in the envelope-frequency domain, the time course of the coherent 
modulation must be lengthened until the masker bursts occur as perceptually distinct 
events (i.e. venelope fluctuation rates ≤ 1 Hz for a 32-Hz signal). 
(v) A simple model developed to predict responses to SAM tones in the auditory 
midbrain can qualitatively account for several of the results, including the gated-
continuous difference for pure-tone level discrimination and AM detection and the gated-
continuous “similarity” for AM depth discrimination.  The model does not, however, 
explain the listeners’ inability to use relatively slow fluctuations in the instantaneous 
masker modulation depth to improve performance in the envelope-domain masked-SAM 
detection task.  Higher-order processing, possibly associated with auditory grouping 
and/or segregation mechanisms, may need to be considered to account for results in the 
CMR task. 
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CHAPTER 4 
 
Rate and timing cues for neural detection and 
discrimination of amplitude-modulated tones in the 
awake rabbit inferior colliculus 
 
ABSTRACT 
Neural responses to amplitude-modulated (AM) tones in the unanesthetized rabbit 
inferior colliculus (IC) were studied in an effort to establish explicit relationships 
between physiological and psychophysical measures of temporal envelope processing.  
Specifically, responses to variations in modulation depth (m) at the cell’s best modulation 
frequency were quantified in terms of average rate and synchronization to the envelope 
over the entire perceptual dynamic range of depths.  Significant variations in the metrics 
were used to define neural AM detection and discrimination thresholds.  Synchrony 
emerged at modulation depths comparable to psychophysical AM detection sensitivities 
in some neurons, while the lowest rate-based neural thresholds could not account for 
psychoacoustical thresholds.  The majority of rate thresholds (85%) were -10 dB or 
higher (in 20 log m), and 16% of the population exhibited no systematic dependence of 
average rate on m.   Neural thresholds for AM detection did not decrease systematically 
at higher SPLs (as observed psychophysically): thresholds remained constant or increased 
with level in 22 of the 33 cells tested at multiple SPLs.  At depths higher than the rate-
based detection threshold, some rate modulation-depth functions were sufficiently steep 
with respect to the across-trial variability of the rate estimates to predict depth 
discrimination thresholds as low as 1 dB (comparable to the psychophysics).  Synchrony, 
on the other hand, did not vary systematically with m in many cells at high modulation 
depths.  We conclude that the neural representation of AM in the IC likely transitions 
from a temporal code at low depths to a rate or synchronized-rate code at high depths.  A 
simple computational model was extended to reproduce many features of the modulation 
frequency- and depth-dependence of both transient and sustained pure-tone responders.  
Note: A version of this chapter will be submitted to the J. Neurophysiol., as a paper with 
the same title, by P. C. Nelson and L. H. Carney. 
 
4.1 INTRODUCTION 

Temporal envelope fluctuations abound in natural acoustic landscapes, and the 
preservation of psychophysically relevant amplitude modulations is essential for robust 
vocalization perception (Drullman 1995; Shannon et al. 1995), auditory grouping and 
stream segregation (Bregman 1990), and signal detection in the presence of competing 
maskers (e.g. Hall et al. 1984).  Although the auditory system is often described in terms 
of its audio- or spectral-frequency tuning properties, many central neurons are actually 
more sensitive to degradations of the stimulus temporal envelope than to smearing of 
spectral content (e.g. Nagarajan et al. 2002, Theunissen and Doupe 1998). 

Basic psychophysical envelope-processing tasks have received renewed attention 
recently, due in large part to the success of a model of the “effective” signal processing of 
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the auditory system (Dau et al. 1997) in predicting behavioral data that are difficult to 
interpret unless one assumes the existence of a bank of filters tuned in the amplitude-
modulation (AM) frequency domain (e.g. Bacon and Grantham 1989, Dau et al. 1997, 
Ewert and Dau 2000, Houtgast 1989).  Such a conceptual framework is fundamentally 
different from the assumptions of established models of AM perception, which describe 
the putative central processor as a low-pass filter (e.g. Viemeister 1979). 

Physiological studies of responses to AM provided some of the motivation for 
psychophysical investigations of frequency selectivity in the AM domain (e.g. 
Creutzfeldt et al. 1980, Langer and Schreiner 1988), but specific hypotheses concerning 
the relationships between physiological responses and perceptual signal-processing 
models have not been adequately examined.  One possibility is that single neurons in the 
auditory midbrain function as modulation filters.  A qualitative scan of the relevant 
literature suggests this may be a reasonable hypothesis, since many neurons in the 
inferior colliculus (IC) systematically change their responses with variations in 
modulation frequency (fm) and modulation depth (m) (Krishna and Semple 2000, Langner 
and Schreiner 1988, Mueller-Preuss et al. 1994, Rees and Moller 1983).  The next portion 
of this introduction provides a more detailed description of the published physiological 
responses to AM that should be considered to thoroughly examine this hypothesis, with a 
focus on the gaps in evidence that the current experiments were designed to fill.  

Neural representations of sounds with dynamic temporal envelopes change 
dramatically as the auditory neuraxis is ascended.  Much of our understanding about this 
transformation comes from studies of physiological responses to stimuli with 
systematically varied AM frequencies.  From this body of work, a reasonably consistent 
picture has emerged: peripheral neurons appear to carry envelope-frequency information 
in a temporal (phase-locked code), with average rates that do not change with stimulus fm 
(Joris and Yin 1992).  More central neurons, in contrast, often exhibit average firing rates 
that are strongly dependent on fm, and a reduced ability to synchronously follow faster 
fluctuations (for a review, see Joris et al., 2004).  This frequency-focused description of 
neural responses to AM leaves a fundamental issue pertaining to the relationships 
between physiology and psychophysics unclear.  Specifically, modulation transfer 
functions (MTFs) only provide information about responses to a single (usually high) 
modulation depth; as a result, direct comparisons to behavioral data are difficult because 
the goal of much of the relevant psychoacoustics is to determine the smallest detectable 
or discriminable m.  A major objective of the current study was to obtain neural responses 
to stimuli with a wide range of modulation depths, including depths near psychophysical 
AM-detection thresholds.     

A few studies have reported physiological responses to variations in stimulus 
modulation depth.  In auditory-nerve fibers (ANFs) and most ventral cochlear nucleus 
(VCN) units, synchronization to the envelope increases monotonically with depth, with 
average rates that are largely depth-independent (AN: Joris and Yin 1992; VCN: Rhode 
1994).  Such generalizations cannot be made about AM-depth processing at higher levels 
of the central auditory system because of the striking response diversity.  For instance, in 
the superior olivary complex (SOC), changes in the response with m are strongly 
correlated to the units’ pure-tone response properties.  Sustained pure-tone responders in 
the periolivary nuclei of the SOC tend to be similar to ANFs in terms of the shape of rate- 
and synchrony- modulation depth functions (rMDFs and sMDFs), while offset responders 
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exhibit monotonically increasing rMDFs and saturating sMDFs with narrow dynamic 
ranges (Kuwada and Batra 1999).   

Krishna and Semple (2000) have provided the most complete account of neural 
responses at the level of the IC across a range of modulation depths.  They found that 
average firing rates in many cells varied monotonically with m, especially near the cell’s 
preferred modulation frequency.  The change in rate could be an increase or a decrease 
with m, depending on the presence of regions of excitation and suppression in the cell’s 
rate modulation transfer function (rMTF) and their relationship to the chosen stimulus 
modulation frequency.  Temporal response patterns also changed with m in the 
anesthetized gerbil.  A minimum depth was required to elicit significant synchrony in 
individual cells; this value ranged from as low as 10% (the lowest depth tested) in some 
of the neurons to 70% in others (Krishna and Semple 2000).  Changes in vector strength 
above the minimum m were less stereotypical: synchrony in some neurons varied over a 
wide range of depths, but remained constant in most cells.  Results from other (less 
systematic) studies are in qualitative agreement with the single-unit IC modulation-depth 
dependence description of Krishna and Semple (Mueller-Preuss et al. 1994, Nelson et al. 
1966, Rees and Moller 1983).  Relatively little is known about cortical responses to 
variation in m; Eggermont (1994) and Liang et al. (2002) measured tone-carrier 
modulation transfer functions (MTFs) in primary auditory cortex neurons at several 
depths from 25% to 100%, and concluded that (1) MDFs were monotonic, and (2) neural 
best modulation frequencies were essentially independent of m.    

A survey of this previous work allows for a qualitative description of neural 
responses to variations in modulation depth, but a direct and quantitative comparison of 
physiological responses at any level of the pathway to basic psychophysical AM 
detection and discrimination performance is still lacking.  Two requirements for such a 
comparison to be made are met in the current study.  First, the stimulus parameter space 
used in the physiology was designed to match that of the psychophysics.  Specifically, m 
was varied from below detection threshold to 100%, in some cases using step sizes 
smaller than the behavioral just-noticeable difference (jnd).  Second, a description of the 
statistical variability of the neural responses was included to quantify the significance of 
small changes in a given response metric (e.g. average rate and synchrony).   

The IC is an inherently interesting nucleus in which to study AM processing.  
Structurally, it occupies a critical position in the subcortical processing pathway, as an 
almost obligatory ascending synapse (Aitkin and Phillips 1984, Malmierca et al. 2002, 
Ramon y Cajal 1904) and a receiving station for both inhibitory and excitatory inputs 
converging from afferent (Warr 1982, Winer et al. 1995), efferent (Winer 2004), and 
intrinsic and commissural connections (Saldana and Merchan 2004).  In contrast to the 
established anatomical description of the IC and its connections, the functional 
representation of modulated sounds in the IC is still a matter of debate (Joris et al. 2004), 
but it is clear that both magnitude (rate) and phase (synchrony) information is present in 
the responses of single neurons (e.g. Krishna and Semple 2000, Langner and Schreiner 
1988, Rees and Moller 1983).  Thus, the IC apparently plays a transitional role between 
the temporal representation of AM in the periphery (Joris and Yin 1992) and a more rate-
based code in the cortex (Liang et al. 2002). 

Here, we show that changes in the average firing rates of single IC neurons in the 
awake Dutch-belted rabbit are generally poor predictors of human behavioral 
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performance in psychophysical AM detection tasks.  Synchronization to the envelope, on 
the other hand, can emerge and change at modulation depths much closer to 
psychoacoustical thresholds.  At supra-threshold depths, the situation is different; 
changes in average rates can, in some neurons, account for psychophysical sensitivity in 
masked AM detection and AM depth discrimination.   
 
4.2 METHODS 
 
4.2.1 Animal preparation 

AM responses in the IC were obtained in three unanesthetized female Dutch-
Belted rabbits (oryctolagus cuniculus).  All procedures were approved by the Syracuse 
University Institutional Animal Care and Use Committee, and conformed to National 
Institutes of Health guidelines and protocols.  Our preparation was developed based on 
techniques used in several previous studies of the awake rabbit IC and superior olivary 
complex (e.g. Batra et al. 1989, Kuwada et al. 1987).  Before recordings began, two 
separate aseptic surgeries were performed to allow for chronic access to the midbrain in 
daily 2-hour recording sessions.  In both procedures, the animals were anesthetized with 
ketamine (66 mg/kg) and xylazine (2 mg/kg) delivered intramuscularly, and supplemental 
doses were administered to maintain areflexia.   

In the initial surgery, a 15-mm inner-diameter stainless-steel cylinder and brass 
headbar (aligned parallel to the sagittal suture) were centered on the midline and affixed 
to the exposed skull with dental acrylic and screws threaded into the skull.  The rostral 
edge of the cylinder was aligned with bregma and a wall of dental acrylic was built up 
under the posterior side of the cylinder to compensate for the slope of the skull. 

Each animal was given several weeks to recover from the first surgery before it 
was gradually adapted to sitting in the recording chamber and exposed to auditory 
stimuli.  The rabbit was restrained with a snug blanket around the body and placed in a 
plexiglass chair positioned in front of a clamp used to fix the headbar.  Daily sessions 
were increased in duration over the course of 2-3 weeks until the animal was acclimated 
to sitting quietly for 2 hours. 

A small (approximately 3-4 mm diameter) craniotomy was made in the skull in 
the second anesthetized surgery.  The medial edge of the hole was approximately 2 mm 
lateral of the midline, and the rostral edge was slightly forward of the middle of the 
cylinder.  The exposed dura was rinsed with sterile saline, treated with a topical antibiotic 
(Bacitracin), and the cylinder was filled with a sterile silastic elastopolymer cap between 
sessions.  A 1-2 day recovery period was allowed before removing the silastic cap and 
attempting electrode penetrations.  Additional craniotomy surgeries were occasionally 
performed to extend the existing hole, or to provide access to the opposite IC.   

After every session, new dural scarring was removed with forceps before re-
applying Bacitracin and filling the cylinder with the polymer plug.  In one rabbit, the dura 
was also treated with an anti-mitotic compound (5-Fluorouracil) before sealing the 
cylinder to discourage scar tissue from forming between sessions (Spinks et al. 2003).  
Using these daily cleaning techniques, recording sessions yielded reasonable success 
rates in a single IC for 3-6 months.   
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4.2.2 Acoustic stimuli 
 Sound stimuli were generated digitally and converted to analog signals using a 
Tucker-Davis System II D-A converter (TDT DA 3-4).  The stimuli were anti-alias 
filtered at 20 kHz (TDT FT6) and attenuated (TDT PA4), before being passed to a 
headphone buffer (TDT HB6) and finally to a pair of Beyer-Dynamic speakers (DT-48).  
The speaker outputs were delivered through custom-made soft plastic (Hal-Hen Per-
form) earmolds, and a probe tube allowed daily calibration of the closed acoustic system 
before each session with an Etymotic ER-7C probe microphone system.  Calibration 
tables based on the frequency shaping introduced by the system to wideband (100 Hz – 
20 kHz) noises were used to determine the attenuation values required to describe the 
sound levels in dB SPL (dB re: 20 µPa).  Monaural (usually contralateral) or diotic 
stimuli were presented, depending on the properties of each individual unit (see response 
classification below). 
 
4.2.3 Recording methods 
 Single-unit extracellular responses were recorded using glass-insulated tungsten 
microelectrodes (Bullock et al. 1988).  Electrode impedances between 10 and 30 MΩ 
measured at 135 Hz were usually required for the successful isolation and holding of 
neurons, but measures of impedance were only marginally reliable as predictors of 
electrode performance.  The electrode signal was amplified (Grass Instruments), filtered 
(700 Hz – 3 kHz), and AC-coupled with a TDT PC1 spike conditioner before being 
passed to a spike discriminator (TDT SD1) and event timer (TDT ET1).  Isolated spike 
times were recorded with respect to a stimulus-onset-triggered reference with a resolution 
of ±10 µs. 

Before lowering the electrode, a topical anesthetic (Lidocaine) was applied to the 
dura to desensitize the surface.  The position of the electrode was set with a stereotaxic 
system (Edmund), which was mounted on the cylinder affixed to the rabbit’s skull.  A 
sharply beveled, sterile, stainless-steel guide tube (23xx gauge) was used to pierce the 
dura and protect the electrode tip.  The guide tube was lowered by hand until its 
sharpened end was about 2-3 mm from the proximal (dorsal) surface of the IC.  From 
there, the electrode was lowered independent of the guide tube until a unit was isolated.  
Because of the tonotopic organization of the structure (low frequencies were encountered 
at shallower depths) and the limited recording time, the distribution of best frequencies 
(BFs) of the neurons described here was biased toward lower frequencies (94% of the 
population had a BF < 10 kHz).  Electrodes were advanced from outside the double-
walled soundproof booth with a hydraulic microdrive (Kopf Instruments, Tujunga CA); 
stimulus presentation and online data analyses were also controlled from outside the 
booth. 
 At the conclusion of the recordings in each rabbit, electrolytic lesions were made 
in the approximate center of the 3-D coordinates that described the spatial distribution of 
the population of well-studied neurons from that specific IC.  Standard histological 
techniques were used to confirm that the recording sites were likely within the central 
nucleus of the IC (ICC).  However, the prolonged duration of recording from each IC 
made it impossible to definitively state that every unit was positioned within the ICC.   
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4.2.4 Response classification and analysis 
 Parameters of AM stimuli were designed for each neuron based on its responses 
to a battery of simpler sounds.  Specifically, to study a cell’s sensitivity to changes in 
modulation depth, it was necessary to determine the appropriate binaural configuration, 
tone carrier frequency, sound-pressure level (SPL), and modulation frequency.  This 
section describes the stimuli and response quantifications used to make those decisions. 
 To search for driven activity, a 10-dB SPL spectrum level (50-dB SPL rms), 500-
ms Gaussian wideband (100-10,000 Hz) noise with 10-ms cos2 ramps was presented 
binaurally every 1.5 s.  The interaural time difference (ITD) for each presentation was 
randomly chosen from a uniformly distributed range from -300 µs (contralateral ear 
leading) to +300 µs (ipsilateral ear leading) in steps of 100 µs. 
 Once a unit was encountered and isolated using the search stimulus, its binaural 
configuration preference (contralateral, ipsilateral, diotic, or silence) was quantified by 
counting the number of spikes elicited by each configuration in response to a 500-ms 
noise (or silent interval) presented once per second.  The level and bandwidth of the noise 
was the same as the search stimulus, and each condition was repeated five times.  Next, 
the unit’s BF and threshold were estimated by manually controlling the frequency and 
level of 100-ms pure tones (10-ms cos2 ramps) separated by 500-ms inter-stimulus 
intervals (ISI). 
 Based on the audio-visually determined estimates of BF and threshold, a response 
area (RA) was measured at two SPLs, 10 and 40 dB above threshold (Ramachandran et 
al. 1999), and at 15 log-spaced frequencies from an octave below to an octave above BF.  
Average rates were measured over the entire duration of the 200-ms tones, which were 
presented once per second and windowed with 10-ms cos2 onset and offset ramps.  
Usually just one repetition was sufficient to determine the frequency that elicited an 
excitatory response at the lowest SPL (defined as BF). 
 All stimuli presented after the RA had BF tone carriers.  First, a rate-level 
function (RLF) was obtained, usually over a 70-dB range starting about 10 dB below the 
threshold estimate that was determined audio-visually.  Ten repetitions per level of each 
100-ms tone burst (including 10 ms cos2 ramps) were presented with 400 ms ISIs.  Rates 
were measured over the entire 100-ms stimulus presentation window, and a peri-stimulus 
time histogram (PSTH) was constructed using a bin size of 0.5 ms.  From these 
responses, cells were classified based on their PSTH type (onset, sustained, on+sustained, 
or other; similar to Krishna and Semple 2000 and Le Beau et al. 1996), RLF shape 
(monotonic, saturating, nonmonotonic, or other), and mean first-spike latency (FSL) 
across the 10 repetitions.  PSTH type and FSLs were often level-dependent; the SPL used 
to classify responses was the level used for AM stimulation (below). 
 Next, 100%-modulated sinusoidally AM (SAM) tone responses were recorded, 
usually at 15 modulation frequencies log spaced from 2 to 311 Hz.  The overall SPL was 
fixed (i.e. there was no level increment caused by modulation), and chosen to correspond 
to a level on the ascending portion of the RLF.  This convention was followed unless the 
strongest response to tones was suppression of firing rate below spontaneous activity, in 
which case an SPL was chosen that clearly elicited such suppression (this occurred in 9 
neurons).  To accommodate several cycles of low-fm stimuli, a 2-s BF tone including 50-
ms cos2 ramps (a common ramp duration in AM psychophysics) was used as the carrier.  
Modulation was applied for the entire duration of the carrier (including the ramps).  
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Three repetitions of each stimulus were presented with an ISI of at least 1 s.  Time 
permitting, additional (usually higher) SPLs and fms were presented.   

Four metrics were used to quantify the responses to fully modulated SAM tones.  
The average firing rate was computed excluding the first 100 ms to avoid onset effects, 
although there was usually negligible temporal adaptation to AM stimulation.  
Synchronization or vector strength (VS, Goldberg and Brown 1969) to the modulation 
period was calculated from period histograms, which were constructed with a fixed 
number of bins per AM cycle (64).  To quantify the amount of modulation in the 
response with respect to that imposed on the stimulus envelope, modulation gain [20 
log(2·VS/m)] was also computed (e.g. Frisina et al. 1990).  Synchronized rate (e.g. Sachs 
et al. 1983) was defined as the product of vector strength and average rate.  Synchrony 
and phase values were plotted only if the vector strength was significant (Rayleigh 
statistic > 13.8; equivalently, a test of uniformity p < 0.001).  In addition, at least 5 spikes 
across all three stimulus repetitions were required before a response was designated as 
being significantly synchronized.  Envelope-locked response descriptions were computed 
only for the component synchronized to the stimulus fm [see footnote 1 in Krishna and 
Semple (2000) for a brief discussion of this issue, and Khanna and Teich (1989) for ANF 
responses examined at other stimulus-related frequencies].  Quantifications based on 
average rate (rMTF), synchrony (sMTF), synchronized rate (srMTF), and response phase 
(pMTF) provided a modulation-frequency focused description of AM responses.   
   Several aspects of the MTFs were extracted for comparisons across the 
population, and for making decisions concerning the stimulus parameters to be studied at 
lower modulation depths.  rMTFs, sMTFs, and srMTFs were classified as all-pass, low-
pass, band-pass, band-reject, or high-pass (over the range of fm tested), based on a 70% 
change criterion in the response above or below the cell’s best modulation frequency 
(BMF, fm resulting in an excitatory peak in the MTF) or worst modulation frequency 
(WMF, fm eliciting the strongest response suppression flanked by excitatory regions).   
sMTFs and srMTFs were almost exclusively band-pass or low-pass, while rMTFs could 
take on any of the five shapes (see Results). 
 Because of time limitations in the unanesthetized preparation and our goal to 
study a wide range of modulation depths, a single fm was used to study the response 
dependence on m (as opposed to obtaining complete MTFs at several depths).  
Modulation depth functions (MDFs) based on rate, synchrony, synchronized rate, and 
phase were measured at a stimulus fm set equal to the frequency at the peak of the srMTF, 
regardless of whether the srMTF was strictly defined as band-pass or low-pass based on 
the 70% drop criterion.  The srMTF peak was chosen as a compromise between pure rate 
and pure timing analyses; time permitting, additional MDFs were obtained at other 
interesting fms (e.g. a rate-based WMF). 
 Modulation depths from -35 dB to 0 dB in 20 log m (0.018 < m < 1) were tested 
in 5-dB or 1-dB steps.  Other than m, the stimulus parameters were identical to those used 
in recording the MTF.  Rate and synchronization analyses were also broadly similar, 
except the initial 500 ms of the response was discarded, and the remaining 4.5 s (1.5 s x 3 
reps) was separated into 9 500-ms segments when determining a mean and variance of 
the rate estimate.  The 500-ms window was used because it matched that used in much of 
the AM psychophysical literature.  Ignoring the onset at low m was more crucial for 
avoiding artifacts than with fully-modulated stimuli because a pure-tone onset response 
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could result in artificially high values of vector strength if the duration of the onset 
response interacted with the period of the modulating waveform.   

To determine neural detection and discrimination thresholds, responses to 
different stimulus depths were tested for significant differences between one another.  
Neural rate-based detection threshold (θrate) was defined as the lowest m that elicited a 
rate different from the rate in response to the lowest tested depth (paired t-test p < 0.05).  
An additional condition was imposed: responses to depths higher than θrate were also 
required to elicit significantly different rates compared to those in response to the 
standard depth.  This requirement rarely changed the resulting thresholds in practice, but 
it did eliminate the effect of spurious changes in rate caused by motion artifacts.  When 
calculating rate-based neural discrimination (as opposed to the special case of detection) 
thresholds, the responses to each depth were treated as responses to a standard; the 
distance between the lowest comparison depth resulting in a significantly different 
response determined the predicted just-noticeable difference in depth based on the rate of 
a single cell. 

Synchrony-based detection threshold (θsync) was defined as the lowest depth that 
resulted in a significant value of vector strength (Rayleigh statistic > 13.8).  This criterion 
is commonly used in physiological studies (e.g. Liang et al. 2001), and almost always 
resulted in thresholds matching those determined qualitatively by visually inspecting the 
period histograms at each depth.  The statistical criteria employed in the detection and 
discrimination analyses were intentionally biased to be strict for synchronization 
measures (Rayleigh statistic p < 0.001) and less stringent for the rate-based predictions (t-
test p < .05).   

