
ABSTRACT

In the last decade-and-a-half, a number of unexpected statistical properties have
been found in the pulsatile activity of neurons in many sensory systems. These properties
have been variously called “fractal behavior”, “self-similarity”, “1/f fluctuations”, and
“long-duration correlation”. In this dissertation, we develop a cohesive and robust theory
of long-range dependence in point processes that subsumes these statistical properties and
connects them to the much broader mathematical and scientific literature on long-range
dependence in general stochastic processes. As this theory is developed, we examine ways
in which the presence of long-range dependence can be used to discriminate between
potential models of neural processing and analyze ways in which it can undermine
standard statistical analyses of neural activity.

We first study integrate-and-fire models of cortical processing that were designed
to explain the high variability of the activity in cortical neurons to see if they can
also produce long-range dependence. Since a large number of these models produce
renewal-process outputs, we prove analytically that such models cannot simultaneously
possess long-range dependence and physiologically realistic variability. We then consider
integrate-and-fire models with renewal point process inputs. By analyzing the outputs of
simulations, we show that these models can possess long-range dependence and realistic
variability if the interval distribution of their inputs has infinite variance. Since this latter
requirement contradicts empirical results, we suggest a new integrate-and-fire model with
long-range dependent inputs having finite interval-variance. Through the use of simula-
tions, we show that this model is able to produce both long-range dependence and realistic
variability.

We also explore the impact that long-range dependence has on empirical estimates of
the mean, standard deviation, and variance of spike counts in neural activity. We derive
mathematical formulae for the actual mean and variance and for the statistical behavior
of sample mean and sample variance estimators for a model neuron. Using these formulae
and simulations of the model, we show that long-range dependence significantly increases
the variability of the sample mean and causes the sample standard deviation and sample
variance to be negatively biased. The significance of these results for existing empirical
measurements is demonstrated.
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Chapter 1

Introduction

1.1 Background

1.1.1 Neurophysiology and Simple Point Processes

Most of the information processed in the nervous system is conveyed from one neuron to
another in a sequence of electrical impulses known as action potentials. A short voltage
recording containing three of these impulses is shown in the upper trace of Figure 1.1.
These action potentials, or “spikes”, are all-or-none events. In other words, there is no
deterministic gradation in their shape to transport information. Thus, presumably, the
only critical parameter of a spike is the time of its occurrence, and a neurophysiological
recording can be reduced to the sequence of times at which spikes occurred. Mathemat-
ically, such a process can be represented with a point process, which, in this context, is
essentially the designation of a sequence of “points” on the real line. The point process
associated with the neurophysiological recording in Figure 1.1 is shown just below the
voltage trace, and the times of occurrence of the three spikes are designated by the real
numbers t1, t2, and t3.

Whether because of the presence of noisy elements in the nervous system or deficien-
cies in our knowledge of the relevant conditions and mechanisms (or both!), deterministic
descriptions of the precise timing of spikes in particular in vivo neurons are scarce. Hence,
sequences of spikes, or “spike trains”, appear to possess a significant random component.
Therefore, they are frequently modeled by stochastic point processes.

The simplest stochastic point process, and probably the most common model of
neural spike trains, is the Poisson process. Much of the early modeling work on the
stochastic nature of neural spike trains, in many different parts of the nervous system,
made use of this model (e.g. Mueller, 1954; Kuffler, FitzHugh, & Barlow, 1957; Bishop,
Levick, & Williams, 1964; Siebert, 1965; Smith & Smith, 1965). A Poisson process is
solely parameterized by the rate of occurrence of its points, and the probability of a point
occurring at any particular time is completely independent of both its past and its future.
Neurophysiological recordings, however, are conspicuously devoid of pairs of spikes that
occur in close proximity, which is not true of the Poisson process. This absence of very
short interspike intervals is termed absolute refractoriness. In addition, somewhat longer
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Neurophysiological Recording

Point Process

t1 t2 t3

Figure 1.1: Reduction of a neurophysiological recording to a point process. The upper
trace is a segment of the voltage waveform from an extracellular recording of a neuron.
Each of the nearly identical spikes in the voltage is called an “action potential”. In the
point process depicted below the trace, only the occurrence times (t1, t2, and t3) of the
action potentials are preserved.

interspike intervals are more rare than is accounted for by the Poisson process, a condition
called relative refractoriness. Refractoriness, absolute and/or relative, can be accounted
for in a point process by certain renewal point processes. Unlike the Poisson process,
a renewal point process may depend on its past, though only on the period extending
back to the last point that occurred. Hence, in a renewal point process, the lengths of
the interspike intervals are still independent of each other, as they were in the Poisson
process. Renewal processes that incorporate the refractory period(s) of neural spike trains
may be described in terms of the application of a thinning procedure, which describes a
deterministic, probabilistic, or mixed rule for removing points, to the Poisson process. In
the context of neural modeling, such point processes are call refractory-modified Poisson
processes.