In addition to the tests of sensitivity to pure-SAM stimuli, neurons were also 
tested for their ability to represent deterministic (SAM) envelope fluctuations in the 
presence of a competing stochastic masker modulation.  The equation for the stimuli in 
the masked-detection task is: 

)]}()2sin(1)[2{sin()( tMtfmtfcts mc ++= ππ , 
where fc is the carrier frequency (set equal to the neuron’s BF) and M(t) is the masker 
waveform (zero when measuring absolute thresholds).  Masker level was defined in terms 
of the root-mean-square (rms) of M(t).  The compensation factor c was included so the 
overall power in both intervals was fixed as m and M(t) varied.  The response to a range 
of signal m was measured for three values of the overall depth of the masker: -23, -18 and 
-13 dB rms.  The frequency composition of M(t) was defined in terms of its bandwidth, 
which was set to ½ of the neuron’s srBMF, and center frequency, which was equal to the 
cell’s srBMF.  This was chosen to mirror a psychophysical paradigm, which used a single 
AM frequency (64 Hz) and a masker bandwidth of 32 Hz (Nelson and Carney, in 
review).  The signal AM was varied as it was in the “unmasked” MDFs, but was 
restricted to depths below -5 dB (20 log m) for masker levels of -23 and -18 dB rms and 
below -10 dB for a masker level of -13 dB rms to avoid overmodulation (i.e. overall 
modulation indices greater than 1 were not presented).  Data analyses and other stimulus 
parameters were identical to those used for the unmasked MDFs, and allowed for a 
description of masked neural θrate and θsync. 
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4.2.5 Implementation of the computational model 
 The structure and implementation details of the phenomenological model tested 
here were recently described, and its responses quantitatively compared to previously 
published AM physiological responses (Nelson and Carney, 2004).  Briefly, same-
frequency inhibitory and excitatory (SFIE) inputs interact with one another to give rise to 
model neurons that are rate-tuned to fm.  There are three key parameters at the level of the 
model IC cells that significantly change the model’s overall AM response properties.  By 
choosing appropriate values of the time constants associated with the successive low-pass 
filtering properties of inhibition (τinh) and excitation (τexc), the model cell’s rBMF can be 
adjusted to match single-unit recordings (Nelson and Carney, 2004).  The relative 
strength of inhibition with respect to excitation (SINH,IC) determines the degree of 
suppression observed in the SFIE model cell at low and high fms (away from BMF).  This 
parameter was not systematically studied in the initial modeling study, but it was crucial 
to account for the different AM response types that we observed in the current study in 
groups of neurons with different pure-tone response properties. 
 
4.3 RESULTS 
 Our population consisted of 198 single units characterized through the MTF and 
164 cells held for at least one MDF.  These cells were isolated in 4 ICs of 3 animals.  All 
of the neurons in the sample were responsive to pure-tone carrier SAM stimuli, although 
a small number of isolated cells were not characterized in detail because of poor 
responses to the short tone bursts used in the search mode or response area 
measurements.  Furthermore, all of the neurons exhibited significant synchrony to at least 
one modulation rate, in contrast with cortical responses, which are often not phase-locked 
to the envelope over a range of fms similar to the range used here (e.g., Liang et al., 
2002). 
 
4.3.1 Population pure tone responses and correlations with 100% SAM responses 
 The heterogeneity of BF pure-tone responses in the IC is impressive when 
compared to the responses observed in lower brainstem structures such as the cochlear 
nucleus (e.g. Blackburn and Sachs, 1989), and remarkable when compared to the highly 
stereotypical nature of ANF responses (e.g. Kiang et al. 1965).  Because of this diversity, 
any classification scheme is somewhat arbitrary, as the number of potential categories is 
essentially unlimited and at least partially subjective.  We have chosen to use a small 
number of classifications (4) for both PSTH type and RLF shape, including one all-
encompassing “other” category.   
 Distributions of PSTH type across the population are shown in Fig. 4-1A.  
Sustained pure-tone responses (without a clear onset component) were the most common 
PSTH type (43%), while only 13% of the neurons were pure onset responders.  Nearly a 
third of the population (30%) exhibited some combination of an onset and sustained 
response.  The PSTHs of the remaining 14% of the cells did not fall neatly into one of the 
three other categories.  This PSTH group included offset responses (N=2), pauser-
buildups (N=6), combined onset and offset responses (N=3), responses with regularly 
spaced peaks of discharge not related to the stimulus periodicity (choppers, N=2), 
suppression below spontaneous rate without an excitatory region (N=9), and unusual 
histograms (N=5).  Because of the paucity of pauser response types in our population 
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(N=6), they were not identified as a separate class (as in Le Beau et al. 1996 and Krishna 
and Semple 2000).     

Many PSTH type classifications were strongly dependent on the tone SPL; the 
high proportion of pure sustained responses is in part due to the fact that the neurons were 
grouped based on their responses at a relatively low SPL (usually on the initial ascending 
portion of the RLF).  Typically, pauser-buildup and offset PSTHs emerged only at higher 
SPLs.  The proportion of chopper units was probably underestimated, as the number of 
repetitions of the short pure tones was insufficient to perform reliable regularity analyses.  
Responses phase-locked to the carrier frequency were not observed, even in the 7 neurons 
with BFs < 600 Hz, although more repetitions may have been required to observe 
significant vector strength to the fine structure.  

                          
FIG 4-1. Pure-tone response characteristics across the population of 198 neurons.  A: 
Distribution of peri-stimulus time histogram (PSTH) types.  B: Distribution of rate-level 
function (RLF) shapes.  Example PSTHs and RLFs are shown above the bars in each 
category.  The dark lower area of each bar represents the neurons that were band-pass 
rate-tuned to modulation frequency; the rate modulation transfer functions (rMTFs) of the 
remaining units (gray regions) did not have a single or prominent peak (see Fig. 4-5 for a 
further breakdown of MTF shapes). 
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 A characterization of the population based on the shapes of single-unit BF RLFs 
is illustrated in Fig. 4-1B.  A 50% rate drop at high SPLs relative to the peak response 
was required for a RLF to be classified as non-monotonic (as in Aitkin 1991); 24% of the 
neurons had a single peak and such a rate drop at high SPLs.  Some units that met the 
50%-drop criterion were placed in the “other” RLF shape category because of multiple 
peaks in the RLF, or a rebound from an initial rate drop at the highest levels tested (20% 
of the units).  The remaining cells exhibited monotonic (11%) or saturating (44%) RLF 
shapes over the range of levels tested (almost always 70 dB). 
 The pure-tone response properties examined in Fig. 4-1 (PSTH type and RLF 
shape) were broken down further with respect to the corresponding neurons’ fully 
modulated SAM response properties.  Neurons with band-pass (BP) rMTFs (which made 
up 47% of the population) are shown with the dark portions of the bars in Fig. 4-1; cells 
with non-BP rMTFs are represented by the light upper segments of each bar.  rMTFs in 
onset pure-tone responders always revealed a band-pass shape (25/26 onset cells were 
classified as BP over the 2-312 Hz fm range; one onset neuron had a rBMF of 312 Hz), 
while most rMTFs in sustained pure-tone responders (63/86) were not BP.  
Classifications of on+sustained or “other” pure-tone responses were not predictive of the 
rMTF shape: approximately half of each category was BP tuned.  Similarly, RLF shape 
was not predictive of the presence of a single region of excitation in the rMTF (i.e. a BP 
shape).    
 One aspect of BF pure-tone responses that has been shown to be correlated with 
AM responses in previous studies is the mean FSL: IC neurons with longer FSLs tend to 
have lower BMFs (Heil et al. 1995, Krishna and Semple 2000, Langner et al. 1987).  The 
current data set corroborates the finding of a weak inverse FSL-BMF correlation (FSL-
rBMF Kendall’s τ = -0.25, p < 0.001; FSL-sBMF τ = -0.26, p < 0.001; FSL-srBMF τ = -
0.23, p < 0.001).  Despite the significant correlations, Fig. 4-2 makes it clear that FSL is 
in general an unreliable predictor of rBMF (the same is true for srBMF and sBMF).  The 
different symbols in Fig. 4-2 denote the various PSTH types; the three major groups 
(sustained, onset, and on+sustained) contain neurons with a similar range of rBMFs, but 
the longest FSLs were found in sustained pure-tone responders.  Below the scatter plot in 
Fig. 4-2 is a histogram of the FSL values across the entire population (only neurons with 
BP rMTFs were included in the scatter plot).  There was not a significant correlation 
between BMF and BF (Kendall’s τ < 0.1, p > 0.1 for rBMF, sBMF, and srBMF 
correlations with BF) (consistent with Krishna and Semple 2000).  It is worth reiterating 
the fact that the FSLs reported here were based on responses at a relatively low SPL, as 
opposed to the minimum mean FSL across the entire range of levels tested with pure 
tones.  One might expect that the use of a single low SPL to derive FSLs would result in 
higher estimates of latency, but this was not strictly true.  Some neurons in the IC 
exhibited an increase in FSL with level, an effect that has been termed the “paradoxical 
latency shift” (Sullivan 1982).  In our population, 16% of the cells revealed such a 
latency level-dependence, in the form of a mean FSL at a higher SPL greater than one 
standard deviation higher than the mean latency at the (lower) SPL used for the 
population analysis.   
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FIG 4-2. Among the neurons with a well-defined rate best modulation frequency 
(rBMF), cells with a longer first-spike latency (FSL) tended to have a lower rBMF.  
PSTH types are indicated by the symbols (categories are the same as in Fig. 4-1A).  The 
histogram of FSLs shown below the axis is a description of the entire population with a 
measurable FSL (n=182), not just neurons with rBMFs.  The peak histogram value 
corresponds to a count of 27 neurons. 
 
 The range of observed rBMFs was qualitatively similar to the range of sBMFs 
and srBMFs, but the exact value of BMF could vary considerably across the different 
response quantifications in a single neuron.  Figure 4-3 illustrates these points, with a 
comparison of BMF histograms for the three metrics (Fig. 4-3A) and scatter plots of the 
three combinations of rBMF, sBMF, and srBMF (Fig. 4-3B), which are summarized with 
a correlation coefficient.  BMFs were typically between 10 Hz and 100 Hz, although the 
upper bound of computed BMFs was partially biased by the range of fms used (2 – 311 
Hz).  The correlation between rBMF and sBMF (R=0.38) was significant (p < 0.01), but 
considerably lower than the correlations between the srBMFs and the other two metrics 
(rBMF x srBMF R = 0.88, p < .0001; sBMF x srBMF R = 0.58, p < .0001).  This is not 
surprising, since synchrony and rate are, by definition, correlated with synchronized rate.  
In any case, the even spread of points above and below the diagonal (rBMF = sBMF) in 
the upper panel of Fig. 4-3B suggests that the relatively low correlation between sBMF 
and rBMF was not caused by a consistent bias in either direction (i.e. sBMFs were not 
reliably lower than rBMFs or vice versa). 
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FIG 4-3. Most values of rBMF, synchrony BMF (sBMF), and synchronized rate BMF 
(srBMF) were between 10 Hz and 128 Hz, but BMFs based on the three quantifications 
were not always the same in single neurons.  A: Distributions of rBMF, sBMF, and 
srBMF.  B: Scatter plots showing the three combinations of BMF based on one 
quantification versus BMF based on another quantification.  Correlation coefficients are 
included with each scatter plot. 
 

Sharpness of tuning was quantified across the population of BP-tuned rMTFs with 
a quality factor Q = BMF/BW, where the bandwidth (BW) was defined as the width of 
the rMTF at 70% of the peak rate evoked at BMF.  The resulting values are plotted as a 
function of the neuron’s rBMF in Fig. 4-4.  Most (76%) of the Q-values were less than 
one, and only three were greater than 2.  Onset responders to pure tones (+ symbols in 
Fig. 4-4) tended to be more sharply tuned (mean Q =1.15) than the other unit types (mean 
Q = 0.61).  There was no correlation between the quality factor and rBMF, suggesting a 
constant relative BW across the range of relevant fm.  Both the overall average value 
(Q=0.76), and the independence of Q on BMF are qualitatively consistent with 
psychophysical measures of AM-frequency tuning curves and masking patterns (e.g. 
Houtgast 1989, Ewert and Dau 2000, Ewert et al. 2002, Wojtczak and Viemeister 2005).   
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FIG 4-4. Q-values based on rMTFs with clearly defined peaks.  Symbols indicate PSTH 
type as in Fig. 4-2.  The inset illustrates calculation of bandwidth at 70% of the peak rate; 
the open cross shows the corresponding Q and rBMF for the neuron from the inset. 
 

The diversity of MTFs in the IC cannot be fully appreciated by limiting analyses 
to a determination of the cell’s BMF, because many neurons do not have a well-defined 
BMF (according to the 70% drop criterion both below and above BMF over a range of 
stimulus fm from 2 to 312 Hz).  Example rMTFs representing the five shapes encountered 
in the rabbit IC are shown in Fig. 4-5, along with the distribution of the different shapes 
across the population.  Most common were BP-tuned rMTFs, followed by low-pass (LP), 
high-pass (HP), band-reject (BR), and all-pass (AP) shapes.  The scarcity of AP rMTFs in 
the IC lies in sharp contrast to peripheral (ANF) rMTFs, which are almost exclusively AP 
(Cooper et al. 1993, Joris and Yin 1992). 
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FIG 4-5. Example rMTFs and relative proportions of neurons exhibiting each rMTF 
shape.  Unit identification numbers are included with each rMTF; representative band-
pass (BP), low-pass (LP), high-pass (HP), band-reject (BR), and all-pass (AP) neurons 
are shown in each row. 
 

Because IC neurons are limited in their capacity to follow envelope fluctuations 
faster than several hundred Hertz (Burger and Pollak 1998, Krishna and Semple 2000, 
Langner and Schreiner 1988, Rees and Moller 1983), MTFs based on synchrony and 
synchronized rate were never HP or AP; most sMTFs were either BP (49%) or LP (42%), 
and 70% of srMTFs were BP.  It is worth noting that although synchrony always 
decreased at high modulation rates, 35% (69/198) of the neurons maintained significant 
synchrony at the highest fm tested (usually 311 Hz; limited to 222 Hz in 30/198), and 
80% (159/198) were phase-locked to the envelope at fm > 100 Hz.  These proportions are 
comparable to those reported by Krishna and Semple (2000) in the anesthetized gerbil.  
 
4.3.2 Example MTFs and MDFs 
 Detailed AM responses of four example neurons are highlighted in this section; 
they were chosen as representatives of each of the four categories of pure-tone responses 
(sustained, onset + sustained, onset, and other). 
4.3.2.1 Representative onset pure-tone response 
 Without exception, onset units exhibited BP-tuned rMTFs; Fig. 4-6 characterizes 
such a neuron in more detail.  Fully modulated AM responses are shown in Fig. 4-6A, 
revealing rate tuning to stimulus fm between 30 and 100 Hz.  The mismatch between the 
peaks in the rMTF and the sMTF resulted in a srBMF (58 Hz) between the rBMF (81 Hz) 
and the sBMF (41 Hz).  The sharpness of rMTF tuning was relatively high in this 
example (Q = 1.5).  Raw period and PST histograms are also included in Fig. 4-6B and 4-
6C.  Two features of the histograms in Fig. 4-6 were consistently observed across 
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neurons.  First, the response phase changed near BMF (the period histograms were 
constructed starting at a fixed point in time).  Second, there was negligible temporal 
adaptation observed over the 2-s stimulation period in the PSTHs in response to the AM 
tones.  

Stimulus AM depth was varied over a 35-dB range in 5-dB steps to obtain the 
responses illustrated in Fig. 4-6D.  This corresponded to linear modulation depths ranging 
from 1.8% to 100%.  For reference, human tone-carrier AM detection thresholds at 
medium SPLs and modulation rates below 150 Hz are -20 dB (m=10%) or lower (e.g. 
Kohlrausch et al. 2000).  First, consider the rMDF (the curve with error bars in Fig. 4-
6D), which was typical of many neurons in the population in terms of its flat (m-
independent) characteristic for depths from -35 dB to -15 dB.  Rates that were 
significantly different from the rate response to the -35 dB AM tone are indicated with 
open squares.  The lowest depth that elicited such a significant change (see Methods) was 
defined as the neuron’s rate threshold (θrate = -10 dB).   

Plotted alongside the rMDF in Fig. 4-6D is the srMDF (closed circles), which 
only includes values that were computed with a significant synchrony coefficient.  A 
consistent offset between the rMDF and srMDF indicates a constant value of vector 
strength across depth.  This is confirmed with the sMDF (open circles) shown below the 
rate- and synchronized rate- MDFs (vector strength values were all between 0.6 and 0.8).  
Another way to interpret depth-independent response synchrony is in terms of a 
modulation gain that decreases with increasing m.  Single-cell synchrony-based neural 
thresholds were defined as the lowest modulation depth that evoked a significantly 
envelope-locked response (θsync = -10 dB for the neuron shown in Fig. 4-6).  Visual 
inspection of the period histograms in the Fig. 4-6E suggests that the statistical criteria 
used to define synchrony threshold were reasonable: response modulation clearly 
emerges at m = -10 dB.  Also, the period histograms indicate that phase of the response 
did not change appreciably as m was varied.  As with the PSTHs shown for different 
modulation frequencies (Fig. 4-6C), there was no evidence for gross, slow temporal 
adaptation in the PSTHs at different modulation depths (Fig. 4-6F). 
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FIG 4-6. AM response properties of a neuron with a pure onset response to best 
frequency (BF) tones as a function of modulation frequency (fm, A-C) and modulation 
depth (m, D-F).  A: MTFs based on rate (rMTF), synchrony (sMTF), and synchronized 
rate (srMTF).  Asterisks (∗) correspond to the srBMF (and the fm used in D-F).  
Quantifications including synchrony are only plotted for significant values of vector 
strength.  B: Period histograms for each fm represented in the MTF.  Spikes were binned 
into one period of the modulation, and the resulting histogram was plotted twice for 
clarity.  C: PSTHs for each tested fm.  D: Modulation depth functions (MDFs), again 
based on rate, synchrony, and synchronized rate.  Rate responses plotted with open 
squares (�) were significantly different (p<0.05) from the rate response to the lowest 
tested m (-35 dB).  E and F: period histograms and PSTHs, respectively, for each tested 
m.  SPL = 20 dB, fc = 2000 Hz. 
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4.3.2.2 Representative on+sustained pure-tone response 
 Several aspects of the AM responses of the on+sustained pure-tone responder 
shown in Fig. 4-7 are fundamentally different from those of the pure onset responder 
described above.  Perhaps the most salient difference was that the entire range of 100%-
AM stimuli elicited synchronized firing (from 2 Hz to 311 Hz).  The resulting rMTF 
reveals weaker tuning (Q = 0.81), with a peak at 81 Hz (the same rBMF as the 
representative onset neuron).  Vector strength reached a maximum of 0.56 at 113 Hz, and 
synchronized rate peaked at 58 Hz.  Period histograms at low fms show that the 
probability of firing remained relatively constant for a longer portion of the 
corresponding stimulus waveform than the onset neuron, with a weak cycle-by-cycle 
onset adaptation component.  The shape of the period histogram at the srBMF (58 Hz) 
was somewhat more complex, with two peaks near the onset of adaptation of the 
response during each cycle.  This multimodal period histogram shape emerged only at 
higher modulation depths (Fig. 4-7E).  PSTHs plotted in Fig. 4-7C and Fig. 4-7F again 
suggest minimal adaptation over a time scale on the order of hundreds of ms. 
 The rMDF measured at 58 Hz (Fig. 4-7D) shows that the peak in the rMTF 
became apparent only at high modulation depths (θrate = 0 dB).  In contrast, 
synchronization to the period of the modulating waveform was significant at -20 dB, and 
synchrony increased monotonically with increasing m.  Correspondingly, the period 
histograms were modulated, and the timing of spikes became more phase-locked to a 
particular phase of the envelope as m was varied between -20 dB and 0 dB (Fig. 4-7E). 
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FIG 4-7. AM responses of a representative neuron with an onset + sustained BF tone 
PSTH.  Format is the same as Fig. 4-6.  SPL = 40 dB, fc = 3900 Hz. 
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4.3.2.3 Representative sustained pure-tone response 
 Pure sustained responders to short tone bursts were usually associated with 
rMTFs that were not BP (Fig. 4-1A).  An example of such a cell is described in terms of 
its MTFs and MDFs in Fig. 4-8.  The main feature of the rMTF of Fig. 4-8A was the 
presence of a broadly tuned suppressive region (i.e. a BR rMTF); a complementary (BP) 
sMTF had a peak within the region of rate suppression.  Taking the product of synchrony 
and rate resulted in a srMTF with both a region of suppression at lower fms, an excitatory 
region at higher fms, and a srBMF that matched the sBMF of 113 Hz (Fig. 4-8A).  The 
period histograms in Fig. 4-8B indicate that the drop in rate was largely mediated by a 
suppression of firing after the onset response elicited in each cycle, and that the rate 
recovery at higher fms was not strongly synchronized (although VS remained significant 
up to 311 Hz). 
 Because the location of the srBMF was within the region of rate suppression, 
increasing the stimulus m in the MDF protocol resulted in a drop in average rate.  This 
rate drop is quantified in the rMDF of Fig. 4-8D.  In terms of information-carrying 
capacity, a rate code that is based on a decrease in firing rate is just as effective as one 
that requires an increase in rate as the stimulus depth is increased.  However, the cell’s 
θrate of -10 dB based on a drop in rate was still much higher than human AM-detection 
abilities.  As with the first two example neurons, a timing-based metric such as synchrony 
was more sensitive to low-depth AM stimulation: the cell’s θsync was -25 dB.  Also, the 
value of VS increased with depth; this trend was mainly observed in neurons that 
responded to pure tones with a substantial sustained rate (see Fig. 4-13B).  
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FIG 4-8. AM responses of a representative neuron with a sustained BF tone PSTH.  
Format matched to Figs. 4-6 and 4-7.  SPL = 20 dB, fc = 3900 Hz. 
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4.3.2.4 Representative inhibited pure-tone response  
 Nine neurons in the population did not exhibit a clear excitatory response at any 
tested frequency or SPL using pure tones [a small island of excitation may have 
potentially been revealed had we used finer SPL-resolution; these neurons probably 
belong to the Type O RA category as defined in Ramachandran et al. (1999)].  The BFs 
of the units belonging to this subset were defined accordingly as the tone frequency that 
evoked an inhibitory response (below spontaneous rate) at the lowest effective SPL.  
Figure 4-9 illustrates that the responses of such neurons can be highly dependent on the 
modulation properties of the stimulus.  All three of the MTFs shown in Fig. 4-9A were 
LP in shape; rate and synchronized rate dropped to 70% of their peak values at about 65 
Hz, while synchrony was at least 70% of its peak value (VSmax = 0.8) up to 107 Hz.   

The characteristic phase [the low-fm y-intercept of the phase-MTF (not shown)] 
was approximately 180º out of phase with respect to those observed in the neurons 
illustrated in Figs. 4-6, 4-7, and 4-8.  This can be qualitatively verified by comparing the 
period histograms at the lowest tested fms across the four example neurons, and suggests 
that the neuron was released from inhibition at times corresponding to the valleys of the 
modulating waveform.  Also in contrast to the first three examples, a weak form of slow 
adaptation was observed in the PSTHs: onset inhibition was slowly released over a time 
course of about 1s (this is most clearly illustrated by the 113-Hz PSTH).  A similar slow 
release from inhibition was observed in several other neurons, but was usually found only 
in response to stimulus fms above the cell’s primary excitatory or suppressive regions. 
 Since there was not a clear peak in the srMTF of Fig. 4-9A, a modulation of 40 
Hz was chosen for the MDF simply as an AM frequency within the pass-band of all three 
MTFs.  Interestingly, based on the MDFs alone, the neurons characterized in Fig. 4-6D 
and Fig. 4-9D were essentially indistinguishable (despite their obvious differences in 
pure-tone responses).  The rMDF revealed an increase in firing rate with increasing depth 
(and longer effective times of release from inhibition), with a θrate of -10 dB (Fig. 4-9D).  
The synchrony-based threshold was, once again, lower than the rate threshold (θsync = -15 
dB).  Although VS values were similar for -15 dB ≤ m ≤ 5 dB, the corresponding period 
histograms were quite different.  This illustrates one of the limitations of the 
synchronization coefficient alone as a general description of temporal response 
characteristics.   

 



 

 

78

 
 
FIG 4-9. AM responses of a representative neuron that responded with a decrease in rate 
when stimulated using pure tones.  Format is the same as Figs. 4-6, 4-7, and 4-8.  SPL = 
10 dB, fc = 12885 Hz. 
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4.3.3 Single-unit rate- and synchrony-based AM thresholds  
 Performance in three basic psychoacoustic AM tasks was predicted based on 
changes in neural responses at different modulation depths that were quantified in terms 
of average rate and synchrony.  The three psychophysical paradigms are: (1) pure SAM 
detection, (2) masked SAM detection, and (3) SAM depth discrimination. 
4.3.3.1 Pure SAM detection 
 Human listeners can discriminate the difference between a pure tone and a SAM 
tone at modulation depths lower than -30 dB (e.g. Zwicker 1952).  At a given SPL, 
performance does not systematically depend on fm or fc for modulation frequencies 
between 10 Hz and 150 Hz and carrier frequencies above 1000 Hz (Kohlrausch et al. 
2000).  Sensitivity to SAM is best at higher SPLs, but thresholds can remain lower than   
-20 dB at low sensation levels (Kohlrausch et al. 2000).  There is indirect psychophysical 
evidence suggesting that listeners probably use audio-frequency channels other than that 
of the carrier to perform the task at high SPLs, where the effective level is lower and 
peripheral saturation and compression are less likely to have a strong influence on 
performance (Kohlrausch et al. 2000, Ruggero et al. 1997). 
 Neural rate and synchrony SAM detection thresholds across the population of 164 
neurons are shown in Fig. 4-10A as a function of the stimulus modulation rate.  
Consistent with the example neurons described in the previous section, the vast majority 
of rate thresholds (open circles) were -10 dB or higher (139/164 neurons).  If the rate did 
not change across the entire range of m, thresholds were deemed immeasurable; this 
group of neurons is identified with the X on the axes in Fig. 4-10.  Five neurons had a 
rate threshold of -20 dB, and 20 responded with a significant change in rate at -15 dB.  
The histogram of rate thresholds to the left of Fig. 4-10A reinforces the fact that rate 
changes in single IC neurons were, in general, poor predictors of human SAM sensitivity.  
There was not a strong relationship between rate thresholds and the fm of stimulation, 
which was set equal to the most prominent peak in the cell’s srMTF. 
 Synchrony-based thresholds were more evenly distributed across the perceptually 
relevant dynamic range (shown in the histogram to the right of Fig. 4-10A) than the 
values of θrate.  Twenty-eight percent (46/164) of the neurons had synchrony thresholds of 
-20 dB or lower; three units were significantly phase-locked at a modulation depth of -30 
dB.  Examination of the individual neural thresholds (x symbols in Fig. 4-10A) reveals no 
obvious trends either in maximum sensitivity or threshold distribution as a function of the 
stimulus fm. 
 Figure 4-10B shows a feature of the data that is suggested by but not explicitly 
contained in Fig. 4-10A: θsync was almost always lower than θrate on a neuron-by-neuron 
basis.  In the scatter plot of Fig. 4-10B, this aspect of the data takes the form of almost all 
of the points lying above the diagonal.  The three neurons that had the most sensitive 
synchrony thresholds (θsync = -30 dB, the three left-most points in Fig. 4-10B) had 
corresponding rate thresholds of -15 dB, -5 dB, and one immeasurable θrate.   
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FIG 4-10. Neural AM detection thresholds based on rate and synchrony.  Axis labels 
marked with an X indicate that thresholds were immeasurable, and that average rate was 
depth-independent over the entire dynamic range (all neurons responded with significant 
synchrony at m = 0 dB).  A: The lowest AM depth that elicited a significant change in 
rate (open circles) or a significant value of vector strength (crosses) for each of the 164 
tested neurons.  Histograms framing the y-axes in A show the distribution of rate 
thresholds (left axis; peak histogram value = 47 neurons) and synchrony thresholds (right 
axis; peak histogram value = 39 neurons).  B: Rate threshold versus synchrony threshold 
scatter plot.  Points located above the diagonal of equality in the scatter plot indicate that 
the cell’s rate threshold was higher than its synchrony threshold.  In both A and B, a 
uniformly distributed random number between -1 and 1 was added to the value of 
threshold to facilitate visualization of the responses of all of the neurons.  For reference, 
human tone-carrier AM detection thresholds at supra-threshold SPLs and modulation 
frequencies below approximately 120 Hz are between -20 dB and -30 dB (e.g. 
Kohlrausch et al. 2000). 
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 As mentioned above, overall SPL can affect behavioral SAM detection 
thresholds.  The neural responses summarized in Figs. 4-2 through 4-10 were obtained at 
an SPL chosen based on individual RLFs: the SPL used for AM stimulation was set to a 
level on the ascending portion of the RLF, or at its peak if it was sharply non-monotonic.  
One obvious question is whether the relatively poor neural rate-based thresholds might 
improve if a higher SPL were chosen.  In 33 neurons, this question was addressed by re-
measuring MTFs and MDFs at a level typically 20-40 dB higher than that used for the 
low-SPL responses.  The stimulus fm for each MDF was determined based on the peak in 
the srMTF, which could vary across SPL (for a more detailed discussion of the level-
dependence of MTF shapes, see Krishna and Semple 2000).    
 The resulting rate- and synchrony-based thresholds for this subset of the 
population are shown for both tested SPLs in Fig. 4-11.  Thresholds that increased (i.e. 
sensitivity got worse) or remained the same with increasing SPL are plotted with solid 
lines; the remainder of the neurons, which exhibited a decrease in threshold at the higher 
SPL, are represented by dashed lines.  The majority of rate thresholds (22/33) did not 
improve at high SPLs (Fig. 4-11A), and 11 of the comparisons revealed an increase in 
θrate at higher SPLs.  The 11 cells that did exhibit an improvement in rate-based 
sensitivity with level still did not approach human detection thresholds at comparable 
SPLs (the lowest θrate above 40 dB SPL was 20 log m = -15 dB).  Synchrony-based 
thresholds (Fig. 4-11B) were also more likely to show a decrease in sensitivity at high 
SPLs (16/33) than an improvement (11/33).   The average θrate increased by 0.9 dB at the 
higher SPL, and the average θsync increased by 1.1 dB at the higher level.  Overall, the 
trends illustrated in Fig. 4-11 suggest that the use of a relatively low SPL in the 
population analysis (e.g. Fig. 4-10) probably did not bias the results toward higher 
thresholds. 
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FIG 4-11. Increasing SPL does not systematically improve AM sensitivity in IC neurons.  
A: Rate-based thresholds in 33 neurons as a function of the SPL of stimulation.  B: 
Synchrony-based thresholds in the same population.  In both A and B, neurons with 
thresholds that were level-independent or increasing with SPL are depicted with solid 
black lines (22/33 for both rate and synchrony), and sensitivities that improved with level 
are plotted with the lighter gray lines.  As in Fig. 4-10, thresholds for each neuron were 
plotted with a small amount of jitter added so that all of the lines were visible in the 
figure. 
 
 We conclude that, for pure SAM detection, some temporal aspect of the envelope-
locked response (i.e. synchrony) at the level of the IC must be taken into consideration to 
account for psychophysical detection thresholds based on the responses of single neurons. 
4.3.3.2 Masked SAM detection 
 Most naturally occurring sounds have complex modulation spectra; to assess the 
generality of the conclusions made in the preceding section, a similar rate- and 
synchrony-based analysis was applied to responses elicited by a SAM signal modulation 
embedded in a competing masker modulation.  Psychophysical experiments using similar 
stimuli have shown effects of the frequency relationship between masker and signal 
(Bacon and Grantham 1989, Ewert and Dau 2000, Ewert et al. 2002, Houtgast 1989, 
Strickland and Viemeister 1996) and of the “level,” or modulation depth of the masker 
(Bacon and Grantham 1989, Nelson and Carney, in review, Strickland and Viemeister 
1996).  Because a main focus of the current set of experiments was to establish the 
modulation-depth dependence of responses in the IC, neural masked thresholds were 
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determined with a narrowband Gaussian masker (centered on the sinusoidal signal 
frequency) at several masker depths. 
 Over a 10-dB range of masker depths from -23 dB rms to -13 dB rms, 
psychophysical SAM detection thresholds in a similar task (with fm = 64 Hz, masker BW 
= 32 Hz, fc = 5500 Hz, and SPL = 65 dB) increased monotonically as the masker 
fluctuations became stronger (more details and thresholds in a wider range of stimulus 
conditions can be found in Nelson and Carney, in review).  The behavioral thresholds are 
shown in Fig. 4-12 along with neural thresholds obtained in 28 units, again based on rate 
and synchrony to the signal envelope frequency.  The signal fm was set to the peak in the 
cell’s srBMF, and the masker bandwidth was fixed at half of the SAM signal frequency.  
To avoid over-modulation (i.e. a modulation depth greater than 1), the signal depth was 
restricted to values ≤ -5dB for masker depths of -23 and -18 dB rms, and to values ≤ -10 
dB for the -13dB rms masker.  As a result, there were no predicted neural thresholds at 0 
dB for any masker level, and no thresholds at -5 or 0 dB (20 log m) for the -13 dB rms 
condition. 
 Figure 4-12A shows that, in general, average rates were more successful in 
predicting masked thresholds than they were at predicting pure SAM detection (i.e. Fig. 
4-10).  A small group of cells (8) exhibited rate thresholds within approximately 5 dB of 
the listeners’ data at one or more masker depths.  This is weakly suggestive that the 
functional contributions of rate and synchrony may depend on the range of relevant 
modulation depths in a given task.  We will come back to this idea in the following 
section, which considers a general discrimination task across the entire perceptual 
modulation depth dynamic range. 
 Synchronization to the signal SAM was significant in some neurons at depths 
even lower than the behavioral thresholds, most notably at the highest tested masker 
modulation depth, where 7/24 neural thresholds were below the psychophysical data (Fig. 
4-12B).  As with the pure SAM detection population analysis, the distribution of 
synchrony thresholds was more uniform than the rate-based distribution (which was 
skewed towards higher or immeasurable predictions of threshold).  Trends in threshold 
across masker depth for individual neurons are not shown in Fig. 4-12 for clarity, since 
there was not a consistently observed increase or decrease in predicted sensitivity with 
increasing masker level (as there was in the psychophysical data). 
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FIG 4-12. Neural AM detection thresholds in the presence of a competing masker 
modulation.  Thresholds are plotted as in Fig. 4-10A, but some neurons are represented 
by more than one point in these panels, if they were tested at several masker depths.  
Human psychophysical thresholds are plotted for reference in both panels.  A: Rate 
thresholds.  B: Synchrony thresholds.  See text for details concerning the lack of 
thresholds at 0 dB (and -5 dB for the -13 dB rms masker modulation depth). 
 
4.3.3.3 SAM depth discrimination 
 Another fundamental measure of envelope processing in psychoacoustics is SAM 
depth discrimination, which describes the ability of the system to resolve small changes 
in m.  Pure SAM detection is a special case of this more general paradigm: the standard 
depth (ms) for detection is set to 0, and the comparison depth (mc) is adjusted until it is 
just noticeably different from the standard interval.  The same procedure can be repeated 
for any value of ms.  Psychophysical measurements of pure-tone carrier SAM-depth 
discrimination reveal thresholds that are approximately a constant fraction of ms for 
supra-threshold standard depths (e.g. Ewert and Dau, 2004).  In other words, Weber’s law 
is a reasonable first approximation to the data; a 1- or 2-dB difference in SAM depth is 
required to discriminate ms and mc, over a range of standard depths from about -23 dB to 
-3 dB.  Performance worsens at very low standard depths, where the task effectively 
becomes one of detection (i.e. the modulation is sub-threshold in the standard interval 
and slightly above threshold in the comparison interval; Ewert and Dau 2004). 
 To determine whether SAM depth discrimination performance based on the 
responses of single IC neurons was comparable to perceptual thresholds, it was necessary 
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to use higher resolution along the modulation depth axis than was used for the detection 
paradigms.  In 20 neurons, a high-resolution MDF was obtained with step sizes smaller 
than behavioral jnds (1 dB in 19/20, 2 dB in 1/20, Fig. 4-13B).  The entire 35-dB range 
was not usually sampled; instead, the initial coarse MDF determined the range of depths 
that elicited a change in rate, and the 1-dB step size analysis was limited to that range.  
Neural threshold was defined for a range of ms by treating the mean and SD of each rate 
response as the response to a standard depth, and searching for the lowest comparison 
depth that elicited a significantly different (t-test p<0.05) rate response.  The neural mc at 
threshold was required to be higher than ms; further, all of the rate responses above 
threshold were required to be significantly different from the standard response. 

Psychophysical SAM depth-discrimination thresholds are plotted in Fig. 4-13A 
(connected open circles, from Ewert and Dau 2004), along with the predictions based on 
significant changes in average rate in the 20 neurons (black lines without symbols).  
Perhaps the most salient aspect of the neural predictions is the noisiness of the functions; 
this reflects the relatively lenient statistical criteria that were used to identify significant 
changes in rate.  Nonetheless, 17/19 neurons exhibited rate-based discrimination 
thresholds as low as 1 dB (the lowest possible value, given the 1-dB step-size), which 
corresponds to a Weber fraction (10 log (mc

2-ms
2)/ms

2)) of approximately -6 dB.  All of 
the 1-dB depth-discrimination threshold predictions occurred for standard depths higher 
than -18 dB.  This is consistent with the finding that all of the rate thresholds for AM 
detection were -20 dB or higher.   

Figure 4-13B contains the raw rMDFs (gray lines with error bars) corresponding 
to the predicted performance shown in Fig. 4-13A.  The rMDFs were all monotonic (one 
was monotonically decreasing), and 12/20 neurons showed no evidence for rate 
saturation at high AM depths.  There was no obvious dependence of rate variability on 
the average rate, as observed in a Poisson process (this point is addressed in more detail 
the Discussion).  Also included in Fig. 4-13B are sMDFs computed from the same 
responses (black lines).  In contrast with the rMDFs, 17/20 sMDFs saturated at depths 
near 100% modulation.  This suggests that rate may be a more reliable single-neuron 
predictor of depth discrimination performance at high standard depths.    
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FIG 4-13. Changes in average rate can account for psychophysical SAM depth 
discrimination, but only at high standard depths.  A: Comparison of neural predictions of 
depth discrimination performance in 20 neurons (black lines) and human psychophysical 
thresholds for the same task (gray connected circles, from Ewert and Dau 2004).  B: Raw 
rate MDFs (gray lines with error bars) and synchrony MDFs (black lines) for the same 
neurons examined in A. 
 
4.3.4 Extending a computational model 
 The prevalence of sustained pure-tone responses in the unanesthetized rabbit IC, 
which were often associated with weak rate-tuning to AM (Fig. 4-1A), calls into question 
the generality of a simple phenomenological model that was developed to simulate pure 
onset tone responses and strong tuning to fm in the IC (Nelson and Carney 2004).  In this 
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section, we show that the adjustment of a single model parameter can give rise to model 
cells with a wide range of pure-tone and AM response properties.  The effects of this 
parameter were not examined in the original modeling study.   

Effectively a temporal filter, the IC stage of the same-frequency inhibition and 
excitation (SFIE) model assumes the convergence of inhibitory and excitatory inputs that 
have low-pass or weakly band-pass sMTFs and all-pass rMTFs (typical of AN fibers and 
many cell types in the VCN).  By assuming sluggish inhibition (a lower sMTF corner 
frequency) with respect to excitation, the final output of the model is rate-tuned to a 
modulation frequency that depends on the assumed time constants of the membrane and 
synaptic low-pass filtering effects.  The relative strength of inhibition at the level of the 
IC model cells (SINH,IC) was fixed at 1.5 in Nelson and Carney (2004) but was varied 
here. 

Predicted AM responses of the SFIE model are shown in Fig. 4-14 along with the 
responses of two example neurons, chosen to represent the two broad classes of cells with 
a steady-state response to pure tones and those without a steady-state response (i.e. onset 
responders).  Actual data are plotted with black lines throughout Fig. 4-14; model 
predictions for matched stimulus conditions are shown with gray lines.  In the rMTFs and 
rMDFs shown in Fig. 4-14A and D, several model predictions are shown; SINH,IC was the 
parameter varied to obtain the various simulated results (the value is indicated next to 
each function).  

The rMTF of the on+sustained neuron depicted in Fig. 4-14A has a peak around 
20 Hz, but does not drop to near zero at lower and higher fm.  In general, higher inhibitory 
strengths in the model resulted in stronger rate-tuning and higher rate-based AM 
detection thresholds.  Comparing the simulated rMTFs revealed that a shape similar to 
the data could be obtained in the model when SINH,IC was set to 0.95.  Allowing this 
parameter to be less than one also resulted in a sustained portion of the model response to 
pure tones.  When modulation depth was varied (for a fixed fm of 20 Hz), the value of 
SINH,IC that provided the best match to the data was again 0.95.  Corresponding period 
histograms for the data and the version of the model that best fit the rate functions are 
shown Figs. 4-14B and 4-14C.  As a function of fm (Fig. 4-14B), the model histograms 
are qualitatively similar to the data, although the relative phase changes faster in the data 
near rBMF (20 Hz) than in the model.  Figure 4-14C illustrates the period histogram 
dependence on modulation depth; in both data and model, there was a response at the 
lowest tested m (i.e. a sustained response to an effectively unmodulated pure tone) and 
synchronization to the envelope emerged at modulation depths below the rate-based AM 
threshold. 
 A similar comparison between data and model for a pure-tone onset responder 
with a rBMF of 80 Hz is shown in Fig. 4-14D-F.  To accurately predict the negligible 
responses at low and high fm, and at low m, it was necessary to assume inhibition whose 
overall strength was greater than that of the excitatory input.  A reasonable fit to both the 
rMTF and rMDF was achieved when SINH,IC was set equal to 1.1 (Fig. 4-14D), and the 
period histograms suggested that the model was also capable of predicting the temporal 
aspects of the responses of onset neurons in the IC.  Note the lack of a consistent 
sustained response at modulation depths below -15 dB in both the data and model. 
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FIG 4-14. Comparison of SFIE model (gray lines) and neural data (black lines).  A-C: 
onset + sustained responder to unmodulated tones (R9-179B); D-F: pure onset responder 
to unmodulated tones (R12-86A).  A: rMTFs and rMDFs for the representative IC neuron 
and different implementations of the SFIE model.  The model parameter governing the 
relative strength of excitation with respect to inhibition (SINH,IC) is indicated next to the 
corresponding model rMTF or rMDF.  B: Period histograms (as in Fig. 4-6) for data and 
model (SINH,IC = 0.95) and for each tested fm.  C: Period histograms for each tested m.  
Other model parameters: τexc = 3.5 ms, τinh = 6 ms, rate scalar = 2.5.  Stimulus 
parameters: SPL = 20 dB, fc = 800 Hz, fm for MDF = 20 Hz.  D-F: same as A-C, but the 
value of SINH,IC was set to 1.1 for the period histogram comparison. Other model 
parameters: τexc = 1 ms, τinh = 2 ms, rate scalar = 0.5.  Stimulus parameters: SPL = 40 dB, 
fc = 2145 Hz, fm for MDF = 80 Hz.   
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4.4 DISCUSSION 
 Relationships between single-unit neural responses in the auditory midbrain of the 
unanesthetized rabbit to controlled envelope fluctuations and behavioral thresholds in 
corresponding psychophysical tasks were examined.  The stimuli used to establish neural 
sensitivity to AM were designed on a neuron-by-neuron basis, taking into account 
potential selectivity for binaural presentation mode, carrier frequency, SPL, and 
modulation frequency.  The ranges of the resulting stimulus parameters mirrored the 
limits of parametric psychophysical investigations of temporal modulation processing.  
We now turn to a discussion of the implications of the results in the context of previous 
work with possible alternate interpretations in mind. 
 
4.4.1 Temporal versus rate information 
 The current analysis of the average rate and envelope-locked temporal 
information available in neural responses over a wide range of modulation depths 
provides some insight into the functional contributions of these different aspects of the 
response at the level of the IC.  To account for psychophysical pure-tone AM detection 
thresholds with a variation in the responses of single cells, a temporal metric (e.g. 
synchrony to the envelope period) must be considered.  At the upper end of the 
modulation-domain dynamic range (m > -15 dB), where vector strength is saturated in 
many neurons, changes in average rate are sufficient in some neurons to predict AM 
depth discrimination performance. 
4.4.1.1 Temporal information: synchrony, phase, and intervals 
 Hints of low-depth envelope synchronization can be found in previous studies of 
central AM processing.  Significant synchronization coefficients have been measured at 
AM depths as low as 5% (-26 dB) in the SOC (Kuwada and Batra 1999) and IC (Rees 
and Moller 1983), although this aspect of the response was not emphasized in the earlier 
studies.  Rhode (1994) and Krishna and Semple (2000) did not systematically use AM 
depths lower than 10% (-20 dB), but some neurons in the cat VCN and gerbil IC did 
respond with phase-locked spikes at that depth. 
 Saturation of the vector strength metric at high modulation depths in the IC has 
been previously reported (Krishna and Semple 2000, Rees and Moller 1983, but see 
aggregate trends in multi-unit cluster activity in Mueller-Preuss et al. 1994), although the 
earlier studies were typically focused on stimulus m well above detection thresholds.  A 
limited dynamic range does not necessarily preclude the use of changes in 
synchronization to code modulation depth; a population of neurons with staggered 
thresholds and small dynamic ranges could potentially transmit sufficient information for 
discrimination.  This possibility remains a viable option, given the even spread of 
synchrony-based thresholds across the perceptually relevant AM dynamic range (Fig. 4-
10). 
 The presence of synchronized spikes at low modulation depths leads to the 
question of whether changes in synchrony could account for AM depth discrimination 
performance for standard depths below -15 dB.  A quantitative analysis of this question 
was not attempted because only 9 neurons in our sample were characterized with 1-dB 
MDF resolution and responded with significant synchrony at depths below -15 dB.  
Qualitatively, the best low-depth discrimination thresholds based on single-cell 
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synchrony would probably be found in sustained pure-tone responders, which were most 
likely to have monotonically increasing sMDFs.  The sMDFs of these neurons were 
similar to those of ANFs (Joris and Yin 1992) and VCN neurons (Rhode 1994).  An 
alternative population-based scheme for the coding of AM depth with synchronized 
spikes might use the spread of synchrony across neurons with different BMFs to 
represent an increase in stimulus m (again, also a reasonable hypothesis given the 
distribution of θsync illustrated in Fig. 4-10). 
 The synchronization coefficient is a measure of the precision of phase locking, 
but it is not a complete characterization of the temporal response of IC neurons.  This is 
especially true when the shape of the period histogram changes with fm or m, which is 
typical of responses in the IC (Figs. 4-7 and 4-8 illustrate clear examples of such 
phenomena).  One step towards a more complete characterization of a neuron’s temporal 
response properties is to include a description of the dependence of phase on the relevant 
stimulus parameters (e.g. Anderson et al. 1971).  For our purposes, the parameter of 
interest is the AM depth; response phase is plotted as a function of stimulus m (phase 
modulation depth functions, pMDFs) in Fig. 4-15 for 154 neurons.  The main feature to 
be extracted from the population of pMDFs is the lack of a systematic dependence of 
phase on AM depth; this suggests that depth is probably not encoded by variations in 
phase, at least within single cells stimulated at or near their BMF.  Nonetheless, the 
possibility remains that higher-order processing could make use of phase variations with 
depth across neurons with different BMFs (such that the stimulus fm is not equal to the 
BMF for all of the inputs to the more central processor).  An evaluation of this hypothesis 
is not possible with the current data set, since MDFs were usually only obtained at a 
single fm. 

Extraction of phase information at higher levels of processing is one potential 
mechanism that could make use of synchronized spikes.  An inter-spike interval code 
could also provide a representation of the stimulus AM frequency or depth that assumes 
phase locking.  Inter-spike interval histograms (ISIHs) derived from the MTFs of a subset 
of the population exhibited a prominent peak at 1/fm, especially at modulation rates near 
the sMTF peak in neurons with higher sBMFs.  In general, such ISIH features are 
observed in spike trains with some degree of entrainment to the modulating waveform 
and suggest the possible existence of a first-order interval representation of AM in some 
cells at the level of the IC. 
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FIG 4-15. Response phase at srBMF does not change systematically with m.  Phase 
MDFs for 154 neurons are shown; a significant value of vector strength was required for 
phase to be plotted.  Not shown are the y-axis phase MTF intercepts (the characteristic 
phases), which were mainly clustered between 0 and 45 degrees, indicating a strong 
response at low fms on the ascending portion of the stimulus envelope. 
  