1.1.2 Long-Range Dependence in Neural Spike Trains

The Poisson process has no temporal autocorrelation, and the autocorrelation of standard
renewal point processes has a very limited extent. In contrast, like many other natural
processes (see Beran, 1994, for examples), the spike trains of many (or, perhaps, most)
neurons have autocorrelations that endure for an exceptionally long period of time. This
long-range dependence is evident through the power-law behavior of such statistics as the
Fano factor curve and the power spectrum and has been observed in neurons found in
the auditory nerve (Teich, 1989; Teich & Lowen, 1994; Lowen & Teich, 1996b), the lateral
superior olive (Teich, Johnson, Kumar, & Turcott, 1990; Turcott et al., 1994), the retina
and lateral geniculate nucleus (Teich, 1996; Teich, Heneghan, Lowen, Ozaki, & Kaplan,
1997; Lowen, Ozaki, Kaplan, Saleh, & Teich, 2001), the visual system of certain insects
(Turcott, Barker, & Teich, 1995), the striate cortex (Teich, Turcott, & Siegel, 1996), the
somatosensory cortex (Wise, 1981), and the mesencephalic reticular formation (Gruneis,
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Nakao, Yamamoto, Musha, & Nakahama, 1989; Gruneis, Nakao, & Yamamoto, 1990;
Gruneis et al., 1993). Since power-laws are self-similar, a vaguer term incorporating the
word “fractal” is often used to denote long-range dependence in these neurophysiological
studies.

Since the standard point process models of neural spike trains do not possess long-
range dependence, new long-range dependent point process models have been developed
since the discovery of long-range dependence in neural spike trains. Teich and Lowen
(Teich, Turcott, & Lowen, 1990; Lowen & Teich, 1991, 1995, 1996a, 1997) have developed
several similar models that incorporate long-range dependent (or “fractal”) noises,
such as fractional Gaussian noise. They are all based on a similar idea. The rate of
occurrence of points in a Poisson process, or in the Poisson process of a refractory-
modified Poisson process, does not change with time. Teich and Lowen’s models, however,
set the instantaneous rate of these processes equal to a long-range dependent noise,
thus producing long-range dependence in the output as well. These “fractal-noise-driven
Poisson process” models, however, are difficult to handle analytically, especially within
the context of a larger model. Furthermore, due to their long-range memory, they are
computationally cumbersome to simulate. Hence, although much evidence of long-range
dependence in neural spike trains has been produced and models of this property are
available, little progress has been made in understanding the significance of long-range
dependence to neurophysiology in general.

1.1.3 The Integration-High Variability Paradox

Another approach, different from those mentioned in Section 1.1.1, to modeling neural
spike trains employs a threshold or level-crossing mechanism that is applied to a given
continuous time series. In this case, the points of the process occur at the instants
when the time series crosses the specified threshold or level. In order to represent the
randomness apparent in spike trains, the time series may be partially or fully stochastic.

The integrate-and-fire (IF) neuron, which was first investigated by Lapicque (1907,
1926), is a well-established mathematical model of neural spiking that incorporates a
threshold mechanism. In addition, it includes an abstraction, the “integration” mech-
anism, of the way in which a neuron processes and combines its inputs. Thus, the IF
neuron has proved particularly useful in modeling neurons, like those in the cortex, that
receive large numbers of inputs. In the most basic form of this model, each spike that
occurs on an input “neuron” causes the value of the IF neuron’s “membrane voltage” to
instantaneously increase or decrease by a fixed amount, depending on whether the input is
excitatory or inhibitory. When the membrane voltage reaches the threshold value, a spike
(or point) occurs at its output. The membrane voltage is then reset to its initial value
and the process begins anew. In this form, the IF neuron is a purely deterministic model.
However, if the inputs are stochastic then the output of the neuron will be as well.