4.4.1.2 Rate information: dynamic ranges and pooling 
 The limitations of a single-neuron rate code for AM depth in the IC are very 
different from the difficulties associated with rate codes for SPL in the AN (see Colburn 
et al. 2003).  In the periphery, single-fiber rate-based pure-tone detection thresholds in 
quiet are in line with behavioral thresholds (e.g. Young and Barta 1986).  However, 
predictions of supra-threshold intensity discrimination performance based on single ANF 
average rates are often much higher than psychophysical thresholds because of saturation 
and increased variance at high SPLs (e.g. Colburn et al. 2003, Heinz et al. 2001).  The 
situation in the IC for AM coding is in a sense reversed: SAM detection cannot be 
accounted for with changes in rate (Figs. 4-10 and 4-11), but rate predictions of SAM 
depth discrimination in some neurons are consistent with psychophysical measures, at 
least for standard AM depths greater than -15 dB (Fig. 4-13). 
 An increase of the masker modulation depth in the masked SAM-detection task 
can be interpreted as an effective shift of the stimulus envelope fluctuations to a higher 
operating point on the MDF.  The ability of average rate changes in several neurons to 
account for performance at the higher masker modulation depths was therefore not 
surprising, given the depth-discrimination predictions based on rate at higher standard 
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depths.  It is also possible that the noise masker served as a sub-threshold pedestal for the 
signal AM, allowing for more frequent crossing of the neurons’ putative instantaneous 
depth threshold in the signal interval but remaining below threshold in the masker-alone 
interval.  This is one explanation for stochastic resonance-type effects observed in 
biological systems (Ward et al. 2002), and a related mechanism can account for trends in 
psychophysical masked SAM-detection performance across a wide range of masker 
depths (Nelson and Carney, in review).   
 One way to compensate for single-cell rate-based thresholds that are higher than 
behavioral performance is to assume the existence of a population of neurons that 
respond with similar rate functions: the pooling of information across a group of cells 
reduces the effective variance of the rate estimate, resulting in lower thresholds.  An 
assumption that must be met for a pooling scheme to work efficiently is that the neural 
responses be independent from one another; this requirement has not been established at 
the level of the IC.  In addition, previous studies that tested the efficacy of pooling 
strategies in the auditory system have simulated a population response by assuming a 
stereotypical rate function with a fixed relationship between the mean and variance of the 
rate estimate (e.g. Delgutte 1987, Viemeister 1988).  An analysis of the current data set 
revealed no systematic relationship between the mean spike count and the variance of the 
count estimate in the unanesthetized rabbit IC (not shown), suggesting that the 
assumption of a rate function with stereotypical statistical properties at the level of the IC 
is probably not appropriate (i.e. variance cannot be reliably predicted from the rate).  
 
4.4.2 Comparing animal physiology and human psychophysics 
 Ideally, neural and behavioral responses would be obtained and compared in the 
same animal, but AM sensitivity has not been determined psychophysically in the rabbit 
or any other lagomorph.  AM detection thresholds measured with noise carriers in the 
chinchilla (a rodent) are better than -20 dB for modulation frequencies below 64 Hz 
(Salvi et al. 1982).  Because pure-tone carrier AM detection thresholds in humans (e.g. 
Kohlrausch et al. 2000) are lower than thresholds measured with noise carriers at medium 
to high SPLs (e.g. Viemeister 1979), it is reasonable to assume that the use of a 
deterministic carrier in the chinchilla experiments would yield lower thresholds as well.  
Furthermore, the low false-alarm rate in the animal study suggests that the chinchillas 
were using a relatively conservative criterion (Salvi et al. 1982), another factor that could 
result in elevated thresholds.  Given the absence of directly relatable rabbit behavioral 
data, the chinchilla study provides the most compelling argument against a species 
difference causing the discrepancy between rate-based AM detection thresholds and 
human psychophysical results. 
 
4.4.3 Level effects 
 The improvement in AM detection performance at high SPLs (e.g., Kohlrausch et 
al. 2000) is not easily explained with single ANF AM responses, since synchronization to 
the envelope decreases and average rate tends to saturate at high SPLs (e.g. Joris and Yin 
1992).  The synchronized responses of some neurons in the VCN to AM are less 
susceptible to degradation at high SPLs than for ANFs (Frisina et al. 1985), although 
vector strength still decreases in almost all VCN neurons at SPLs commonly used in 
psychophysical studies (e.g. Rhode 1994, Rhode and Greenberg 1994).  In the IC, 
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variation in SPL can have complex effects on the shapes of MTFs, including sMTF 
transitions from low-pass to band-pass, and shifts in rBMF of an octave or more (Krishna 
and Semple 2000).  
 Figure 4-11 shows that AM depth sensitivity does not systematically depend on 
the SPL of stimulation in the IC, even when shifts in BMF with level are taken into 
account, and when quantifications based on both average rate and synchrony are 
considered.  This result suggests that the psychophysical improvement in AM detection 
performance at high SPLs is likely due to a spread of excitation across a population of 
neurons (e.g. Kohlrausch et al. 2000).  In the IC, the complexity and level-dependence of 
tuning in both audio frequency (Ramachandran et al. 1999) and modulation frequency 
(Krishna and Semple 2000) serves as a reminder that the strategy used by the auditory 
system to code AM over a wide range of SPLs is not likely straightforward in the context 
of existing models of AM processing (Dau et al. 1997, Hewitt and Meddis 1994, Nelson 
and Carney 2004). 
 
4.4.4 Temporal adaptation to AM 
 Another question relevant to psychoacoustics is whether responses to AM in the 
IC adapt over time.  Perceptual adaptation to AM has been demonstrated through the 
measurement of decreased sensitivity (higher AM-detection thresholds) following a 
period of prolonged (20-30 min) exposure to modulation (Kay and Matthews 1972, 
Tansley and Suffield 1983).  More recently, Wojtczak and Viemeister (2005) showed that 
similar effects could be observed using a short-duration adaptor (i.e. a forward masker) 
and probe imposed on the same carrier.  The effect was maximal when the masker and 
probe were close to one another in both frequency and time, and exhibited time constants 
of 100 ms or longer. 
 Presumably, any single-cell responses consistent with the psychophysical AM 
forward masking effect would also show signs of temporal adaptation at the onset of 
stimulation.  The PSTHs shown in Figs. 4-6, 4-7, and 4-8 suggest negligible variation in 
the magnitude of the response over time courses of several hundred ms (or any other time 
course visible on the scale illustrated), even using fully modulated stimuli at BMF.  This 
general finding of weak or nonexistent onset adaptation to AM was consistently observed 
across most neurons in our population (but see the neuron described in Fig. 4-9).  The use 
of typical psychophysical ramp durations (50 ms) was probably one key contributing 
factor, although many neurons did not respond with a clear onset component to pure 
tones with 10-ms ramps either (i.e. the 47% of the population identified as sustained 
pure-tone responders). 
 Preliminary results using a stimulus paradigm designed to match the 
psychophysical study of Wojtczak and Viemeister (2005) also suggest that the effects of 
previous stimulation observed in psychoacoustics are not salient in the responses of IC 
neurons: responses to a short (50-ms) AM probe are largely independent of the presence 
of a preceding 500-ms masker modulation.  In other words, AM responses in IC neurons 
appear to recover too quickly to explain the behavioral effect.  Cortical neurons, in 
contrast, can exhibit time constants that are more in line with the psychophysical results 
(e.g. Bartlett and Wang 2005, Ulanovsky et al. 2004).  The apparent transformation 
between the colliculus and the cortex can be interpreted either as increased sluggishness 
or as enhanced context dependence.  A better understanding of the functional 
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consequences of this transition is likely to provide new insights into relationships 
between single-neuron physiology and psychophysics. 
 
4.4.5 Implications for models of AM processing 

Both the structure and response quantification of the original signal-processing 
style modulation filterbank model for perceptual AM processing (Dau et al. 1997) have 
been simplified in its most recent implementations (Ewert and Dau 2000, 2004).  
Specifically, the original resonance filters (which allowed an envelope DC component to 
pass) were replaced with second-order band-pass filters, and the template-based optimal 
detector that was used to quantify responses and predict thresholds was replaced with a 
long-term rms energy integrator (Ewert and Dau 2000).  These simplifications were 
psychophysically justified because they still allowed for reasonable predictions of the 
relevant AM behavioral data.  They were also appealing because the assumption of a 
simple decision variable instead of a template-correlation approach allowed for a more 
concrete description of perceptually relevant aspects and dimensions of the stimulus.   

Interestingly, a fundamental description of many IC neurons in the current study 
is more consistent with the predictions of the original versions of Dau’s model.  Most of 
the neurons in the unanesthetized rabbit IC responded with a sustained (DC) response to 
pure tones; the resonance signal-processing temporal filter predicts such a response, but 
the band-pass filter does not.  Responses of the small proportion (13%) of onset neurons 
are more similar to the output of a band-pass envelope filter.  With respect to the model 
quantification, we have shown that behavioral thresholds can be more accurately 
predicted if some aspect of the temporal response is taken into account; the optimal 
detector includes such information, but the rms quantification disregards temporal 
structure in the response (similar to an average-rate metric in physiology).   

The physiologically motivated SFIE model was shown to be flexible enough to 
account for the AM responses of both sustained and transient pure-tone responders as a 
function of fm and m.  In addition, the model response exhibited envelope locking at 
modulation depths lower than those required to elicit an increase in rate.  This feature was 
also observed in almost all of the neural responses.  The key model parameter that 
allowed for the successful prediction of these aspects of the data was the strength of the 
putative inhibitory input to the post-synaptic model IC cell.  Pharmacological studies of 
AM responses in the IC have shown that blocking inhibition typically does not affect the 
rBMF of the neuron; instead, an overall rate increase (across fm) is more common (Burger 
and Pollak 1998, Caspary et al. 2002, Zhang and Kelly 2003).  SFIE model rMTFs (Fig. 
4-14) are also in line with these expectations: decreasing the inhibitory strength results in 
a uniform shift toward higher rates in the rMTF without changing the rBMF.   
4.4.6 Future directions 
 A question that deserves further consideration is, “How do higher processing 
centers extract and use the envelope-locked timing information present in the responses 
of IC neurons?”  One way to address this question would be to use the SFIE model 
responses as inputs to higher-order model cells.  A preliminary hypothesis regarding the 
assumptions built in to more central model neurons is that the temporal convergence of 
synchronized responses (perhaps from cells with different BMFs) could give rise to a 
rate-based representation of low modulation depths.  An alternative approach for 
understanding how the system might use synchrony information would be to 
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simultaneously record responses from a group of neurons with different properties to 
variations in AM frequency and depth.  Because of the relatively broad tuning to AM 
observed across the population (Fig. 4-4), many neurons are likely to respond to a given 
modulation rate; an analysis of the synchronized responses across cells with different 
BMFs and depth thresholds might yield new ideas for coding schemes that could in turn 
suggest specific tests for modeling or psychophysical studies.  

In addition to suggesting directions for modeling and population analyses, the 
current study also has implications for improving predictions of responses to complex 
sounds such as vocalizations based on responses to simpler stimuli such as SAM tones.  
In general, speech and other vocalizations have dynamically fluctuating envelopes with a 
wide range of modulation frequencies and depths.  Incorporating an appropriate 
description of the AM-depth dependence of the response is essential to providing a 
complete picture of SAM-tone responses in the IC, and is likely to be similarly important 
for making reasonable predictions of vocalization responses.   
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CHAPTER 5 

General discussion and summary 
  

The central focus of this thesis was the establishment of explicit connections 
between auditory physiology, psychoacoustics, and computational modeling.  Findings 
from each of the approaches had ongoing influences on the interpretation and design of 
experiments from the other methods.  For example, a physiological modeling study 
(Nelson and Carney 2004; Appendix of this document) suggested a realistic mechanism 
that could account for a psychophysical effect that was otherwise not straightforward to 
interpret (Ch. 2).  The negative masking or stochastic resonance phenomenon in masked 
AM detection was accounted for in the model by a hard modulation-depth threshold.  
Perceptual AM processing was investigated further in Ch. 3, providing additional tests of 
our specific physiological model and new constraints for envelope-processing models in 
general.  The physiological experiments described in Ch. 4 were undertaken because of 
the specific disparity in the parameter spaces, especially concerning modulation depth, 
used in the existing AM physiological literature and the related psychophysical studies 
(e.g. those described in Chapters 2 and 3) that was brought to light only after attempting 
to directly relate simulated neural responses to performance in psychophysical 
paradigms.  
 
5.1 APPLICATIONS 
 Understanding basic auditory function at both behavioral and neural levels (often 
with the help of models) is critical for the advancement of several important fields of 
applied research.  One area is the improvement of devices designed to assist the hearing 
impaired.  Current strategies of both cochlear implant (CI) and hearing aid (HA) signal 
processors are strongly dependent on the envelope (i.e., the AM composition) of the 
incoming acoustic signal.  Most CI processors use the envelope of a bank of audio-
frequency channels to modulate the amplitude (or duration) of current pulses that are sent 
to electrode pairs at set points along the cochlea.  Variations on existing processing 
schemes have largely focused on restoring “normal” audio-frequency auditory-nerve 
filtering properties and/or the stochastic properties of peripheral neural spike trains.  
Given the fundamental assumptions of the overall CI strategy, perhaps more attention 
should be paid to restoring the physiologically appropriate neural AM response 
properties, with some basic AM perceptual findings in mind. 
 Hearing aids pose a very different kind of problem, since the goal is to modify the 
incoming signal such that the output of the damaged but partially functioning cochlea is 
more similar to that of a normal cochlea.  One universal component of all HA (and CI) 
processors is a compressive nonlinearity, designed to compensate for the reduced 
dynamic range that has been repeatedly observed in hearing-impaired listeners.  The 
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assumed compression is fast-acting; gain or attenuation may be applied to envelope 
fluctuations in the range of the modulation frequencies studied in this thesis on a cycle-
by-cycle basis.  In addition to limiting the maximum and minimum amplitudes passed to 
the impaired cochlea, the effect of such compression in terms of AM is to reduce the 
instantaneous modulation depth of the signal.  Our analysis of central responses to AM 
stimuli suggests that the system uses different neural strategies to represent sounds with 
low versus high modulation depths.  A possible unwanted side effect of dynamic-range 
compression is the transformation of high-depth envelope features into effective low-
depth fluctuations.  Again, a physiological investigation of neural AM response 
properties in impaired animal models would shed more light on the possible side effects 
of artificially applied compression in terms of the representation of modulation.  
 Another application area that might benefit from the perceptual and physiological 
studies described in the preceding chapters is the development of artificial systems that 
make use of the signal-processing strategies used by the brain for problems such as noise 
reduction, data scaling and compression, and speech recognition and identification.  One 
angle that has been exploited to some degree is the potential signal-processing benefits 
that a modulation-frequency analysis would provide (Greenberg and Arai 2001, Atlas and 
Shamma 2003, Sukittanon et al. 2004).    

Our results provide further suggestions for additions and constraints on the 
structure of the models that underlie the signal-processing algorithms.  The current 
combination of psychophysics and modeling suggests that the actual system may 
incorporate a hard modulation-depth threshold nonlinearity (Ch. 2), along with envelope 
change-detectors that respond only to amplitude transients (Ch. 3).  Findings from both 
physiology and psychophysics are consistent with the existence of a representation of low 
AM depths in the form of temporal fluctuations in the output of modulation-tuned 
channels, as opposed to increases in long-term (average) responses (Ch. 2; Ch. 4).  Also, 
the system does not appear to emphasize temporal changes in the signal’s instantaneous 
modulation depth; that is, there is not a strong second-order envelope change detector 
(Ch. 3), and responses to an ongoing modulation do not adapt significantly over time (Ch. 
4). 
 
5.2 PERCEPTUAL VERSUS PHYSIOLOGICAL ENVELOPE PROCESSING  
 
5.2.1. Similarities 
 A fundamental driving hypothesis behind the physiological experiments was that 
single IC neurons could be conceptualized as perceptual modulation filters.  Some basic 
observations that apply to psychophysical modulation filters and neural IC responses to 
AM can be summarized as follows.  (1) Tuning to AM frequency is broad.  (2) A long-
term decision variable (e.g. average rate or rms energy) can account for some, but not all, 
aspects of the response.  (3) Maximal sensitivity to tone-carrier AM is essentially 
independent of modulation frequency (fm), for rates below 150 Hz.  Above 150 Hz, 
detection and discrimination performance based on temporal fluctuation cues 
deteriorates.  (4) The mechanism for AM depth discrimination likely changes with 
standard depth.  It is possible that the transition from AM detection to discrimination is a 
result of a change in both the internal representation and in the decision variable. 
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5.2.2. Differences 
5.2.2.1 General survey 
 It is also relatively easy to identify some limits to the validity of the assumption 
that IC neurons are physiological implementations of perceptual modulation filters.  (1) 
Many IC MTFs are not band-pass. This is true for any quantification of the response (e.g. 
rate, synchrony, or synchronized rate), and suggests that a subset of the population might 
form the substrate for perceptual envelope-domain filtering.  (2) Neural AM detection 
performance does not systematically depend on overall SPL, while perceptual thresholds 
improve with increasing level.  A system with the ability to scan a population of cells and 
identify the most sensitive (phase-locked) responses might benefit from higher SPLs 
simply because a larger proportion of the population is likely to respond to high 
presentation levels.  (3) Perceptual AM processing is sluggish or context-dependent; IC 
responses are not as sensitive to previous stimulation.  Because this final statement is 
potentially not as obvious as the other comparison points based on the data described in 
the body of the thesis, some elaboration is justified. 
5.2.2.2 Time constants: long in psychophysics, short in IC physiology  

The terms “sluggish” and “context-dependent” are certainly not synonyms, but 
the psychophysical effects that are described below could be caused by aspects of a 
system with either sluggishness or context-dependence (or both).  In a sense, the two 
descriptors differ mainly in their connotations: sluggishness implies a limitation of the 
system, while context-dependence gives the system more credit in its ability to identify 
and separate auditory objects.  Intuitively, a transition occurs as the sensory processing 
pathway is ascended, with peripheral stages responding to and following fast fluctuations, 
and central stations parsing and grouping incoming streams of information.  The basic 
questions that we have addressed are, “Where does the IC fit in this transition with 
respect to envelope processing?  Are IC responses fast or context-dependent?”  
 Two findings from psychoacoustics provide clear illustrations of the issue.  One is 
the long time course of the release from masking in the envelope-frequency domain 
demonstrated in Ch. 3.  A reasonable description of the psychophysical observation is 
that the presence of a competing modulation influenced the perception of a signal AM, 
even when the masker and signal were presented non-simultaneously.  The time course of 
this effect was on the order of several hundred milliseconds.  Another clear 
psychophysical effect can be described in exactly the same way.  Wojtczak and 
Viemeister (2005) showed that the detection of a short probe SAM was made more 
difficult when the signal was preceded by a masker SAM imposed on the same carrier, 
for masker-signal delays as long as 200 ms.  The correspondence of the time courses of 
the two effects suggests a single underlying mechanism.  A simple sluggishness argument 
may explain the findings: long-lasting persistence or adaptation could potentially account 
for the non-simultaneous masking.  Alternatively, the perceptual similarity between the 
masker and signal in both experiments may result in their grouping into a single object, 
making extraction of the signal more difficult (a context-dependence explanation). 

We recorded neural responses in the unanesthetized rabbit to the stimuli used in 
Wojtczak and Viemeister (2005) in 25 cells to determine whether any long-lasting effects 
of the masker would alter the response to the signal AM in the IC.  Several delays were 
tested in the physiology (as in the psychophysics).  The responses of a typical neuron are 
summarized in Fig. 5-1, in terms of PSTHs, average rates, and an analysis based on the 
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temporal correlation between the control and masked signal representations.  Essentially 
no effect of the masker was observed in terms of changes in average rate (Fig. 5-1C) or 
correlation (Fig. 5-1D), for any tested delay.  The quantifications are supported by visual 
inspection of the PSTHs shown in Fig. 5-1A and 5-1B, which suggest no systematic 
change in the response to the signal as the delay between masker and probe was 
increased. 

Although only a single example, the neuron illustrated in Fig. 5-1 clearly shows 
no evidence for sluggishness or context-dependence.  An examination of the responses of 
the remainder of the tested units revealed qualitatively similar responses across the 
population.  The findings are consistent with a view of the IC as a nucleus that acts as a 
relatively fast envelope-information transmission station that is peripheral to the stages of 
the system responsible for grouping (or sluggishness).  In other words, responses of IC 
neurons predict negligible forward masking of amplitude modulation.  It is likely that IC 
responses would also predict a substantial “release from masking” using the stimuli of the 
second experiment of Ch. 3, although this hypothesis was not directly tested with 
physiological recordings.  Returning to and repeating the statement that launched this 
discussion, perceptual AM processing is sluggish or context-dependent; IC responses are 
not as sensitive to previous stimulation. 
 In contrast to neurons in the IC, cells in the primary auditory cortex have been 
shown to exhibit temporal context-dependence on time scales similar to psychophysical 
measurements (e.g. Calford and Semple 1995, Brosch and Schreiner 1997, Bartlett and 
Wang 2005).  Given the strong descending (efferent) input from the cortex to the IC 
(reviewed in Winer 2004), it was somewhat surprising that we did not observe any 
significant contextual or sluggish responses.  A direction for future work might include 
an investigation of responses to stimuli that provide evidence for perceptual context 
dependence in the auditory thalamus, which has historically been conceptualized as a 
“relay” station between the IC and cortex (mainly because of a lack of relevant data). 
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FIG 5-1. Responses of a typical IC neuron that does not exhibit sluggishness or context-
dependence in an envelope-frequency forward-masking paradigm.  A: PSTHs for the 
control response, along with the responses to each tested masker-probe delay.  Schematic 
waveforms are shown to the left for the control, 25-ms, and 100-ms delay conditions.  B: 
Comparison of control (thick gray lines) and “masked” (thin black lines) responses for 
each delay condition.  Only the 80-ms window following the onset of the probe is shown 
(i.e. the comparison conditions were shifted to align with the timing of the probe in the 
control condition).  C: Average number of spikes elicited in each of 20 repetitions of the 
probe (error bars = standard deviation) as a function of the delay between the masker 
offset and probe onset.  The control condition is labeled with a “C” on the x-axis.  D: 
Correlation coefficients computed between control and masked conditions over the 80-ms 
portion of the PST shown in B.  The bin width used to generate the PSTHs was set to 
1.72 ms (1/10th of the duration of a period of the signal AM). 
 
5.3 OVERALL SUMMARY 
 To summarize, the data presented in this thesis represent the most direct 
comparison of basic auditory perceptual and neural AM processing described to date.  
The experiments suggest constraints for future models of envelope processing and 
provide insight into the strategies used by the mammalian auditory system to code 
modulations.  Contributions specific to each approach (physiology, psychophysics, and 
modeling) include: establishment of a baseline for potential future comparisons of neural 
modulation-depth sensitivity across species, anesthetic states, and levels of the pathway 
(physiology), a description of several observations that point out limitations for 
conceptualizing audio-frequency and modulation-frequency perceptual processing in a 
single framework (psychophysics), and the testing and validation of a simple and realistic 
mechanism implemented computationally that accounts for several key aspects of the 
data (modeling).  Overall, the integrative nature of the results illustrates the advantages of 
addressing a question from several angles, allowing the findings from one approach to 
drive hypothesis testing in another. 
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APPENDIX 
 
A phenomenological model of peripheral and central 
neural responses to amplitude-modulated tones 
 
ABSTRACT 
A phenomenological model with time-varying excitation and inhibition was developed to 
study possible neural mechanisms underlying changes in the representation of temporal 
envelopes along the auditory pathway.  A modified version of an existing auditory-nerve 
model [Zhang et al. (2001), J. Acoust. Soc. Am. 109, 648-670] was used to provide 
inputs to higher hypothetical processing centers.  Model responses were compared 
directly to published physiological data at three levels: the auditory nerve, ventral 
cochlear nucleus, and inferior colliculus.  Trends and absolute values of both average 
firing rate and synchrony to the modulation period were accurately predicted at each level 
for a wide range of stimulus modulation depths and modulation frequencies.  The 
diversity of central physiological responses was accounted for with realistic variations of 
model parameters.  Specifically, enhanced synchrony in the cochlear nucleus and rate-
tuning to modulation frequency in the inferior colliculus were predicted by choosing 
appropriate relative strengths and time courses of excitatory and inhibitory inputs to post-
synaptic model cells.  The proposed model is fundamentally different than others that 
have been used to explain the representation of envelopes in the mammalian midbrain, 
and it provides a computational tool for testing hypothesized relationships between 
physiology and psychophysics.  Note: This appendix was published as a paper with the 
same title: Nelson, P. C., and Carney, L. H. (2004). J. Acoust. Soc. Am. 116, 2173-2186. 
 
A.1 INTRODUCTION 

Physiological responses to amplitude-modulated (AM) stimuli have provided a 
basic description of how controlled fluctuations in a signal’s temporal envelope are 
represented at several levels of the auditory pathway.  The same class of stimulus has also 
been used extensively in psychophysical experiments, as a convenient means to 
investigate perceptual temporal processing capabilities and limitations.  Sinusoidally 
amplitude-modulated (SAM) sounds are often used in both approaches because they can 
be described by a limited parameter set, and they are logical links between simple (tonal) 
stimuli and more spectro-temporally complex and biologically relevant signals such as 
speech.  The abundance of data describing neural responses to SAM stimuli provides an 
opportunity to thoroughly test specific hypotheses concerning the physiological 
mechanisms that underlie envelope coding.  Parallel psychological studies offer chances 
to better understand neural correlates of AM perception.   

The current study uses computational modeling as a tool to quantitatively test 
realistic neural encoding hypotheses that may be used by the auditory system to code 
envelope modulations.  Model responses will be directly compared to those reported in 
physiological studies of periodicity coding in the periphery, brainstem, and midbrain 
(auditory nerve, cochlear nucleus, and inferior colliculus, respectively).  Some specific 
hypotheses that this approach will allow us to test are that: (1) simple interactions 
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between inhibition and excitation can give rise to modulation-tuned cells, and (2) 
physiologically realistic model parameter variations can account for the diversity of 
physiological AM responses.  The broad goals of this study are to gain insights on coding 
strategies.  As a result, the model is phenomenological in nature; we have not tried to 
include details of the underlying biophysical mechanisms in the model structure.  
Limitations of the predictive capabilities of the model we present here can provide useful 
clues for developing future experiments.    
 
A.1.1 Extracellular physiological responses to AM stimuli  
 Typically, neural responses to AM stimuli are quantified based on (1) average 
firing rate and (2) synchrony (Goldberg and Brown, 1969) to the modulation period.  
These metrics are usually reported as a function of the stimulus modulation frequency 
(fm), resulting in a physiological rate modulation transfer function (rate-MTF, average 
rate vs. fm), or a synchrony MTF (sync-MTF, synchrony vs. fm).  For reference, a half-
wave rectified sinusoid and a pure sinusoid (i.e. the envelope of a fully-modulated 
stimulus) are described by synchronization coefficients (SC) of 0.784 and 0.5, 
respectively (or modulation gains of +3.9 dB and 0 dB for a fully modulated stimulus). 

At the level of the auditory nerve (AN), the most complete set of data describing 
responses to SAM tones is that of Joris and Yin (1992) in the cat.  High-characteristic 
frequency (CF) AN sync-MTFs for low to moderate stimulus levels are uniformly low-
pass, with corner frequencies between 600 Hz and 1 kHz and peak modulation gains from 
0 dB to +4 dB.  Modulation corner frequencies are positively correlated with CF, 
indicating that temporal responses are dependent on the spectral interactions between AM 
signal components.  Synchrony increases significantly with increasing stimulus 
modulation depth in AN fibers, and there is an optimal (moderate) stimulus level that 
elicits the most synchronous response (Joris and Yin, 1992; Smith and Brachman, 1980; 
Cooper et al., 1993).  High-spontaneous-rate (SR) fibers, which make up the majority of 
the AN-fiber population (Liberman, 1978), show little or no variation in rate with fm, 
while average rates of most low-SR fibers tend to drop slightly as fm increases (Joris and 
Yin, 1992).  Encoding of AM in the AN is therefore widely assumed to be based on a 
temporal code, with stimulus modulation information carried in the periodicities of the 
post-stimulus time (PST) histogram.  However, in contrast to psychophysical measures, 
which are robust across level, AN PST histograms tend to flatten out at high stimulus 
levels, causing decreased response synchrony (Joris and Yin, 1992; Smith and Brachman, 
1980).  Central processing either recovers the diminished synchrony information at 
higher stimulus levels (possibly by combining information across audio frequencies), or 
uses some other feature of the AN neural response to encode envelopes. 
 Neurons in the cochlear nucleus (CN) can receive convergent information from 
multiple AN fibers, as well as from collaterals and descending inputs (both excitatory and 
inhibitory) (e.g. Ryugo and Parks, 2003; Schofield and Cant, 1996).  The resulting MTFs 
are more complex than those measured in the AN.  Sync-MTFs can be either low-pass or 
band-pass, and synchrony to the modulation period is often enhanced relative to AN 
fibers (Rhode and Greenberg, 1994, cat; Frisina et al., 1990, gerbil).  Corner frequencies 
of CN sync-MTFs can be considerably lower than those measured in high-CF AN fibers, 
and are generally not correlated with the unit’s CF.  Most rate-MTFs remain relatively 
flat at the level of the ventral CN (VCN), with the exception of onset-choppers, which 
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can exhibit rate-tuning to fm (Rhode and Greenberg, 1994).  Also, some AM response 
characteristics (i.e. shape of MTF and maximum synchrony values) are correlated with 
tone-based physiological characterizations of individual neurons (Rhode and Greenberg, 
1994).  For instance, many onset and chopper units are characterized by sync-MTFs that 
change from low-pass at low SPLs to band-pass at high SPLs (Frisina et al., 1990; Rhode 
and Greenberg, 1994).  Existing physiological models of AM processing rely on chopper 
cells in the VCN (e.g. Hewitt and Meddis, 1994); in the current study, we simulate bushy 
cells (which would be classified as primary-like or primarylike-with-notch based on their 
responses to tones) at the level of the VCN as an alternative pathway along which 
temporal envelope information could flow.  The specific AM response characteristics that 
we have achieved in our physiologically-realistic model bushy cells are (1) enhanced 
synchrony and (2) lower sync-MTF corner frequencies (re: AN inputs; Frisina et al., 
1990; Rhode and Greenberg, 1994).  The low-pass to band-pass transition in the shape of 
the sync-MTF as sound level increases was not modeled, as this transition is not evident 
in VCN bushy cells (Frisina et al., 1990; Rhode and Greenberg, 1994). 

The inferior colliculus (IC), like the CN, is an almost obligatory synapse between 
lower brainstem nuclei and higher processing centers.  Interactions between ascending 
and descending inputs potentially complicate the AM response properties of IC neurons.  
A systematic and thorough investigation of gerbil IC cell responses to SAM tones 
provided by Krishna and Semple (2000) has refined earlier work described by Langner 
and Schreiner (1988) in the cat.  IC rate-MTFs often indicate rate tuning to specific 
modulation frequencies, and many cells exhibit suppressive fm regions (Krishna and 
Semple, 2000).  IC units are often highly synchronized to fm, with most sync-MTFs 
taking low-pass or band-pass shapes.  Best modulation frequencies (BMF, fm eliciting 
largest response) based on rate are significantly lower (most are less than 100 Hz) than 
those observed in the VCN or AN based on synchrony.  Increasing stimulus modulation 
depth generally increases the firing rate near rate-BMF, while changing the overall 
stimulus level has complicated and less systematic effects on rate-MTF shape (Krishna 
and Semple, 2000).   
 
A.1.2  Intracellular responses and studies of inhibition 

Inhibition could be an integral component of the neural processing that underlies 
the apparent transition from a temporal AM code in the periphery to a rate-based scheme 
at higher levels (Grothe, 1994; Faure et al., 2003).  Several aspects of the inhibitory 
circuitry in the VCN and IC have been previously investigated.  In a pharmacological 
study of neurons in the chinchilla VCN, Caspary et al. (1994) selectively blocked 
inhibitory inputs and measured response areas (RAs) before and after neurotransmitter 
blockade.  They found that response rates were most often affected near or at CF (~85% 
of neurons), and concluded that GABA and/or glycine-mediated inhibitory inputs are 
tonotopically aligned with excitatory inputs onto the same cell.  Same-frequency 
inhibition and excitation (SFIE) is also suggested by morphological labeling studies, 
which indicate that the likely sources of inhibitory input (dorsal CN and superior olivary 
complex) are matched in frequency with their post-synaptic targets in the VCN (e.g. 
Wickesberg and Oertel, 1988).   

Other studies have focused on understanding the time courses of inhibitory and 
excitatory influences in the VCN.  Intracellular recordings in the brain-slice preparation 
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of excitatory and inhibitory post-synaptic potentials (EPSPs and IPSPs) in response to 
current injections at the stump of the AN have provided details of these time courses that 
would not be possible to infer using extracellular methods (Oertel, 1983).  Specifically, 
EPSPs of bushy cells in the VCN can be described as alpha functions with a time 
constant of approximately 0.5 ms, and IPSPs are slower, with time constants on the order 
of 2 ms.  Differences in latencies between excitatory and inhibitory influences in these 
studies are also informative and consistent with the fact that all AN fibers are excitatory: 
inhibitory component onsets often begin 1-2 ms after excitation is observed and are 
therefore assumed to be disynaptic (Oertel, 1983).  These observations can be built in to 
our model of neural processing between AN fibers and VCN neurons.        
 A similar framework of evidence exists for SFIE circuitry in the IC.  Neurons 
originating in the dorsal nucleus of the lateral lemniscus (DNLL) and projecting to the IC 
provide one source of GABA-ergic inhibitory input to the central nucleus of the IC (ICc) 
(Schneiderman et al., 1988).  Palombi and Caspary (1996) selectively blocked GABA in 
the ICc, and showed that rate increases occur mainly near CF in the absence of inhibition, 
similar to findings in the VCN.  Brain slice intracellular recordings have suggested that 
synaptic modification of incoming spike trains in the IC lasts significantly longer than in 
the VCN (e.g. Wu et al., 2002).  Carney and Yin (1989) used extracellular responses of 
IC cells to clicks presented binaurally with an interaural time difference (ITD) to infer 
durations of inhibitory influence.  They recorded from cells with a wide range of long-
lasting inhibitory components that sometimes suppressed firing for tens of milliseconds 
following an initial click response. 

A.1.3 Modeling  
 Previous modeling efforts of physiological AM coding have used a coincidence-
detection mechanism at the level of the model IC cells to generate band-pass rate tuning 
for modulation frequency (Langner, 1981; Langner and Schreiner, 1988; Hewitt and 
Meddis, 1994).  The elements of Langner’s model, which is focused on pitch encoding 
instead of pure AM, are only loosely based on physiology.  Neurons are hypothesized to 
perform a cross-correlation analysis between spike trains synchronized to the modulation 
frequency and the carrier frequency, with small delays between the inputs (Langner, 
1981).  The model loses its appeal, however, because it is only plausible at low carrier 
frequencies where phase-locking to the stimulus fine-structure is observed in inputs to the 
IC (Yin, 2002).  

The Hewitt and Meddis model for AM sensitivity is built around a population of 
intermediate ‘chopper’ model VCN cells, whose parameters are adjusted to provide a set 
of envelope-locked inputs to post-synaptic model IC cells.  In the framework of their 
model, AM-synchronized spikes in the VCN tend to fire at intervals related to their 
chopping period, and stimuli with AM fluctuations that are close in frequency to this 
inherent chopping elicit a more highly synchronous response.  The synchrony-BMF 
(equivalently, the chopping period) of a model chopper cell is adjusted by varying a 
potassium-conductance time constant (i.e. Hewitt and Meddis, 1994) in a point-neuron 
model.  One key assumption of this model structure is that the AM rate tuning observed 
in IC cells is determined by the synchrony tuning properties of VCN choppers that 
provide inputs to the IC.  As a result, the range of rate-BMFs in model IC cells is 
determined by the range of synchrony-BMFs in their VCN inputs.  By allowing the VCN 
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potassium-conductance time constant to vary from 0.2 ms to 7 ms, Hewitt and Meddis 
(1994) showed responses from AM-tuned model cells with BMFs between 50 Hz and 
400 Hz.   One issue for the Hewitt and Meddis model is the disparity in the ranges of 
VCN chopper synchrony-BMFs (~ 150 Hz – 700 Hz; Rhode and Greenberg, 1994; 
Frisina et al., 1990) and IC cell rate-BMFs (~ 1 Hz – 150 Hz; Krishna and Semple, 
2000). 

Physiological work in the auditory system has suggested a possible role for 
envelope-locked inhibition in AM processing (i.e. Krishna & Semple, 2000; Caspary et 
al., 2002), but the details of such a mechanism have not been agreed upon or 
quantitatively tested.  We used the results from a modeling study in another modality as a 
starting point for the development of a new model that incorporates phasic inhibition.  
Krukowski and Miller (2001) implemented a model of temporal frequency tuning in the 
visual system in which inhibition dominates over excitation.  These model neurons 
respond only to stimuli with envelope fluctuations because excitation and inhibition can 
occur out of phase with one another when the stimulus is modulated.  Applied to the 
auditory system, we will show that an implementation of this mechanism can explain the 
transition from a temporal AM code in the periphery to a rate-based code at the level of 
the IC.  A similar mechanism has recently been used to explain modulation coding at the 
level of the auditory cortex (Elhilali et al., 2004). 
 In summary, the existence of physiological “modulation filters” has been 
experimentally shown.  The details of the relationship between behavioral and neural AM 
responses remain unclear.  We propose that one approach towards bridging this gap is to 
compare the predicted responses of a physiologically-realistic computational model to 
actual AM responses.  The specific model we have chosen to evaluate uses the 
convergence of long-duration inhibition and short-duration excitation as a mechanism for 
extracting modulation information from spike trains in lower levels.   
 
A.2 METHODS 
 
A.2.1 Auditory-nerve model 
 A new version of the physiologically-based auditory-nerve (AN) model 
developed by Zhang et al. (2001) and modified by Heinz et al. (2001a) was used to 
simulate responses at the first level of neural coding.  The modifications outlined below 
were included specifically to improve responses to AM tones, but they did not 
significantly affect responses to simple stimuli; model responses to tones are similar to 
those described in Heinz et al. (2001a, their model #3).  
A.2.1.1 New signal path filters 
 Effects of basilar membrane compression and two-tone-suppression were omitted 
in the modified linear version of the Zhang et al. (2001) AN model used in the present 
study.  Spontaneous rate was adjusted as in the Heinz et al. (2001a) model to match the 
values described in the physiology, where available.  We chose to use linear signal-path 
filters because of unresolved limitations of the nonlinear AN models at high CFs and high 
SPLs (discussed later).  Tuning of the signal-path gammatone filters was adjusted based 
on properties of AN fibers in response to AM CF tones.  Specifically, CF-dependent 
bandwidths of the sharp linear AN model (Heinz et al., 2001a, model #3) were changed 
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to account for the corner frequencies measured in low-pass sync-MTFs.  For CFs above 1 
kHz, the filter time constant was specified by 

 
CF

Q
π

τ
2

10= ,  (1) 

where the value of Q10 is estimated from a linear fit of measured values of Q10 (Miller et 
al., 1997; see Zhang et al., 2001).  The value described here, which is an estimate of 
tuning at intermediate SPLs, is half the τnarrow described in previous versions of the AN 
model (which was estimated from AN responses at low sound levels).  The resulting 
high-CF model sync-MTFs have significantly higher corner frequencies than previous 
AN model versions, and are very close to those described in the cat by Joris & Yin 
(1992).  For very low CFs (< 1 kHz), the equation for τnarrow described by Zhang et al. 
(2001, their Eq. (4)) is sufficient to account for the sync-MTF corner frequency in the 
small amount of data available from low-CF AN fibers.   
A.2.1.2 Modified synapse model 
 Previous AN models have used a simplified implementation of Westerman and 
Smith’s (1988) time-varying three-store diffusion model (Carney, 1993; Zhang et al., 
2001; Heinz et al., 2001a) to describe the transformation of a stimulus-driven voltage to 
an instantaneous firing rate at the output of the IHC-AN synapse.  Only the immediate 
permeability is assumed to depend on the acoustic stimulus (through the inner-hair-cell 
voltage).  The parameters of these models are determined based on desired properties of 
high-CF PST histograms, including spontaneous rate (SR), steady-state discharge rate, 
and onset adaptation time constants at high sound levels.  Once the initial parameters are 
set, the immediate permeability described in Westerman and Smith (1988) determines the 
(level-dependent and time-varying) effective time courses of the two adaptation 
processes.  High-level stimuli result in smaller rapid and short-term time constants. 
 There is a basic limitation of these prior implementations that directly affects 
envelope-locked responses to AM tones.  Recovery from prior stimulation (offset 
adaptation) in the models has two components and follows time courses that are set by 
the rapid and short-term components of onset adaptation.  As a result, the final output of 
the previous synapse model (the product of an immediate permeability and concentration) 
recovers too quickly after tone stimulation.  Physiological AN recordings (Smith, 1977; 
Smith and Zwislocki, 1975; Harris and Dallos, 1979) suggest that fibers with medium- or 
high-spontaneous rates recover more slowly than onset time constants would dictate, with 
a level-dependent dead time and a time constant longer than that of short-term onset 
adaptation.   
 Zhang (personal communication) has developed a strategy that effectively avoids 
these constraints on the synapse model.  A SR-dependent shift is added to the desired rate 
response before implementing the difference equations that describe the diffusion model.  
After the differential equations are simulated on the up-shifted version of the pre-synaptic 
response, the resulting output is shifted back down by the same amount and half-wave 
rectified (so the final synapse output is never negative).  By including the shift, offset 
recovery is effectively slowed because the early offset response is set to zero when the 
down-shifted output is half-wave rectified.  The modification can be physiologically 
interpreted as a constant neurotransmitter leak in the synaptic cleft (Zhang, personal 
communication). 
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 For all of the simulations presented here, the shift (which was the same in 
amplitude for the upward shift as for the downward shift) was equal to twice the desired 
SR of the fiber.  This value was a compromise: larger shifts further increase the 
modulation gain, but also caused systematic variations in average firing rate with 
modulation frequency.  A SR-independent shift was also considered, but steady-state 
rates of low-SR fibers at high sound levels were unrealistically high when a high shift 
value (e.g. shift = 120 sp/sec) was used for all model AN fibers.  Figure A-1 illustrates 
the effect of the 2 x SR shift on a response to a 200-ms (8-ms cos2 rise/fall time), 25-dB 
SPL pure tone presented at CF for an 8-kHz AN model fiber with a SR of 50 sp/sec.  The 
final synapse outputs are shown for the current model version, as well as for the Zhang et 
al. (2001) AN model (their complete nonlinear model with compression and 
suppression).  The effect most relevant to increasing modulation gain can be seen after 
the tone offset, where the response is suppressed below SR for about 150 ms in this 
example.  If a fully modulated AM tone is thought of as a train of tone pips, the corollary 
effect would be to suppress firing in the envelope valleys or troughs, which is observed 
physiologically (Joris & Yin, 1992).  

 
FIG A-1. AN model pure-tone responses (main panel) and schematic of AN responses 
from Harris and Dallos’ (1979) physiological forward masking study (inset; with 
permission).  Modification of the IHC-AN synapse portion of the Zhang et al. (2001) AN 
model resulted in longer (and more physiologically-realistic) offset suppression.  Model 
waveforms are responses of an 8-kHz CF fiber to a 25-dB SPL pure tone at CF.   
 
A.2.1.3 Input and output signals and other details 

Inputs to the AN model were the instantaneous pressure waveforms of the stimuli 
in Pascals.  The corresponding output was the time-varying discharge rate of the synapse 
model, rAN(t), in spikes/second.  Characteristic frequency (CF) and spontaneous rate were 
adjusted and matched to single-fiber physiology (where available) to generate an 
individual fiber response.  Simulation sampling rates varied between 75 kHz and 200 
kHz, depending on the CF of the AN fiber and the stimulus frequency.  Stimuli had 25-
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ms rise-fall times, and both carrier and modulator were started in sine phase, unless 
explicitly stated otherwise.  Detailed responses of a previous version of this 
phenomenological model have been compared to physiological data describing AN 
responses to tones, noises, and clicks (Zhang et al., 2001).  One goal of the current study 
was to compare responses of the new AN model to general trends and absolute values of 
envelope synchrony and average firing rate observed in cat AM physiology (neglecting 
the initial onset response, as in Joris and Yin, 1992).   
A.2.2 Model cochlear nucleus cells 
 Some basic physiological observations are incorporated into the generation of 
model responses at the first levels of AN fiber convergence.  First, membrane and 
channel properties of bushy cells in the VCN have the effect of low-pass filtering 
incoming spike trains (Oertel, 1983).  VCN post-synaptic potentials were approximated 
by alpha functions of the form P(t) = te-t/τ, where values of τ were chosen based on 
Oertel’s intracellular recordings of bushy cells.  Inhibitory influences are slower and 
longer-lasting (i.e. IPSP time constants are longer, on the order of 2 ms) than excitatory 
input influences, which can be characterized by EPSP time constants of about 0.5 ms.  
Computationally, smoothed inputs to the model VCN cells were obtained by convolving 
rAN(t) with the appropriate alpha function.  The relative strengths of inhibition and 
excitation were adjusted by varying the area under the alpha function (or equivalently, the 
gain of the low-pass filter pass-band).  At this first level of convergence, the strength of 
excitation was assumed to be greater than that of inhibition.  Because all AN fibers are 
excitatory, model inhibitory inputs to VCN cells were also slightly delayed (DCN = 1 ms) 
relative to the excitation, to simulate a disynaptic delay along an intrinsic inhibitory 
pathway (Oertel, 1983). 
 Another physiologically-based observation that is included in the simulated VCN 
cells is that many neurons in the anteroventral cochlear nucleus (AVCN) receive same-
frequency inhibitory and excitatory (SFIE) inputs (see Introduction).  This mechanism 
was realized simply by subtracting a membrane-modified, inhibitory AN response from a 
corresponding smoothed excitatory AN response with the same CF.  In terms of the AN 
input rAN(t) and the approximated post-synaptic potentials, the VCN response is given by: 
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where different time courses of inhibition and excitation (τexc=0.5 ms, τinh=2 ms) are 
represented in the two convolution (*) terms, and same-frequency inhibition and 
excitation (SFIE) is included by using the same AN instantaneous discharge rate for both 
inputs.  The resulting difference was half-wave rectified so that negative rates caused by 
the subtraction were represented by zero firing in the resulting model VCN cell 
instantaneous firing rate.  The scalar SCN,inh sets the strength of inhibition relative to the 
excitation.  The scalar A was taken into account to achieve realistic average rates; this 
value was set to 1.5 for the simulations presented here.  
A.2.3 Model inferior colliculus cells 
 Responses of model VCN cells were used as inputs to higher levels of 
convergence in a hypothetical processing cascade.  Synaptic modifications, input 
frequency convergence, and relative delays between the inputs were implemented as in 
the first level of processing.  Mathematically, Eq. (2) was used to derive IC model 
responses, with rAN(t) being replaced by rCN(t), and A = 1.  One important difference 
between the two levels of processing was the strength of inhibition: model IC neurons 
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had stronger inhibition than excitation (SIC,inh > 1), while model VCN cells were 
dominated by their excitatory inputs (SCN,inh < 1).  As a result, the IC model cell 
responded strongly only when the timing of the two inputs was such that a peak of 
excitation coincided with a valley of the envelope-locked inhibition. 
 Because the time courses of inhibitory influences at the level of the IC are more 
variable than those observed in the VCN (e.g. Carney and Yin, 1989), the inhibitory time 
constant in the second level of model cells was systematically varied.  Consequences of 
this variation are described in Results.  The single inhibitory time constant of the model 
should not necessarily be interpreted as a simple time constant of a single IPSP, but rather 
as an effective time constant describing the overall time-course of the inhibitory influence 
(which could be, for example, a train of IPSPs rather than a unitary IPSP).  A schematic 
diagram of the two-layer SFIE model is shown in Fig. A-2. 

 
FIG A-2. Schematic diagram of the same-frequency inhibition and excitation (SFIE) 
model.  A single model AN fiber provides the post-synaptic cell with both excitatory and 
inhibitory input, via an inhibitory interneuron.  The thickness of the lines corresponds to 
the relative strength of the inhibition and excitation at each level.  Alpha functions 
representing the assumed membrane and synaptic properties are also shown. 
 