The appropriateness of the IF neuron model for modeling cortical neurons was called
into question by Softky and Koch (1992, 1993). They drew attention to the disparity
between the variability of neural spike trains from in vivo cortical neurons and the
variability that is expected based on IF models of these neurons. Since cortical neurons
receive a large number of inputs, these IF models receive spikes from a large number of
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Poisson processes. However, in order to produce reasonable spike rates at the output of
the IF neuron, the threshold must be large relative to the effect of each individual input.
Under these conditions, the integration mechanism of the IF neuron essentially averages
the inputs and produces a fairly regular, or nearly periodic, spike train at its output. But,
in vivo the variability of the time between spikes in cortical neurons is quite large (Noda &
Adey, 1970; Burns & Webb, 1976; Dean, 1981; Softky & Koch, 1992, 1993). Two questions
raised by these paradoxical observations are: (1) can the IF neuron model reproduce the
high variability of in vivo neurons in a physiologically realistic way? and (2) how can a
neuron that integrates over many inputs produce such high variability? One set of possible
answers to these questions are that (1) the IF neuron cannot realistically reproduce in
vivo -like high variability, and (2) cortical neurons do not integrate over many inputs, but
instead act as coincidence detectors. As a coincidence detector, a cortical neuron would
respond to input spikes that are highly synchronized in time. Since an output spike could
be initiated by only a few synchronized input spikes, the neuron could have many inputs
while still preserving a large portion of the variability of each input.

However, a considerable literature of attempts to replicate the variability of in vivo
neurons with the IF model, in a realistic and meaningful way, developed in response to
Softky and Koch (1992, 1993). The high variability in these models is either created by
increasing the variability of the input to the IF neuron or by increasing the sensitivity,
or gain, of the spiking mechanism to changes in the input. In either case, although the
resultant model is integrating a large number of inputs, it is predominately operating near
threshold, where the inputs are just sufficient to cause output spikes. This state of the
model is what creates the high output variability (Bell, Mainen, Tsodyks, & Sejnowski,
1995; Burkitt & Clark, 2000). Three methods that have been used to increase the vari-
ability of the input are (1) balancing the amount of excitation and inhibition (Shadlen &
Newsome, 1994; Tsodyks & Sejnowski, 1995; Vreeswijk & Sompolinsky, 1996, 1998; Feng &
Brown, 1998a, 1999; Brown & Feng, 1999; Feng, 1999; Christodoulou, Clarkson, Bugmann,
& Taylor, 1994; Christodoulou & Bugmann, 2000; Salinas & Sejnowski, 2000; Burkitt,
2000, 2001), (2) using long-tailed interspike interval distributions (Feng, 1997; Feng &
Brown, 1998b; Feng, Tirozzi, & Brown, 1998), and (3) using correlated inputs (Stevens
& Zador, 1998; Sakai, Funahashi, & Shinomoto, 1999; Shinomoto & Tsubo, 2001; Feng &
Brown, 2000a; Feng, 2001; Feng & Zhang, 2001; Destexhe & Pare, 1999, 2000). Methods
used to increase the sensitivity of the spiking mechanism include (1) using a post-spike
reset potential just below threshold (Lansky & Smith, 1989; Bell et al., 1995; Troyer &
Miller, 1997; Bugmann, Christodoulou, & Taylor, 1997), or an equivalent time-varying
threshold (Wilbur & Rinzel, 1983), and (2) making the leakage coefficient dependent on
the membrane voltage (Feng & Brown, 2000b).

1.1.4 General Statistical Examinations of Neurophysiological
Data

If the nervous system transmits and processes information on the basis of a rate code—a
common assumption—then the most important aspect of deciphering neural information is
distinguishing between different spike counts in fixed-length counting windows. However,
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the variability of these spike counts in response to a fixed stimulus will limit the ability of
the nervous system to distinguish between different spike counts.

When studying or modeling the activity in neurons, it is frequently necessary to
statistically characterize neural spike trains. In particular, especially in the context of rate
coding, the mean and/or variance of the number of spikes in a fixed length time interval
are often of interest, or are necessary as components of the desired analysis. These values,
then, must be estimated from experimental data using the sample mean and/or sample
variance. The sample mean and sample variance are so commonly calculated and used,
however, that one rarely considers the assumptions which undergird their meaningfulness,
as well as that of analyses that are based upon them.