A.3 RESULTS 
 
A.3.1 AN model responses  
 Joris and Yin’s (1992) systematic study of cat AN responses to SAM tones 
provides an excellent template for detailed evaluation of AN model responses.  
Physiological and model AN sync-MTFs and rate-MTFs of high-CF fibers are 
stereotyped in their shape: sync-MTFs are low-pass at low to moderate signal levels with 
-3dB cutoffs between 600 and 1000Hz, and rate-MTFs of high-SR AN fibers show little 
variation in average rate with fm.  Also, both model and actual AN responses at low fm 
can be more modulated than a half-wave rectified version of the stimulus (modulation 
gain > 0).   

Physiology and model predictions for a single high-CF AN fiber are illustrated in 
Fig. A-3 in terms of modulation gain, average firing rate, and PST histogram shape.  
Model fiber parameters were matched to the physiological fiber description (CF and SR), 
and stimulus conditions (carrier frequency and relative level) were also duplicated.  The 
main effect of modifying the AN-IHC synapse portion of the AN model was to increase 
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the envelope synchrony (or equivalently, modulation gain) to physiologically-realistic 
values.  Previous AN model versions had maximum modulation gains of approximately -
5 dB at low SPLs (the full nonlinear version of the Zhang et al. (2001) model predicts a 
SC of 0.29 for a fully-modulated stimulus), while the version described here has a peak 
gain of +2.5 dB (SC = 0.66).  The low-pass shape and corner frequency of the sync-MTF 
are consistent with the data (Fig. A-3A); the flat rate-MTF and steady-state average rate 
values are also well-predicted (Fig. A-3B).  Shapes of the PST histograms are not strictly 
determined by measurements of synchrony and rate; however, the model responses are 
also qualitatively similar in PST shape to those measured physiologically (Fig. A-3C). 

 
FIG A-3. Comparison of model and actual modulation transfer functions and period 
histograms.  (A) Physiological and model AN sync-MTFs for a high-CF fiber.  (B) Rate-
MTFs for the same fiber (onset response neglected).  (C) Period histograms for the actual 
AN fiber (left column) and model AN fiber with matched parameters.  Two cycles of the 
response are shown starting at a zero sine phase point of the modulating waveform.  CF = 
21 kHz; SR = 61 sp/sec.  Stimulus carrier frequency = CF; SPL set at ~20 dB above rate 
threshold.  Cat data from Joris and Yin (1992, their Fig. 10; with permission). 
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Another characteristic of AN fiber responses to AM can be observed by varying 
the modulation depth (m) at a given fm.  The effects of changes in m are important to test 
with the model for our long-term purposes because psychophysical data is often reported 
in terms of a threshold m that is always less than m = 1 (i.e. less than 100% stimulus 
modulation).  Physiological and modeled response synchrony and modulation gain are 
plotted against stimulus modulation depth for a high-CF, high-SR AN fiber in Fig. A-4.  
Predictions based on the modified synapse AN model fit the data quite well, and are a 
significant improvement over the previous model version.  In addition, the model 
responses (not shown) are very similar in shape to the PSTs illustrated in Joris and Yin 
(1992, their Fig. 1).  For direct evaluation of the contribution of the new version of the 
AN-IHC synapse model, predictions are also shown using the same pre-synaptic model 
structure in combination with the Zhang et al. (2001) synapse model.  Synchrony using 
the new “constant neurotransmitter-leak” model is significantly enhanced over the 
previous version for all modulation depths.      

 
 
FIG A-4. Changes in synchronization to the modulation period with stimulus modulation 
depth for model and actual AN fibers (physiological responses from Joris & Yin, 1992, 
their Fig. 1(b); with permission).  Predictions from two AN model versions are shown; 
the version with the modified synapse model will be used for all subsequent simulations.  
Fiber parameters: CF = 20.2 kHz; SR = 53 sp/sec.  Stimulus parameters: carrier 
frequency = CF; fm = 100 Hz; SPL set to elicit the maximum synchrony value (20 dB 
SPL for the model fiber; 49 dB SPL for the actual fiber).  
 



 

 

112

In addition to comparing measured and simulated response characteristics for 
different modulation frequencies and depths, we have also evaluated the level-
dependence of the AN-model synchrony and rate.  Physiologically, modulated 
synchrony-level functions (synchrony vs. level for a given fm) are non-monotonic, with a 
peak at some best modulation level (BML, usually 10-20 dB above rate threshold) over a 
wide range of modulation frequencies (Joris and Yin, 1992).  The AN model used in this 
study is characterized by the same level-dependent synchrony trends.  Figure A-5 
compares physiology (unconnected symbols) and simulations (connected symbols) of 
responses to four combinations of fiber CF, SR, and stimulus fm in terms of average rate 
(*) and synchrony (o) to the modulation period.  The general shapes of both rate-level 
(monotonic and saturating) and sync-level functions (non-monotonic) are accurately 
predicted by the AN model.  Thresholds in the model fibers are set near 0 dB SPL, 
regardless of SR; as a result, the simulated low-SR rate-level and sync-level functions 
(lower two panels) are shifted toward lower sound levels.  Peak firing rates are higher in 
the AN model low-SR and low-CF groups in comparison to Joris & Yin’s (1992) 
physiological results (panels A, C, and D of Fig. A-5).  This is an inherent property of the 
model, and it is one that we chose not to focus on in our efforts to match the AM 
response properties.  However, the rates are within a reasonable range when population 
data from both Joris & Yin (1992) and Liberman (1978) are considered.  Low-SR model 
fibers exhibit slightly lower peak envelope synchrony and broader synchrony-level 
functions than the actual AN fibers (panels C and D).  The high-SR, high-CF model fiber 
shown in panel B of Fig. A-5 is accurate in terms of its rate threshold, dynamic range, 
maximum rate, and synchrony-level function.  It is this class of AN fibers that is 
described most thoroughly in Joris & Yin’s study, and it is responses from these fibers 
that were used to test and validate the AN model. 

                     
FIG A-5. Comparison of actual (unconnected symbols) and model (connected symbols) 
rate-level (*) and synchrony-level (o) functions for 4 combinations of AN parameters.  
Firing rates are normalized by 200 sp/sec.  CF, SR, and fm; A: 510 Hz, 30 sp/sec, 10 Hz, 
B: 12 kHz, 71 sp/sec, 100 Hz, C: 710 Hz, 2 sp/sec, 10 Hz, D: 8.1 kHz, 2.6 sp/sec, 100 Hz.  
The carrier frequency was set to the fiber’s CF.  Physiological responses re-plotted from 
Joris & Yin (1992, their Fig. 5; with permission). 
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Joris and Yin (1992) also quantified the relationship between a fiber’s sync-MTF 
corner frequency and its tuning-curve bandwidth.  High-frequency AN fibers have 
broader tuning than low-CF fibers, which allows more AM sideband energy to pass for 
relatively higher stimulus fm.  Accordingly, -3dB cutoffs increase with CF.  Interestingly, 
at very high CFs (> 15 kHz in the cat) the positive relationship between CF and cutoff 
frequency saturates (the corner frequency becomes independent of CF).  The AN model 
predicts similar trends, although the absolute values of the model cutoff frequencies are 
slightly lower than the average physiologically measured values (but model values lie 
within the scatter of the data; Joris and Yin, 1992, their Fig. 14).  Figure A-6 shows 
examples of model sync-MTFs at three CFs along with those from comparable AN fibers 
(from Joris & Yin, 1992). 

 
FIG A-6. Sync-MTFs (m = 0.99) for three fibers with different CFs: AN model and 
actual data (from Joris & Yin, 1992, their Fig. 13a; with permission).  SR of each fiber; 
triangles: 24 sp/sec; squares: 6.3 sp/sec; circles: 39 sp/sec.  Model SPL = 24 dB.   
 
A.3.2 Model CN cell responses  

Figure A-7 illustrates simulations of the effect of the convergence of slow 
inhibition and fast excitation with the same CF on a post-synaptic model VCN cell.  The 
model’s synchronous response to SAM is affected in two ways that are consistent with 
physiology (Rhode and Greenberg, 1994; Frisina et al., 1990): (1) synchrony is enhanced 
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with respect to AN inputs at low modulation frequencies, and (2) the upper frequency 
limit of phase-locking to the envelope is lower in the model VCN cells.  The model 
parameter that most directly contributes to these response characteristics is the strength of 
inhibition (relative to excitation).  MTFs for model VCN cells with a range of inhibitory 
to excitatory strength ratios between 0 and 0.6, along with the input AN MTFs, are shown 
in Fig. A-7.  Average rates decrease for model cells with stronger inhibition (for all fm), 
and rate-MTFs can exhibit a shallow peak for the model cells receiving the strongest 
inhibitory inputs (lower panel).  Rates in VCN model cells with no inhibition are higher 
than the AN inputs because the excitatory alpha-function area (or low-pass filter gain) 
was greater than unity (area = 1.5).  Also, as inhibition increases, VCN sync-MTFs 
systematically have higher corner frequencies, and maximum modulation gain values 
increase (upper panel). 

 

                     
 
FIG A-7. Sync-MTFs (top panel) and rate-MTFs (bottom panel) for an 8-kHz CF AN 
model fiber, and three model VCN cells with varying strengths of inhibition (re: strength 
of excitation).  Model AN fiber SR = 50 sp/sec.  Model VCN τexc = 0.5 ms; τinh = 2 ms; 
DCN = 1 ms.  Stimuli were presented at 24 dB SPL.   
 

What is the specific mechanism that gives rise to enhanced envelope synchrony in 
the model VCN cells?  The effect can be understood by considering the differences in 
assumed membrane and/or channel properties for inhibition and excitation.  Stronger and 
faster excitatory inputs interact with weaker and slower inhibitory inputs in ways that 
depend on the stimulus fm to produce the final model VCN cell response.  For low and 
intermediate modulation frequencies (i.e. 10 Hz < fm < 200 Hz), the more sluggish 
inhibitory inputs (τinh = 2 ms) are not able to follow the fast fluctuations in the AN 
responses as faithfully as the excitatory inputs (τexc = 0.5 ms).  Higher synchrony results 
because excitation dominates for a more focused time interval (near the modulation 
period onset).  For fm > 200 Hz, the slow inhibitory component acts to effectively remove 
a DC offset from the excitatory component.  This causes higher modulation gain values 
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and higher sync-MTF cutoff frequencies for model cells that receive stronger inhibition.  
VCN sync-MTF corner frequencies are lower than those in the model AN fibers 
(regardless of the relative strength of inhibition) because they are limited by the 
excitatory synaptic properties that modify the ascending VCN model cell inputs.   

For nearly equal-strength inhibition and excitation (CN Sinh > 0.6, not shown), 
model VCN rate-MTFs are more band-pass in shape than has been reported in most 
physiological studies of bushy cells.  When the overall strengths of the cell’s two inputs 
are nearly the same, there is a narrow range of fm for which the temporal interactions 
between inhibition and excitation cause high firing rates in the postsynaptic cell.  At very 
low fm and very high fm, the two inputs are similar in their ability to keep up with the 
stimulus modulations, resulting in a low discharge rate since inhibition is nearly as strong 
as excitation.  To avoid band-pass rate-MTFs, the strength of inhibition in the model 
VCN bushy cells was set to 0.6 when they were used to provide inputs to model IC cells.   
 
A.3.3 Model IC cell responses  
A.3.3.1 MTFs & effect of varying time constants and delays 
 A second layer of model cells receiving inhibition-dominated SFIE inputs is 
hypothesized to represent IC units that integrate information from many convergent 
inputs.  The most basic results observed in the model responses are that IC cells fire only 
over some narrow range of fm (i.e., they are rate-tuned to fm), and their AM responses are 
highly synchronized to the modulation period.  This is consistent with physiological 
responses in the gerbil (Krishna and Semple, 2000) and cat (Langner and Schreiner, 
1988).  The BMF of a given IC model cell is determined mainly by the time constants of 
the inhibitory and excitatory influences: fast-acting inputs give rise to high BMFs; slower 
time constants result in lower BMFs.  We constrain the inhibitory τ to always be equal to 
or longer than the excitatory τ when generating model responses.  The range of BMFs 
that can be obtained by varying these parameters over a physiologically-realistic range is 
illustrated in Fig. A-8.  Each rate-MTF describes the responses of a model cell with a 
given combination of τIC,exc and τIC,inh.  The same model AN fiber and VCN cell provided 
inputs to each of these model IC cells (i.e. rate-tuning in the IC is not determined by 
synchrony-tuning in the VCN).  Absolute rate (top panel) and normalized rate-MTFs 
(bottom panel) are shown.  Note that a wide range of rate-BMFs (~40 Hz – 120 Hz) can 
be obtained with a fixed τIC,exc, and variation of τIC,inh from 1 ms to 7 ms.  Tuning to even 
slower envelope frequencies is achieved by assuming longer time constants (Cell A in 
Fig. A-8, with τIC,exc = 5 ms and τIC,inh = 10 ms, is tuned to ~ 20 Hz).  The upper limit of 
model BMFs (~120 Hz) is consistent with that observed in the gerbil IC (Krishna and 
Semple, 2000).  This boundary is determined in the model by restricting the time 
constants of the excitatory and inhibitory inputs to be longer than 1 ms (Wu et al., 2002; 
Carney and Yin, 1989). 
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FIG A-8. Absolute and normalized rate-MTFs of four model IC cells with different 
combinations of excitatory and inhibitory time constants.  τIC,exc and τIC,inh; Cell A: 5 ms 
& 10 ms; Cell B: 2 ms & 6 ms; Cell C: 1 ms & 3 ms; Cell D: 1 ms & 1 ms.  Common 
parameters to all four cells: AN CF = 8 kHz; AN SR = 50 sp/sec; VCN τexc = 0.5 ms; 
VCN τinh = 2 ms; DCN = 1 ms; SCN,INH = 0.6; DIC = 2 ms; SIC,INH = 1.5.  Stimulus carrier 
frequency = AN CF; m = 1; SPL = 24 dB. 
 
 The exact fm that elicits the largest rate-based model response can be further 
adjusted by changing the delay between excitation and inhibition.  When the inhibitory 
delay is kept within a physiologically realistic range (< 10 ms), rate-based BMF shifts at 
low modulation frequencies are relatively small but systematic.  Longer delays result in a 
shift of rate-MTF peaks to lower fm and increases in rate at BMF.  Short delays between 
inhibition and excitation cause maximal overlap in the envelope-locked inputs, and thus 
decrease the overall firing rate and increase the cell’s BMF.  Grothe (1994) has proposed 
a scheme for AM tuning in the bat medial superior olive (MSO) that uses a pure delay 
between inhibition and excitation to set the model cell’s BMF.  We chose not to rely on 
such a mechanism because of one specific consequence that is not observed in the 
physiology: a multi-peaked rate-MTF results, with rebounds in rate at envelope 
frequencies that are multiples of the “fundamental” fm.  This problem is avoided in the 
current model by the use of strong inhibition that is de-synchronized at high fm. 
A.3.3.2 Effect of varying stimulus modulation depth 

Responses of model IC cells change for stimuli with different modulation depths 
in a way that is consistent with physiological observations (Krishna and Semple, 2000).  
Figure A-9 shows an example of physiological MTFs (top panels, from Krishna and 
Semple, 2000) and model MTFs (bottom panels); the parameter in the figure is stimulus 
m.  Firing rate increases with modulation depth, most significantly near BMF.  Synchrony 
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saturates rapidly as m is increased.  The possible shapes of the model IC sync-MTFs are 
limited because a narrow range of fms elicits a high enough rate to compute a significant 
SC.  Envelope locking persists in the response at modulation rates well above the high-
frequency rate-MTF cutoff frequency.  Each of these effects of varying m has been 
observed in physiological recordings (e.g. Krishna and Semple, 2000).  One clear 
discrepancy between model and data is in the lack of a synchrony roll-off in the model at 
high fm.  This is due to the fact that the model is deterministic, and any response will be 
synchronized, even at very low rates.  The addition of some amount of noise (i.e. jitter in 
the discharge times) to the model IC cell output would avoid the artificially high 
synchrony values for conditions with very low average rates (e.g. at high modulation 
frequencies for the model cell in Fig. A-9).  Figure A-9 also illustrates the stereotyped 
shapes of model cell rate-MTFs.  The high-frequency roll-off is more abrupt than the 
low-frequency transition on a logarithmic frequency axis, and rates go to zero at very 
high fm.  These features have also been described in gerbil IC recordings, and have been 
hypothesized (but not tested) to be caused by inhibitory inputs (Krishna and Semple, 
2000).   

 
FIG A-9. Effect of varying stimulus m on actual (upper panels) and model (lower panels) 
IC unit MTFs.  Model and stimulus parameters were the same as those describing Cell C 
in Fig. A-8.  Rate-MTFs are shown on the left; sync-MTFs on the right.  Gerbil 
physiological data from Krishna and Semple (2000, their Fig. 2C; with permission). 
 
A.3.3.3 Effect of varying stimulus SPL 
 IC cell rate-MTFs can change with sound level (e.g. Krishna and Semple, 2000).  
This point has important implications for relating physiological responses to 
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psychophysical measures, which are almost always robust across a wide range of SPLs.  
Predicted rate-MTFs based on the IC model cells also depend on SPL in ways broadly 
consistent with some of the single unit physiology (although the physiological level-
dependence can be very different from cell to cell; Krishna and Semple, 2000).  Figure 
A-10 compares responses from one cell in Krishna and Semple’s (2000) study to those of 
the model IC cell illustrated in Fig. A-9.  Several trends are predicted by the model.  (1) 
The largest peak rate response is elicited by a medium-SPL stimulus (40 dB in the 
physiology; 30 dB in the model).  (2) The rate-BMF shifts to lower fm with increasing 
sound level.  (3) The bandwidth of the rate-MTF tends to increase with sound level.  (4) 
Synchrony remains relatively high despite these changes in the rate-based 
characterization. 

 
FIG A-10. Effect of varying stimulus SPL on actual (upper panels) and model (lower 
panels) IC unit MTFs.  Model and stimulus parameters were identical to those described 
in Fig. A-9. (with m = 1).  Data from Krishna and Semple (2000, their Fig. 5D; with 
permission). 
 
A.3.3.4 Model mechanisms and PSTs  

In the present model, mechanisms underlying specific features of model rate-
MTFs and sync-MTFs can be determined directly by considering the intermediate 
waveforms that shape the model IC cell response.  At low fm, neither the inhibitory nor 
the excitatory inputs are significantly modified by their low-pass membrane and synaptic 
properties.  That is, inputs to the model IC cell are able to closely follow the VCN 
response.  As a result, excitation and inhibition are overlapping for most of the stimulus 
cycle (depending on their relative delays), and since these cells are inhibition-dominated, 
the average firing rate is very low.  For stimulus frequencies near the cell’s BMF, 
interactions between inhibition and excitation become more interesting.  The slower 
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inhibitory inputs start to lose much of their AC response, and the weaker excitation will 
cause higher post-synaptic rates when its stimulus-locked peaks line up in time with the 
stronger inhibitory ‘valleys’.  At high fm, the inhibitory inputs are nearly tonic, and the 
excitatory components are also smoothed by their effective synaptic and membrane 
filtering properties.  In the extreme, at very high fm, both inputs to the model IC cell are 
time-independent.  The result is little postsynaptic activity because inhibition dominates, 
and temporal interactions can no longer provide stimulus-locked firing in the final 
response. 

Despite the good agreement between available physiology and model IC cell 
responses in terms of their rate- and sync-MTFs, the predictive power of the model 
structure in describing PST histogram shapes has not yet been demonstrated.  Examples 
of physiological (from Langner and Schreiner, 1988) and modeled temporal responses for 
a single IC unit at various modulation frequencies (with a stimulus rise-fall time of 5 ms) 
are shown in Figure A-11.  The model cell was chosen such that the rate-BMF was 
similar to that of the physiological cell (BMF = 60 Hz).  A strong onset is present in both 
data and model responses, regardless of the stimulus fm.  This feature is not part of any of 
the model quantifications presented up to this point (all rate and synchrony calculations 
were made in the steady-state portion of the response).  In the model, the onset response 
is caused by the relative sluggishness of the inhibitory input with respect to excitation.  
These model cells would be classified as onset units in terms of their pure-tone responses.  

  

        
FIG A-11. Comparison of actual (left) and model (right) IC cell PST histograms for a 
range of stimulus fm.  Model parameters were the same as the cell illustrated in Fig. A-10 
(with SPL = 20 dB).  Physiological PSTs from Langner and Schreiner (1988, their Fig. 2, 
unit IC115; with permission). 
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Other subtle similarities are present that are not reflected in rate- or sync-MTFs.  
The slow build-up at high fm after onset that is observed in IC physiology (e.g. at fm = 
120 – 200 Hz) is captured by the model.  This phenomenon is a result of the slow 
inhibitory input in the model cell, which determines how quickly the cell response 
reaches steady-state.  Also, two peaks in the onset response at certain modulation 
frequencies are present in both data and model (caused by fixing the starting phase of the 
signal modulation).  In general, the qualitative similarities in the PST histograms suggest 
that the simple mechanism proposed here can predict more than gross rate and synchrony 
changes with modulation frequency.   
A.3.4 Summary 

The apparent transition from a temporal AM code in the periphery to a rate-based 
scheme at the level of the IC is predicted by a simple neural encoding hypothesis.  
Specifically, two levels of convergent slow inhibition and fast excitation reproduce 
several established response characteristics of VCN and IC neurons, at least qualitatively.  
The most fundamental difference between the processing strategies at the two levels is 
the strength of the inhibitory input relative to the excitatory component.  A summary of 
the responses of two-stage SFIE is shown in Fig. A-12. 

 
FIG A-12. Summary of the effects of SFIE on rate- and sync-MTFs for two model layers 
of convergent excitation and inhibition.  Model and stimulus parameters match those of 
the previous three figures (with SPL = 24 dB and m = 1).   
 
A.4 DISCUSSION 
 Several important features of neural AM encoding in the auditory brainstem and 
midbrain were predicted by the cascaded convergence of same-frequency inhibitory and 
excitatory inputs with the physiologically realistic time courses described in this study.  A 
modified version of the Zhang et al. (2001) AN model that is consistent with 
physiological recordings in the cat provided inputs to this processing mechanism.  At the 
level of the AN, changes in envelope synchrony and rate with modulation frequency and 
depth were accurately captured by the new AN model.  A single layer of convergent 
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inhibition and excitation yielded model responses with increased synchrony relative to 
AN firing patterns, similar to trends seen in VCN bushy cell physiology.  In a second 
level of convergent SFIE, model cell responses were rate-tuned to stimulus modulation 
frequency by allowing the inhibitory inputs to be stronger than the corresponding 
excitatory inputs.  Rate tuning to fm has been reported in both gerbil and cat IC (i.e. 
Krishna and Semple, 2000; Langner and Schreiner, 1988). 
 
A.4.1 Limitations of the AN model 
 A significant shortcoming of the AN model used in the present study becomes 
apparent in its response to high-SPL, high-fm AM stimuli, which elicit unrealistically 
high synchrony in the model.  This results in strongly band-pass model AN sync-MTFs at 
high sound levels.  Evaluation of the model in this study was limited to low and moderate 
SPLs, to avoid using physiologically inconsistent AN responses as inputs to higher 
processing centers.  A possible source for this discrepancy is the speed and strength with 
which the onset properties of the AN model act on a cycle-by-cycle basis.  At high levels 
and low fm, there is a clear onset component with each AM stimulus cycle, but synchrony 
is reduced compared to lower-SPL stimuli because the remainder of the cycle histogram 
(after the onset) is saturated.  In contrast, high-SPL, high- fm SAM stimuli cause a highly 
synchronized response that is completely dominated by the strong onset, with no 
saturated portion of the cycle histogram.  It should be noted that at very high fm (i.e. fm > 
1000 Hz), envelope synchrony still rolls off at high SPLs; it is for stimulus fm between 20 
and 500 Hz that the time course of onset adaptation causes the most significant increase 
in synchrony (that has not been observed physiologically).  A clear direction of future 
work is to understand and possibly modify the role that the synapse model onset 
components play in shaping the high-SPL AM cycle histograms. 
 This inconsistency between the model and data at high levels is tempered by the 
fact that the AN model fibers always have a pure-tone rate threshold of approximately 0 
dB SPL, while real AN fibers generally have thresholds that vary between fibers.  Much 
of the AN physiology has been collected at levels that are on the steepest part of the rate-
level function, usually 10-15 dB above rate threshold.  The AN model can therefore be 
considered to provide physiologically realistic AM responses at levels below pure-tone 
rate saturation.       
 
A.4.2 Model VCN cells: alternative mechanisms    
 Synchronous AM response features in the VCN are diverse and correlated with 
PST classification type (Rhode and Greenberg, 1994).  Part of the diversity is a result of 
the fact that VCN neurons receive different numbers of inputs that act with various 
strengths and latencies.  Despite the additional complications, some broad observations 
are clear: (1) VCN sync-MTFs can have low-pass or band-pass shapes, (2) sync-MTFs 
have lower corner frequencies than high-CF AN fibers, and (3) rate-MTFs remain 
relatively flat (with the exception of onset choppers; Rhode and Greenberg, 1994).  We 
have shown that a simple two-input model bushy cell that receives membrane and 
synapse-modified inhibition and excitation with the same CF can exhibit low-pass or 
weakly band-pass sync-MTFs with corner frequencies lower than the model AN fiber 
sync-MTFs, depending on the relative strengths of excitation and inhibition.  Also, the 
firing rate of the model VCN neurons is nearly independent of modulation frequency 
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when the inhibitory strength is less than 50-60% of the excitatory strength.  Allowing the 
inhibition to become stronger than this threshold results in tuned rate-MTFs.  
Interestingly, Joris and Yin (1998) show that many of the globular bushy cells in their 
population exhibit systematic variation in average rate with fm (their Fig. 13C). 

The observation that model cells could be rate-tuned in the first layer of 
convergent SFIE leads to an important question: is the cascade of two post-synaptic 
model cells necessary to explain the transition from a synchrony code to a rate code?  
While the two-layer structure is not strictly required to understand rate tuning, it is useful 
as a tool to understand the flow of information along the auditory pathway.  Our 
physiologically-based approach incorporates empirical data into the details of the model 
at each level of processing.  By using data obtained from bushy cells in the VCN, we 
have described an alternative envelope information pathway that does not require 
populations of VCN choppers to understand the synchrony-to-rate transformation.  
However, interpretation of the current model structure is complicated by the fact that 
bushy cells in the VCN do not send axons directly to the IC; they project to the superior 
olivary complex (e.g. Oliver and Huerta, 1992).  Neurons in the lateral superior olive 
(LSO) have low-pass sync-MTFs, similar to those of AN fibers and VCN bushy cells 
(Joris and Yin, 1998).  The stereotypical rate-MTF in the LSO is also low-pass in shape, 
which is in contrast to the flat (all-pass) rate-MTFs measured in LSO afferents (Joris and 
Yin, 1998).  However, the corner frequencies of monaural LSO rate-MTFs are 
significantly higher than those found in the IC; this suggests that the transformation that 
occurs at the level of the LSO is not crucial to generating the details of rate tuning in the 
IC.  Physiological data in response to monaural AM tones in the medial superior olive 
(MSO) of cat and gerbil are not available.  

Is the SFIE convergence mechanism for generating increased synchrony and 
band-pass sync-MTFs a unique solution?  No; it is only a possible explanation for the 
physiological observations.  While our model is physiologically plausible, it is also 
phenomenological in nature.  An alternative hypothesis with significant physical support 
is that a coincidence-detection mechanism could also enhance envelope synchrony.  A 
recent modeling study has suggested that VCN neurons could act as cross-frequency 
coincidence detectors on a shorter relative time scale (Heinz et al., 2001b; Carney et al. 
2002), and work continues to investigate the possibility that slower fluctuations could 
also be modified by such a mechanism in a manner consistent with physiology. 
 
A.4.3 Model IC cells  
 The SFIE model described in this study is attractive for several reasons.  Its 
primary appeal lies in its simplicity: a population of model IC cells, each receiving only 
two inputs, can span a wide range of rate-based BMFs.  Individual cell rate tuning is 
determined primarily by differences in synaptic dynamics between excitatory and 
inhibitory inputs, and rate-MTFs can be further adjusted by varying the inhibitory delay.  
For the basic model with a single excitatory input and a single inhibitory input, overall 
rates are lower in cells with low BMFs, and peak rates drop again at high BMFs; this 
trend could be adjusted simply by changing the number of inputs to each cell.  In other 
words, there is no inherent relationship between maximum rate and BMF.  The high-
synchrony and low-pass or all-pass sync-MTF features of the model cells are also 
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consistent with physiological measurements in units that respond strongly at the onset of 
pure-tone stimulation. 
 It is worthwhile to consider some details of the shapes of simulated IC cell rate-
MTFs, and the model features that underlie them.  One such detail is the sharp roll-off on 
the high-frequency side of the rate-MTF, and the more gradual rate increase with fm on 
the low-frequency end.  Both stereotyped traits of the model cells are attributable to the 
strength and speed of inhibition relative to excitation.  For fm well above BMF, both 
inhibition and excitation tend towards constant (tonic) values because membrane and 
synaptic time constants limit the extent to which envelope locking can occur.  Since 
inhibition is stronger in this level of the model, zero firing is observed on the output for 
the high-fm stimulus condition.  For very slow amplitude fluctuations, the overall rate is 
low because both inhibitory and excitatory components can accurately follow the 
modulations of the VCN cell response, resulting in a high degree of overlap between the 
two inputs.  As fm is increased, the temporal interactions gradually change until an 
optimal frequency causes phase-locked excitatory peaks to line up in time with inhibitory 
valleys (at BMF). 
 A more quantitative way to compare rate-MTF shapes between model cells is to 
measure their Q value (Q = BMF / bandwidth at ½ of the cell’s peak rate).  For the 
parameter spaces investigated, model cells were all observed to have rate-tuning Q values 
≤ 1.2 at low to medium SPLs, with most measurements near 1.  Although the metric was 
not reported in Krishna and Semple (2000), approximate calculations using their 
published rate-MTFs suggest similar physiological values.  In the present model, 
effectively broader tuning can be caused by allowing inhibitory synaptic filtering 
properties to be significantly different than those of excitatory inputs (τIC,inh >> τIC,exc) .  
If we assume that the excitatory time constant is relatively fast and consistent across 
cells, this mechanism would predict that cells with lower BMFs would also have broader 
tuning.   
 Krishna and Semple (2000) found that a large proportion (~45%) of IC neurons 
exhibited a suppressive region in the rate-MTF.  That is, the firing rate was depressed 
over some narrow range of fm relative to rates at higher and lower stimulus modulation 
frequencies.  The model presented here does not directly predict such a trend, but a 
simple scheme can be imagined in which suppressive regions can be created.  Rate-tuned 
collaterals or ascending inputs (possibly from the VNLL; Batra, 2004) converging on a 
unit in the IC could provide inhibitory inputs to a post-synaptic cell.  Krishna and Semple 
(2000) point out that for such a scheme to work, the net inhibitory effect would simply be 
proportional to the mean spike rate of the inputs.  Another population of cells in the IC is 
characterized by a low-pass to band-pass sync-MTF shape transition with increasing SPL 
that is similar to some onset and chopper responders in the VCN (i.e. Krishna and 
Semple, 2000).  The model presented here does not predict such a transformation; all 
model IC cell responses are highly synchronized to the modulation period, even at high 
SPLs. 

Sinex et al. (2002) described recordings in the chinchilla IC in response to 
mistuned complex tones that have beating periodicities which are not present in the 
stimulus envelope.  They put forth a simplified processing model that could account for 
some of these periodicities by combining information across different CFs.  The model 
presented here would not predict such interactions, because model inputs are all from a 
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single CF.  Given the complex connections (both ascending and descending) at the level 
of the IC, it is reasonable to assume that information is integrated across different 
frequencies.  We have restricted excitatory and inhibitory inputs on a postsynaptic cell to 
have the same CF in an effort to keep the model as simple as possible, but this approach 
could be extended to include model IC cells that receive inhibition and excitation with 
different CFs.     

A.4.4 Future directions 
 This study was a necessary first step in an effort to quantitatively relate 
physiological responses to human psychophysical performance in AM detection tasks.  
Recent psychophysical models of AM perception assume that a population of hard-wired 
filters tuned to fm provides information about a signal’s temporal envelope to higher 
processing centers (e.g. Dau et al., 1997; Ewert et al., 2002).  This ‘modulation 
filterbank’ model structure is fundamentally different than that of previous models which 
assume that the net effect of central processing is to low-pass filter, or smooth, the 
envelope (e.g. Viemeister, 1979).  The model IC cells presented here can be thought of as 
a physiological implementation of a modulation filter, and work continues to understand 
the relationship between model responses and perceptual modulation tuning. 
 Long-duration inhibitory influences in the model IC cells may also provide a 
physiologically-realistic mechanism for understanding psychophysical forward-masking 
phenomena.  Offset suppression measured in AN fibers is too short to account for the 
time course of forward masking in humans (Smith, 1977; Harris and Dallos, 1979; Plack 
and Oxenham, 1998).  Preliminary work suggests that the same fm-tuned model IC cells 
presented here may effectively suppress responses to a probe signal that is presented after 
a masking stimulus for significantly longer masker-probe intervals.  A physiological 
framework that integrates our understanding of modulation detection and forward 
masking is appealing.  
 An important test of the AN model will be to implement the newly-derived sharp 
human filter bandwidths (Shera et al., 2002; Oxenham and Shera, 2003), and observe the 
effects on AM response properties.  Sharper filters will result in lower envelope 
synchrony for a given carrier frequency, as AM sidebands will be more strongly 
attenuated.  In this respect, some of the modulation encoding ability seems to be lost with 
narrower-band filters.  From a different perspective, a sharp peripheral filter will result in 
significant modulation of wideband stimuli, emphasizing fluctuations in the filter’s 
frequency pass band.  Taken together, these observations illustrate the importance of 
using many stimuli and response quantifications when evaluating the performance of any 
model (especially one that simulates a highly nonlinear system such as the auditory 
system).   
 The main focus of future work on model VCN neurons will be to see if alternative 
processing mechanisms (i.e. coincidence detection) could also increase synchrony and 
underlie band-pass sync-MTFs.  Coincidence detection can be approximated 
computationally using the simplified approach described in this work by taking the 
product of multiple input instantaneous firing rates as the response of a postsynaptic cell.  
Integrate-and-fire model neurons based on dynamic channel properties would provide a 
higher-order approximation of information integration at the level of VCN cells, which 
receive multiple excitatory AN inputs, as well as slower inhibitory inputs.   Physiological 
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observations that estimate the frequency range of a cell’s inputs, as well as the number of 
inputs, would be very useful in building a realistic VCN model cell. 
 Our model of processing in the IC should be extended to include cells that receive 
and integrate excitatory and inhibitory inputs with different CFs.  This may allow the 
model described here to predict responses in the IC to mistuned complex tones (as in 
Sinex et al., 2002) by combining resolved spectral information from different frequency 
bands.  We should also consider whether long-lasting inhibition can be modeled simply 
with a single long IPSP, as opposed to a train of shorter and weaker IPSPs.  This could be 
accomplished by directly comparing responses to the two IPSP configurations.  Since the 
computational cost of convolution is quite high, carrying out this experiment should also 
motivate the development of a faster, frequency-domain algorithm that performs the same 
function of convolution in the time domain.  Another possible direction for studying the 
fundamental mechanism of an additive combination of envelope-locked excitation and 
inhibition with different time courses and relative strengths would be to simplify the 
structure of the model presented here (as in Krukowski and Miller, 2001); a reduced 
parameter space might allow for more systematic variation of the key components of the 
2nd-order (IC) model cells.   
 The techniques we have used to simulate the effects of membrane and synaptic 
filtering provide a first approximation of how information in the central auditory system 
may be modified as it ascends.  While the computational methods described here are 
physiologically-based, they are by no means exhaustive.  Perhaps most importantly, we 
assume that both inhibitory and excitatory contributions to a postsynaptic model cell are 
simply proportional to the instantaneous firing rate of a lower-level input.  One way to 
refine the model would be to take into account the effects of membrane and synapse 
properties on a spike-by-spike basis.  Implementing a conductance-based integrate-and-
fire model neuron would allow us to include other realistic properties of cells in the 
auditory brainstem and midbrain.  For example, some neurons may act as coincidence 
detectors; low-threshold potassium channels have been implicated as candidate 
mechanisms that could allow for such interactions between sequential inputs (Svirskis & 
Rinzel, 2003).  Due to computational demands, it was not possible to include these 
effects in the present version of the model, but this is another clear direction for future 
work.  
 
ACKNOWLEDGMENTS 
 We thank Xuedong Zhang for his help in implementing modifications to the AN 
model.  Ray Meddis and an anonymous reviewer provided useful comments on an earlier 
version of this paper.  This research was supported by NIH-NIDCD R01-01641 and the 
Jerome R. and Arlene L. Gerber Fund. 
 



 

 

126

BIBLIOGRAPHY 

 
Aitkin, L. M., and Phillips, S. C. (1984). “Is the inferior colliculus an obligatory relay in  

the cat auditory system?” Neurosci. Lett. 44, 259-264. 
 
Aitkin, L. (1991). “Rate-level functions of neurons in the inferior colliculus of cats  

measured with the use of free-field sound stimuli,” J. Neurophysiol. 65, 383-392. 
 
Anderson, D. J., Rose, J. E., Hind, J. E., and Brugge, J. F. (1971). “Temporal position of  

discharges in single auditory nerve fibers within the cycle of a sine-wave  
stimulus: frequency and intensity effects,” J. Acoust. Soc. Am. 49, 1131-1139. 

 
Atlas, L. E., and Shamma, S. A. (2003). “Joint acoustic and modulation frequency,”  

EURASIP J. Applied Signal Processing 7, 668-675. 
 
Bacon, S. P., and Grantham, D. W. (1989). “Modulation masking: effects of modulation  

frequency, depth, and phase,” J. Acoust. Soc. Am. 85, 2575-2580. 
 
Bacon, S. P., and Viemeister, N. F. (1985). “The temporal course of simultaneous tone- 

on-tone masking,” J. Acoust. Soc. Am. 78, 1231-1235. 
 
Bacon, S. P., and Viemeister, N. F. (1994). “Intensity discrimination and increment  

detection at 16 kHz,” J. Acoust. Soc. Am. 95, 2616-2621. 
 
Bartlett, E. L., and Wang, X. (2005). “Long-lasting modulation by stimulus context in  

primate auditory cortex,” J. Neurophysiol. 94, 83-104. 
 
Batra, R., Kuwada, S., and Stanford, T. R. (1989). “Temporal coding of envelopes and  

their interaural delays in the inferior colliculus of the unanesthetized rabbit,” J.  
Neurophysiol. 61, 257-268. 

 
Batra, R. (2004). “Responses to amplitude-modulated tones of neurons in the ventral  

nucleus of the lateral lemniscus of the unanesthetized rabbit,” Association for  
Research in Otolaryngology Abstracts, 27:914. 

 
Bibikov, N. G. (2002). “Addition of noise enhances neural synchrony to amplitude- 

modulated sounds in the frog’s midbrain,” Hear. Res. 173, 21-38. 
 
Blackburn, C. C., and Sachs, M. B. (1989). “Classification of unit types in the  

anteroventral cochlear nucleus: PST histograms and regularity analysis,” J. 
Neurophysiol. 62, 1303-1329. 

 
Bregman, A. S. (1990). Auditory Scene Analysis. Cambridge, MA: MIT Press. 



 

 

127

 
Bullock, D. C., Palmer ,A. R., and Rees, A. (1988). “Compact and easy-to-use tungsten- 

in-glass microelectrode manufacturing work station,” Med. & Biol. Eng. &  
Comput. 26, 669-672. 

 
Burger, R. M., and Pollak, G. D. (1998). “Analysis of the role of inhibition in shaping  

responses to sinusoidally amplitude-modulated signals in the inferior colliculus,” 
J. Neurophysiol. 80, 1686-1701. 

 
Brosch, M., and Schreiner, C. E. (1997). “Time course of forward masking tuning curves  

in cat primary auditory cortex,” J. Neurophysiol. 77, 923-943. 
 
Buus, S. (1985). “Release from masking caused by envelope fluctuations,” J. Acoust.  

Soc. Am. 78, 1958-1965. 
 
Calford, M. B., and Semple, M. N. (1995). “Monaural inhibition in cat auditory cortex,”  

J. Neurophysiol. 73, 1876-1891. 
 
Campbell, R. A., and Lasky, E. Z. (1967). “Masker level and sinusoidal-signal  

detection,” J. Acoust. Soc. Am. 5, 972-976. 
 
Carney, L. H., and Yin, T. C. T. (1989). “Responses of low-frequency cells in the inferior  

colliculus to interaural time differences of clicks: Excitatory and inhibitory  
components,” J. Neurophysiol. 62, 144-161. 

 
Carney, L. H. (1993). “A model for the responses of low-frequency auditory-nerve fibers  

in cat,” J. Acoust. Soc. Am. 93, 401-417. 
 
Carney, L. H., Heinz, M. G., Evilsizer, M. E., Gilkey, R. H., and Colburn, H. S. (2002).  

“Auditory phase opponency: A temporal model for masked detection at low  
frequencies,” Acta Acustica United with Acustica. 88, 334-347. 

 
Caspary, D. M., Backoff, P. M., Finlayson, P. G., and Palombi, P. S. (1994).  “Inhibitory  

inputs modulate discharge rate within frequency receptive fields of anteroventral  
cochlear nucleus neurons,” J. Neurophysiol. 72, 2124-2132. 

 
Caspary, D. M., Palombi, P. S., and Hughes, L. F. (2002). “GABAergic inputs shape  

responses to amplitude modulated stimuli in the inferior colliculus,” Hear. Res.  
168, 163-173. 

 
Chatterjee, M., and Robert, M. E. (2001). “Noise enhances modulation sensitivity in  

cochlear implant listeners: stochastic resonance in a prosthetic sensory system?,” 
J. Assoc. Res. Otolaryngol. 2, 159-171. 

 
 
 



 

 

128

Colburn, H. S., Carney, L. H., and Heinz, M. G. (2003). “Quantifying the information in  
auditory-nerve responses for level discrimination,” J. Assoc. Res. Otolaryngol. 4,  
294-311. 

 
Cooper, N. P., Robertson, D., and Yates, G. K. (1993). “Cochlear nerve fiber responses to  

amplitude-modulated stimuli: variations with spontaneous rate and other response  
characteristics,” J. Neurophysiol. 70, 370-386. 

 
Creutzfeldt, O. D., Hellweg, F. C., and Schreiner, C. E. (1980). “Thalamocortical  

transformation of responses to complex auditory stimuli,” Exp. Brain Res. 39, 87- 
104. 

 
Dai, H. (1995). “On measuring psychometric functions: A comparison of the constant- 

stimulus and adaptive up-down methods,” J. Acoust. Soc. Am. 98, 3135-3139. 
 
Dau, T., Kollmeier B., and Kohlrausch, A. (1997). “Modeling auditory processing of  

amplitude modulation. I. Detection and masking with narrow-band carriers,” J.  
Acoust. Soc. Am. 102, 2892-2905. 

 
Dau, T., Kollmeier, B., and Kohlrausch, A. (1997). “Modeling auditory processing of  

amplitude modulation. II. Spectral and temporal integration,” J. Acoust. Soc. Am.  
102, 2906-2619. 

 
Dau, T., Verhey, J., and Kohlrausch, A. (1999). “Intrinsic envelope fluctuations and  

modulation-detection thresholds for narrow-band noise carriers,” J. Acoust. Soc.  
Am. 106, 2752-2760. 

 
Delgutte, B. (1987). “Peripheral auditory processing of speech information: implications  

from a physiological study of intensity discrimination,” in The Psychophysics of  
Speech Perception, ed. M. E. H. Schouten (Dordrecht, Nijhoff), pp. 333-353. 

 
Derleth, R. P., and Dau, T. (2000). “On the role of envelope fluctuation processing in  

spectral masking,” J. Acoust. Soc. Am. 108, 285-296. 
 
Drullman, R. (1995). “Temporal envelope and fine structure cues for speech  

intelligibility,” J. Acoust. Soc. Am. 97, 585-592. 
 
Durlach, N. I., and Braida, L. D. (1969). “Preliminary theory of intensity resolution,” J.  

Acoust. Soc. Am. 46, 372-383. 
 
Eggermont, J. J. (1994). “Temporal modulation transfer functions for AM and FM stimuli  

in cat auditory cortex. Effects of carrier type, modulating waveform, and  
intensity,” Hear. Res. 74, 51-66. 

 
Elhilali M., Fritz, J. B., Klein, D. J., Simon, J. Z., and Shamma, S. A. (2004). “Dynamics  

of precise spike timing in primary auditory cortex,” J. Neurosci. 24, 1159-1172. 



 

 

129

 
Ewert, S. D., and Dau, T. (2000). “Characterizing frequency selectivity for envelope  

fluctuations,” J. Acoust. Soc. Am. 108, 1181-1196. 
 
Ewert, S. D., Verhey, J.L., and Dau, T. (2002). “Spectro-temporal processing in the  

envelope-frequency domain,” J. Acoust. Soc. Am. 112, 2921-2931. 
 
Ewert, S. D., and Dau, T. (2004). “External and internal limitations in amplitude- 

modulation processing,” J. Acoust. Soc. Am. 116, 478-490. 
 
Faure, P. A., Fremouw, T., Casseday, J. H., and Covey, E. (2003). “Temporal masking  

reveals properties of sound-evoked inhibition in duration-tuned neurons of the  
inferior colliculus,” J. Neurosci. 24, 3052-3065. 

 
Fleischer, H. (1982). “Modulationsschwellen von Schmalbandrauschen,” Acustica 51,  

154-161.  
 
Florentine, M., Buus, S., and Mason, C. R. (1987). “Level discrimination as a function of  

level for tones from 0.25 to 16 kHz,” J. Acoust. Soc. Am. 81, 1528-1541. 
 
Frisina, R. D., Smith, R. L., and Chamberlain, S. C. (1985). “Differential encoding of  

rapid changes in sound amplitude by second-order auditory neurons,” Exp. Brain  
Res. 60, 417-422. 

  
Frisina, R. D., Smith, R. L. and Chamberlain, S. C. (1990). “Encoding of amplitude  

modulation in the gerbil cochlear nucleus. I. A hierarchy of enhancement,” Hear.  
Res. 44, 99-122. 

 
Füllgrabe, C., and Lorenzi, C. (2003). “The role of envelope beat cues in the detection  

and discrimination of second-order amplitude modulation (L),” J. Acoust. Soc.  
Am. 113, 49-52. 

 
Füllgrabe, C., Moore, B. C. J., Demany, L., Ewert, S. D., Sheft, S., and Lorenzi, C.  

(2005). “Modulation masking produced by second-order modulators,” J. Acoust.  
Soc. Am. 117, 2158-2168. 

 
Füllgrabe, C., and Lorenzi, C. (2005). “Perception of the envelope-beat frequency of  

inharmonic complex temporal envelopes,” J. Acoust. Soc. Am. 118, 3757-3765. 
 
Gallun, E., and Hafter, E. R. (in review).  J. Acoust. Soc. Am.  
 
Green, D. M. (1969). “Masking with continuous and pulsed sinusoids,” J. Acoust. Soc.  

Am. 46, 939-946. 
 
Green, D.M. (1983). “Profile analysis. A different view of auditory intensity  

discrimination,” Am. Psychol. 38, 133-142. 



 

 

130

 
Greenberg, S., and Arai, T. (2001). “The relation between speech intelligibility and the  

complex modulation spectrum,” Proc. 7th Eur. Conf. on Speech Comm. pp. 473- 
476. 

 
Goldberg, J. M., and Brown, P. B. (1969). “Response of binaural neurons of dog superior  

olivary complex to dichotic tonal stimuli: some physiological mechanisms of  
sound localization,” J. Neurophysiol. 32, 613-636. 

 
Grothe, B. (1994). “Interaction of excitation and inhibition in processing of pure tone and  

amplitude-modulated stimuli in the medial superior olive of the mustached bat,” J.  
Neurophysiol. 71, 706-721. 

 
Hafter, E. R., Bonnel., A. M., and Gallun, E. (1997). “A role for memory in divided  

attention between two independent stimuli,” in Psychophysical and Physiological  
Advances in Hearing, ed. A. R. Palmer, A. Rees, A. Q. Summerfield, and R.  
Meddis (Whurr, London), pp. 228-237. 