One of these basic assumptions is that the observations, or samples, from which the
statistics are calculated are independent. Rarely, in practice, is this requirement met.
Usually, however, deviations from these ideals are small, in the sense that they have
limited effects on the results. For instance, sample counts from a Poisson process would
not violate this assumption, whereas those from a (non-Poissonian) renewal process
would. Yet, due to the limited range of the temporal autocorrelation present in a typical
renewal process, the detrimental effects on the behavior of the sample statistics would
be negligible under most conditions. However, since the autocorrelation present in actual
spike trains has a long extent, its effect on the behavior of sample statistics cannot be so
easily dismissed. For stochastic time series, negative effects of long-range dependence on
the reliability of sample statistics are well-documented (see, for example, Beran, 1994).
Therefore, similar effects are likely to occur in statistical analyses of spike trains as well.

1.2 Objectives

The main goals of this thesis are:

(i) to develop a more robust understanding of the properties of long-range dependent
point processes, especially with respect to those that are applicable as models of
neural spike trains;

(ii) to investigate whether the integrate-and-fire models of cortical processing discussed
in Section 1.1.3 are compatible with the presence of long-range dependence;

(iii) and to assess the extent to which statistical estimates of the properties of spike trains
are likely to be compromised by long-range dependence in the spike trains.

In Chapter 2, we develop a basic theory of long-range dependence in point processes.
We then proceed, in light of this theory, to analyze, as a whole, a large class of “high-
variability cortical models” to determine if and to what extent they can simultaneously
produce physiologically realistic variability and long-range dependence. Although mathe-
matical analysis of this class of models relies solely on global properties of these models,
we also exam a particularly common example in further detail in order to facilitate an
intuitive understanding of the interplay between variability of the interspike intervals and
long-range dependence.



6

In Chapter 3, the basic theory developed in Chapter 2 is augmented to better differ-
entiate types of long-range dependence that can occur in point processes. In addition,
methods are described that are sensitive to these different forms of long-range dependence
in empirical data. Using partial analytical results and analysis of data obtained from sim-
ulations, we investigate the ability of two types of high-variability cortical models, which
are not subject to the analysis of Chapter 2, to produce high-variability and long-range
dependence. Each of these models differs from the basic integrate-and-fire model in that
its inputs are not Poisson processes. The first model, which was proposed by Feng and
his coworkers (Feng, 1997; Feng & Brown, 1998b; Feng et al., 1998), uses renewal point
processes as inputs. The second model, which we propose, uses fractional-Gaussian-noise-
driven Poisson processes, which have properties similar to those of many inputs to the
cortex, as inputs.

In Chapter 4 we address the subject of the effect that long-range dependence in
spike trains has on statistical estimators of spike counts. We do this by studying the
bias and variability of the sample mean, sample variance, and sample standard deviation
of counts for the fractional-Gaussian-noise-driven Poisson process model. Analytical
approximations for most of these properties are derived, and simulations are used to
evaluate the remainder. Finally, the significance of these results for published estimates of
spike count statistics are discussed.
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Chapter 2

Long-Range Dependence and Models of the High

Interspike-Interval Variability of Cortical Neurons I:

Models Producing Renewal Outputs

ABSTRACT Many different types of integrate-and-fire models have been
designed in order to explain how it is possible for a cortical neuron to integrate
over many independent inputs while still producing highly variable spike
trains. Within this context the variability of spike trains has been almost
exclusively measured using the coefficient of variation of interspike intervals.
However, another important statistical property that has been found in cortical
spike trains and that is closely associated with their high firing variability
is long-range dependence. We show that a large class of high-variability
integrate-and-fire models are incapable of producing outputs that possess both
coefficients of variation within the range that has been empirically measured
from cortical spike trains and long-range dependence. The argument consists
of two parts: first, we prove that no renewal point process can possess both
of these properties simultaneously; then, we argue that the outputs of a
large number of high-variability integrate-and-fire models are renewal point
processes. This class of models includes those that use excitation-inhibition
balance, correlated inputs, partial reset, or nonlinear leakage to produce
outputs with high variability.

2.1 Introduction

Within computational neuroscience there is a debate over whether cortical neurons act as
temporal integrators or coincidence detectors (see, for example, Konig, Engel, & Singer,
1996). Functionally, the contention is whether neurons combine synaptic inputs over time
periods on the order of, or longer than, interspike intervals (temporal integration) or
over time periods that are much shorter than interspike intervals (coincidence detection).
Although the idea of cortical neurons as temporal integrators seems to be more dominant,
Softky and Koch (1992, 1993) revealed a simple discrepancy between this theory and
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the statistical nature of trains of action potentials (spikes) from real cortical neurons.
The statistical discrepancy was found in the variability of neural responses as measured
by the coefficient of variation of interspike intervals (CVISI). The CVISI is the standard
deviation of the intervals divided by the mean of the intervals and, therefore, has a value
of zero when all interspike intervals are deterministically equal and has a value of one for a
Poisson process.