 
Hall, J. W., Haggard, M. P. and Fernandes, M. A. (1984). “Detection in noise by spectro- 

temporal pattern analysis,” J. Acoust. Soc. Am. 76, 50-56. 
 
Hall, J. W., Buss, E., and Grose, J. H. (2003). “Modulation rate discrimination for  

unresolved components: temporal cues related to fine structure and envelope,” J.  
Acoust. Soc. Am. 113, 986-993. 

 
Harris, J. D. (1963). “Loudness discrimination,” J. Speech Hear. Disord. Monogr. Suppl.  

11, 1-59. 
 
Harris, D. M., and Dallos, P. (1979). “Forward masking of auditory nerve fiber  

responses,” J. Neurophysiol. 42, 1083-1107.  
  
Heil, P., Schulze, H., and Langner, G. (1995). “Ontogenetic development of periodicity  

coding in the inferior colliculus of the Mongolian gerbil,” Audit. Neurosci. 1,  
363-383. 

 
Heinz, M. G., Zhang, X., Bruce, I. C., and Carney, L. H. (2001). “Auditory-nerve model  

for predicting performance limits of normal and impaired listeners,” J. Assoc.  
Res. Otolaryngol. 2, 91-96. 

 
Heinz, M. G., Colburn, H. S., and Carney, L. H. (2001). “Evaluating auditory  

performance limits: I. One-parameter discrimination using a computational model  
for the auditory nerve,” Neural Comput. 13, 2273-2316. 

 
Heinz, M. G., Colburn, H. S., and Carney, L. H. (2001). “Rate and timing cues associated  

with the cochlear amplifier: Level discrimination based on monaural cross- 
frequency coincidence detection,” J. Acoust. Soc. Am. 110, 2065-2084. 



 

 

131

 
Hewitt, M. J., and Meddis, R. (1994). “A computer model of amplitude-modulation  

sensitivity of single units in the inferior colliculus,” J. Acoust. Soc. Am. 95, 2145- 
2159. 

 
Houtgast, T. (1989). “Frequency selectivity in amplitude-modulation detection,” J.  

Acoust. Soc. Am. 85, 1676-1680. 
 
Irwin, R. J., and Purdy, S. C. (1982). “The minimum detectable duration of auditory  

signals for normal and hearing-impaired listeners,” J. Acoust. Soc. Am. 71, 967- 
974. 

 
Joris, P. X., and Yin, T. C. T. (1992). “Responses to amplitude-modulated tones in the  

auditory nerve of the cat,” J. Acoust. Soc. Am. 91, 215-232. 
 
Joris, P. X., and Yin, T. C. T. (1998). “Envelope coding in the lateral superior olive. III.  

Comparison with afferent pathways,” J. Neurophysiol. 79, 253-269. 
 
Joris, P. X., Schreiner, C. E., and Rees, A. (2004). “Neural processing of amplitude- 

modulated sounds,” Physiol. Rev. 84, 541-577. 
 
Kay, R. H., and Matthews, D. R. (1972). “On the existence in human auditory pathways  

of channels selectively tuned to the modulation present in frequency-modulated  
tones,” J. Physiol. 225, 657-677. 

 
Khanna, S. M., and Teich, M. C. (1989). “Spectral characteristics of the responses of  

primary auditory-nerve fibers to amplitude-modulated signals,” Hear. Res. 39,  
143-157. 

 
Kiang, N. Y. S., Watanabe, T., Thomas, E. C., and Clark, L. F. (1965). “Discharge  

patterns of single fibers in the cat’s auditory nerve,” Research Monographs No. 35  
(MIT, Cambridge, MA). 

 
Kidd, G. Jr., Mason, C. R., Brantley, M. A., and Owen, G. A. (1989). “Roving-level tone- 

in-noise detection,” J. Acoust. Soc. Am. 86, 1340-1354. 
 
Kohlrausch, A., Fassel, R., and Dau, T. (2000).  “The influence of carrier level and  

frequency on modulation and beat-detection thresholds for sinusoidal carriers,” J.  
Acoust. Soc. Am. 108, 723-734. 

 
Krishna, B. S., and Semple, M. N. (2000). “Auditory temporal processing: Responses to  

sinusoidally amplitude-modulated tones in the inferior colliculus,” J.  
Neurophysiol. 84, 255-273. 

 
 
 



 

 

132

Krukowski, A.E., and Miller, K.D. (2001). “Thalamocortical NMDA conductances and  
intracortical inhibition can explain cortical temporal tuning,” Nat. Neuro. 4, 424- 
430. 

 
Kuwada, S., Stanford, T. R., and Batra, R. (1987). “Interaural phase-sensitive units in the  

inferior colliculus of the unanesthetized rabbit: effects of changing frequency,” J.  
Neurophysiol. 57, 1338-1360. 

 
Kuwada, S., and Batra, R. (1999). “Coding of sound envelopes by inhibitory rebound in  

neurons of the superior olivary complex in the unanesthetized rabbit,” J. Neurosci.  
19, 2273-2287. 

 
Langner, G. (1981). “Neuronal mechanisms for pitch analysis in the time domain,” Exp.  

Brain. Res. 44, 450-454. 
 
Langner, G., and Schreiner, C. E. (1988). “Periodicity coding in the inferior colliculus of  

the cat. I. Neuronal mechanisms,” J. Neurophysiol. 60, 1799-1822. 
 
Langner, G., Schreiner, C. E., and Merzenich, M. M. (1987). “Covariation of latency and  

temporal resolution in the inferior colliculus of the cat,” Hear. Res. 31, 197-201. 
 
Le Beau, F. E., Rees, A., and Malmierca, M. S. (1996). “Contribution of GABA- and  

glycine-mediate inhibition to the monaural temporal response properties of  
neurons in the inferior colliculus,” J. Neurophysiol. 75, 902-919. 

 
Lee, J., and Bacon, S. P. (1997). “Amplitude modulation depth discrimination of a  

sinusoidal carrier: Effect of stimulus duration,” J. Acoust. Soc. Am. 101, 3688- 
3693. 

 
Leshowitz, B., and Cudahy, E. (1972). “Masking with continuous and gated sinusoids,” J.  

Acoust. Soc. Am. 58, 235-242. 
 
Levitt, H. (1971). “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc.  

Am. 49, 467-477. 
 
Liang, L., Lu, T., and Wang, X. (2002). “Neural representations of sinusoidal amplitude  

and frequency modulations in the primary auditory cortex of awake primates,” J.  
Neurophysiol. 87, 2237-2261. 

 
Liberman, M. C. (1978). “Auditory-nerve response from cats raised in a low-noise  

chamber,” J. Acoust. Soc. Am. 63, 442-455. 
 
Lorenzi, C., Berthommier, F., and Demany, L. (1999). “Discrimination of amplitude- 

modulation phase spectrum,” J. Acoust. Soc. Am. 105, 2987-2990. 
 
 



 

 

133

Lorenzi, C., Soares, C., Vonner, T. (2001). “Second-order temporal modulation transfer  
functions,” J. Acoust. Soc. Am. 110, 1030-1038. 

 
Lorenzi, C., Simpson, M. I. G., Millman, R. E., Griffiths, T. D., Woods, W. P., Rees, A.,  

and Green, G. G. (2001). “Second-order modulation detection thresholds for pure- 
tone and narrow-band noise carriers,” J. Acoust. Soc. Am. 110, 2470-2478. 

 
Luscher, E., and Zwislocki, J. (1949). “Adaptation of the ear to sound stimuli,” J. Acoust.  

Soc. Am. 21, 135-139.  
 
Macmillan, N. A. (1971). “Detection and recognition of increments and decrements in  

auditory intensity,” Percept. Psychophys. 10, 233-238. 
 
Malmierca, M. S., Merchan, M. A., Henkel, C. K., and Oliver, D. L. (2002). “Direct  

projections from cochlear nucleus complex to auditory thalamus in the rat,” J.  
Neurosci. 22, 10891-10897. 

 
Miller, R. L., Schilling, J. R., Franck, K. R., and Young, E. D. (1997). “Effects of  

acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve  
fibers,” J. Acoust. Soc. Am. 101, 3602-3616. 

 
Moore, B. C. J., Alcantara, J. I., and Dau, T. (1998). “Masking patterns for sinusoidal and  

narrowband noise maskers,” J. Acoust. Soc. Am. 104, 1023-1038. 
 
Moore, B. C. J., Sek, A., and Glasberg, B. R. (1999). “Modulation masking produced by  

beating modulators,” J. Acoust. Soc. Am. 106, 938-945. 
 
Moore, B. C. J., and Sek, A. (2000). “Effects of relative phase and frequency spacing on  

the detection of three-component amplitude modulation,” J. Acoust. Soc. Am.  
108, 2337-2344. 

 
Mueller-Preuss, P., Flachskamm, C., and Bieser, A. (1994). “Neural encoding of  

amplitude modulation within the auditory midbrain of squirrel monkeys,” Hear.  
Res. 80, 197-208. 

 
Nagarajan, S. S., Cheung, S. W., Bedenbaugh, P., Beitel, R. E., Schreiner, C. E., and  

Merzenich, M. M. (2002). “Representation of spectral and temporal envelope of  
twitter vocalizations in common marmoset primary auditory cortex,” J.  
Neurophysiol. 87, 1723-1737. 

 
Nelson, P. B., Jin, S. H., Carney, A. E., and Nelson, D. A. (2003). “Understanding speech  

in modulated interference: Cochlear implant users and normal-hearing listeners,”  
J. Acoust. Soc. Am. 113, 961-968. 

 
 
 



 

 

134

Nelson, P. B., and Jin, S. H. (2004). “Factors affecting speech understanding in gated  
interference: Cochlear implant users and normal-hearing listeners,” J. Acoust.  
Soc. Am. 115, 2286-2294. 

 
Nelson, P. G., Erulkar, S. D., and Bryan, J. S. (1966). “Responses of units in the inferior  

colliculus to time-varying acoustic stimuli,” J. Neurophysiol. 29, 834-860. 
 
Nelson, P. C., and Carney, L. H. (2004). “A phenomenological model of peripheral and  

central neural responses to amplitude-modulated tones,” J. Acoust. Soc. Am. 116,  
2173-2186. 

 
Nelson, P. C., and Carney, L. H. (submitted). “Cues for masked amplitude-modulation  

detection,” J. Acoust. Soc. Am. 
 
Oertel, D. (1983). “Synaptic responses and electrical properties of cells in brain slices of  

the mouse anteroventral cochlear nucleus,” J. Neurosci. 3, 2043-2053. 
 
Oliver, D. L., and Huerta, M. F. (1992). “Inferior and superior colliculi,” in The  

Mammalian Auditory Pathway: Neuroanatomy, edited by D. R. Webster, A. N.  
Popper, and R. R. Fay (Springer Verlag, New York), pp. 168-221. 

 
Oxenham, A. J., and Shera, C. A. (2003). “Estimates of human cochlear tuning at low  

levels using forward and simultaneous masking,” JARO 4, 541-554. 
 
Palombi, P. S., Caspary, D. M. (1996). “GABA inputs control discharge rate primarily  

within frequency receptive fields of inferior colliculus neurons,” J. Neurophysiol.  
75, 2211-2219. 

 
Plack, C. J., and Oxenham, A. J. (1998). “Basilar-membrane nonlinearity and the growth  

of forward masking,” J. Acoust. Soc. Am. 103, 1598-1608. 
 
Ramachandran. R., Davis, K. A., and May, B. J. (1999). “Rate representation of tones in  

noise in the inferior colliculus of decerebrate cats,” J. Assoc. Res. Otolaryngol. 1,  
144-160. 

 
Ramon y Cajal, S. (1904). “Textura del Sistema Nervioso del Hombre y de los  

Vertebrados,” Nicolas Moya, Madrid. 
 
Rees, A. and Moller, A. R. (1983). “Responses of neurons in the inferior colliculus of the  

rat to AM and FM tones,” Hear. Res. 10, 301-330. 
 
Rhode, W. S. (1994). “Temporal coding of 200% amplitude modulated signals in the  

ventral cochlear nucleus of the cat,” Hear. Res. 77, 43-68. 
 
Rhode, W. S., and Greenberg, S. (1994). “Encoding of amplitude modulation in the  

cochlear nucleus of the cat,” J. Neurophysiol. 71, 1797-1825. 



 

 

135

 
Richards, V. M., and Nekrich R. D. (1993). “The incorporation of level and level- 

invariant cues for the detection of a tone added to noise,” J. Acoust. Soc. Am. 94,  
2560-2574. 

 
Ryugo, D. K., and Parks, T. N. (2003). “Primary innervation of the avian and mammalian  

cochlear nucleus,” Brain Res. Bull. 60, 435-456. 
 
Sachs, M. B., Voigt, H. F., and Young, E. D. (1983). “Auditory nerve representation of  

vowels in background noise,” J. Neurophysiol. 50, 27-45. 
 
Saldana, E., and Merchan, M. A. (2004). “Intrinsic and commissural connections of the  

inferior colliculus,” in The Inferior Colliculus, eds. J. A. Winer and C. E.  
Schreiner (Springer, New York), pp. 155-181. 

 
Salvi, R. J., Giraudi, D. M., Henderson, D., and Hamernik, R. P. (1982). “Detection of 

sinusoidally amplitude modulated noise by the chinchilla,” J. Acoust. Soc. Am.  
71, 424-429.  

 
Schneiderman, A., Oliver, D. L., and Henkel, C. K. (1988). “Connections of the dorsal  

nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending  
auditory system?,” J. Comp. Neurol. 276, 188-208. 

 
Schofield, B. R., and Cant, N. B. (1996). “Projections from the ventral cochlear nucleus  

to the inferior colliculus and the contralateral cochlear nucleus in guinea pigs,”  
Hear. Res. 102, 1-14. 

 
Schooneveldt, G. P., and Moore, B. C. J. (1989). “Comodulation masking release (CMR)  

as a function of masker bandwidth, modulator bandwidth, and signal duration,” J.  
Acoust. Soc. Am. 85, 273-281. 

 
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J. and Elelid, M. (1995). “Speech  

recognition with primarily temporal cues,” Science 270, 303-304. 
 
Sheft, S., and Yost, W. A. (1990). “Temporal integration in amplitude-modulation  

detection,” J. Acoust. Soc. Am. 88, 796-805. 
 

Shera, C. A., Guinan, J. J. Jr., and Oxenham, A. J. (2002). “Revised estimates of human  
cochlear tuning from otoacoustic and behavioral measurements,” Proc. Natl.  
Acad. Sci. 99, 3318-3323. 

 
Shofner, W. P., Sheft, S., and Guzman, S. J. (1996). “Responses of ventral cochlear  

nucleus units in the chinchilla to amplitude modulation by low-frequency, two- 
tone complexes,” J. Acoust. Soc. Am. 99, 3592-3605. 

 
 



 

 

136

Siebert, W. M. (1965). “Some implications of the stochastic behavior of primary auditory  
neurons,” Kybernetik 2, 206-215. 

 
Siebert, W. M. (1968). “Stimulus transformations in the peripheral auditory system,” in  

Recognizing Patterns ed. P. A. Kolers (MIT Press, Cambridge, MA), pp. 104-133. 
 
Sinex, D. G., Sabes, J. H., and Li, H. (2002). “Responses of inferior colliculus neurons to  

harmonic and mistuned complex tones,” Hear. Res. 168, 150-162. 
 
Smith, R. L., and Zwislocki, J. J. (1975). “Short-term adaptation and incremental  

responses in single auditory-nerve fibers,” Biol. Cybern. 17, 169-182.  
 
Smith, R. L. (1977). “Short-term adaptation in single auditory nerve fibers: Some post- 

stimulatory effects,” J. Neurophysiol. 40, 1098-1111. 
 
Smith, R. L. (1979). “Adaptation, saturation, and physiological masking in single  

auditory-nerve fibers,” J. Acoust. Soc. Am. 65, 166-178. 
 
Smith, R. L., and Brachman, M. L. (1980). “Response modulation of auditory-nerve  

fibers by AM stimuli: Effects of average intensity,” Hear. Res. 2, 123-133. 
 
Smith, R. L., and Brachman, M. L. (1982). “Adaptation in auditory-nerve fibers: A  

revised model,” Biol. Cybern. 44, 107-120.  
 
Smith, R. L., Brachman, M. L., and Frisina, R. D. (1985). “Sensitivity of auditory-nerve  

fibers to changes in intensity: A dichotomy between decrements and increments,”  
J. Acoust. Soc. Am. 78, 1310-1316. 

 
Spinks, R. L., Baker, S. N., Jackson, A., Khaw, P. T., and Lemon, R. N. (2003).  

“Problem of dural scarring in recording from awake, behaving monkeys: a  
solution using 5-Fluorouracil,” J. Neurophysiol. 90, 1324-1332. 

 
Strickland, E. A., and Viemeister, N. F. (1996). “Cues for discrimination of envelopes,”  

J. Acoust. Soc. Am. 99, 3638-3646. 
 
Sullivan, W. E. 3rd (1982). “Possible neural mechanisms of target distance coding in the  

auditory system of the echolocating bat Myotis lucifugus,” J. Neurophysiol. 48,  
1033-1047. 

 
Svirskis, G., and Rinzel, J. (2003). “Influence of subthreshold nonlinearities on signal-to- 

noise ratio and timing precision for small signals in neurons: Minimal model  
analysis,” Network: Comput. Neural Syst. 14, 137-150. 

 
Tansley, B. W., and Suffield, J. B. (1983). “Time course of adaptation and recovery of  

channels selectively sensitive to frequency and amplitude modulation,” J. Acoust.  
Soc. Am. 74, 765-775. 



 

 

137

 
Theunissen, F. E., and Doupe, A. J. (1998). “Temporal and spectral sensitivity of  

complex auditory neurons in the nucleus HVc of male zebra finches,” J. Neurosci.  
18, 3786-3802. 

 
Tougaard, J. (2000). “Stochastic resonance and signal detection in an energy detector –  

implications for biological receptor systems,” Biol. Cybern. 83, 471-480. 
 
Ulanovsky, N., Las, L., Farkas, D., and Nelken, I. (2004). “Multiple time scales of  

adaptation in auditory cortex neurons,” J. Neurosci. 24, 10440-10453. 
 
Verhey, J. L., Dau, T., and Kollmeier, B. (1999). “Within-channel cues in comodulation  

masking release (CMR): Experiments and model predictions using a modulation- 
filterbank model,” J. Acoust. Soc. Am. 106, 2733-2745. 

 
Viemeister, N. F. (1972). “Intensity discrimination of pulsed sinusoids: The effects of  

filtered noise,” J. Acoust. Soc. Am. 51, 1265-1269. 
 
Viemeister, N. F. (1979). “Temporal modulation transfer functions based upon  

modulation thresholds,” J. Acoust. Soc. Am. 66, 1364-1380. 
 
Viemeister, N. F. (1988). “Intensity coding and the dynamic range problem,” Hear. Res.  

34, 267-274. 
 
Viemeister, N. F., and Bacon, S. P. (1988). “Intensity discrimination, increment  

detection, and magnitude estimation for 1-kHz tones,” J. Acoust. Soc. Am. 84,  
172-178. 

 
Viemeister, N. F., and Wakefield, G. H. (1991). “Temporal integration and multiple  

looks,” J. Acoust. Soc. Am. 90, 858-865. 
 
Wakefield, G. H., and Viemeister, N. F. (1990). “Discrimination of modulation depth of  

sinusoidal amplitude modulation (SAM) noise,” J. Acoust. Soc. Am. 88, 1367- 
1373. 

 
Ward, L. M., Neiman, A., and Moss, F. (2002). “Stochastic resonance in psychophysics  

and animal behavior,” Biol. Cybern. 87, 91-101. 
 
Warr, W. B. (1982). “Parallel ascending pathways from the cochlear nucleus:  

neuroanatomical evidence of functional specialization,” In Contributions to  
Sensory Physiology, ed. W. D. Neff (Academic Press, New York), pp. 1-38. 

 
Wegel, R. L., and Lane, C. E. (1924). “The auditory masking of one sound by another  

and its probable relation to the dynamics of the inner ear,” Phys. Rev. 23, 266- 
285. 

 



 

 

138

Westerman, L. A., and Smith, R. L. (1988). “A diffusion model of the transient response  
of the cochlear inner hair cell synapse,” J. Acoust. Soc. Am. 83, 2266-2276. 

 
Wickesberg, R. E., and Oertel, D. (1988). “Tonotopic projection from the dorsal to the  

anteroventral cochlear nucleus of mice,” J. Comp. Neurol. 268, 389-299. 
 
Wiesenfeld, K., and Jaramillo, F. (1998). “Minireview of stochastic resonance,” Chaos 8,  

539-548. 
 
Winer, J. A., Larue, D. T., and Pollak, G. D. (1995). “GABA and glycine in the central  

auditory system  of the mustache bat: structural substrates for inhibitory neuronal  
organization,” J. Comp. Neurol. 355, 317-353. 

 
Winer, J. A. (2004). “Three systems of descending projections to the inferior colliculus,”  

in The Inferior Colliculus, eds. J. A. Winer and C. E. Schreiner (Springer, New  
York), pp. 231-247. 

 
Winslow, R. L., and Sachs, M. B. (1988). “Single-tone intensity discrimination based on  

auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation  
of the crossed olivocochlear bundle,” Hear. Res. 35, 165-189. 

 
Winter, I. M., and Palmer, A. R. (1991). “Intensity coding in low-frequency auditory- 

nerve fibers of the guinea pig,” J. Acoust. Soc. Am. 90, 1958-1967. 
 
Wojtczak, M., and Viemeister, N. F. (1999). “Intensity discrimination and detection of  

amplitude modulation,” J. Acoust. Soc. Am. 106, 1917-1924. 
 
Wojtczak, M., and Viemeister, N. F. (2005). “Forward masking of amplitude modulation:  

Basic characteristics,” J. Acoust. Soc. Am. 118, 3198-3210.  
 
Wu, S. H., Ma, C. L., Sivaramakrishnan, S., Oliver, D .L. (2002). “Synaptic modification  

in neurons of the central nucleus of the inferior colliculus,” Hear. Res. 168, 43-54. 
 
Yin, T. C. T. (2002). “Neural mechanisms of encoding binaural localization cues in the  

auditory brainstem,” in Integrative Functions in the Mammalian Auditory  
Pathway, edited by D. Oertel, A. N. Popper, and R. R. Fay (Springer Verlag, New  
York), pp. 99-159. 

 
Yost, W. A., and Sheft, S. (1997). “Temporal modulation transfer functions for tonal  

stimuli: Gated versus continuous conditions,” Aud. Neurosci. 3, 401-414. 
 
Young, E. D. and Barta, P. E. (1986). “Rate responses of auditory nerve fibers to tones in  

noise near masked threshold,” J. Acoust. Soc. Am. 79, 426-442. 
 
 
 



 

 

139

Zhang, H., and Kelly, J. B. (2003). “Glutamatergic and GABAergic regulation of neural  
responses in the inferior colliculus to amplitude modulated sounds,” J.  
Neurophysiol. 90, 477-490. 

 
Zhang,  X., Heinz, M. G., Bruce, I. C., and Carney, L. H. (2001). “A phenomenological  

model for the responses of auditory-nerve fibers: I. Non-linear tuning with  
compression and suppression,” J. Acoust. Soc. Am. 109, 648-670. 

 
Zhang, X. (2004). Personal communication. 
 
Zwicker, E. (1952). “Die Grenzen der Hörbarkeit der Amplitudenmodulation und der  

Frequenzmodulation eines Tones,” Acustica, Akust. Beih. 2, AB125-AB133. 
 
 



 

 

140

 
 
 
 

VITA 
 
 
 

NAME OF AUTHOR: Paul Christian Nelson 
 

PLACE OF BIRTH: Saint Cloud, Minnesota 
 

DATE OF BIRTH: February 22, 1979 
 
 
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 
 Syracuse University, Syracuse, New York 

Boston University, Boston, Massachusetts 
 
 DEGREES AWARDED: 
 
  Master of Science in Bioengineering, 2003, Syracuse University 
 
  Bachelor of Science in Biomedical Engineering, 2001, Boston University 
 
 
 AWARDS AND HONORS: 
 
  Ruth L. Kirchstein National Research Service Award, 2005-2006 
 
 
 PROFESSIONAL EXPERIENCE: 
 
  Research Assistant, Department of Biomedical Engineering, 
   Boston University, 2001 
  Research Assistant, Department of Bioengineering and Neuroscience, 
   Syracuse University, 2001-2006 
 