Softky and Koch (1992, 1993) showed, using both an integrate-and-fire (IF) neuron
model and a more detailed compartmental neuron model, that if a neuron integrates a
large number of excitatory inputs with small amplitude postsynaptic potentials, then its
output should be very regular, with CVISI � 1. However, their analysis of recordings
from primary visual cortex (V1) and extrastriate cortex (MT) of awake, behaving monkeys
revealed that cortical neurons are actually quite irregular, with CVISI ≈ 1. Thus, they
concluded that cortical neurons do not integrate over many inputs, but instead function as
coincidence detectors.

Shadlen and Newsome (1994), however, showed that neural models that integrate over
many inputs are able to produce very irregular spike trains if they have both excitatory
and inhibitory inputs. In their model highly variable output spike trains were obtained
by making the total amount of inhibition equivalent to the total amount of excitation.
This idea has been extended (Brown & Feng, 1999; Feng & Brown, 1998a; Feng, 1999;
Shadlen & Newsome, 1998; Burkitt, 2000, 2001) to show that the amounts of inhibition
and excitation do not need to be perfectly balanced, a condition that seems physiologically
unrealistic. In fact, if they are too closely matched the CVISI of the model becomes
much larger than the values measured from real neurons (e.g. Feng & Brown, 1998a, or
Section 2.4 below).

Following these two foundational papers, a number of studies have been devoted
to finding methods of producing highly variable output from an IF neuron model that
requires a large number of input spikes to produce an output spike. In addition to the
balancing of excitation and inhibition, other methods that produce realistic CVISI values
include using long-tailed interspike-interval distributions for the input processes (Feng,
1997; Feng & Brown, 1998b, 1998a; Feng et al., 1998), using correlated inputs (Stevens
& Zador, 1998; Sakai et al., 1999; Shinomoto & Tsubo, 2001; Feng & Brown, 2000a;
Feng, 2001; Feng & Zhang, 2001; Destexhe & Pare, 1999, 2000), and using a post-spike
reset potential near threshold (Troyer & Miller, 1997; Bugmann et al., 1997; Lansky &
Smith, 1989). Furthermore, several studies have created networks of IF neurons where
the network dynamics create highly variable outputs at the level of single neurons (Usher,
Stemmler, Koch, & Olami, 1994; Usher, Stemmler, & Olami, 1995; Tsodyks & Sejnowski,
1995; Vreeswijk & Sompolinsky, 1996, 1998).

In addition to highly variable interspike intervals, there is evidence that the spike
trains of cortical neurons also exhibit long-range temporal dependence (Teich et al., 1996;
Gruneis et al., 1989, 1990, 1993; Wise, 1981).1 Long-range dependence (LRD), or long
memory, denotes that the dependence between random variables in a stochastic process
decay “slowly” as the distance between them increases. For processes with finite variance,

1These papers do not use the term “long-range dependence”, but in Section 2.3 we will relate their
findings to long-range dependence.
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this property is sometimes referred to as long-term correlation, or, since the form of these
correlations, and the related power spectral density, often are, or approximate, certain
power-law functions, they are sometimes referred to as second-order self-similar, fractal,
or having power-law statistics. Whatever they are called, LRD processes with finite
variances have correlations that decay so slowly that their sum diverges as the correlations
for increasingly distant random variables are included. Therefore, any specification of a
finite history of the process will necessarily have ignored a significant portion of these
correlations. This leads to behavior in the variance of such a process that is unusual
with regard to standard statistical procedures, and, as will become clear in the course of
this chapter, is closely related to the variability as measured by the CVISI . However, its
importance to the study of highly variable integrator models of cortical processing has
rarely been acknowledged (but see Usher et al., 1994, 1995), and, then only with regard to
networks of interconnected IF neurons.

In this chapter, we study the ability of a large class of the simplest and most general
high-variability IF neuron models to produce LRD. The observation that the outputs of
many of the models mentioned above are renewal processes allows us to deal with this
entire subclass of models with a single analytical argument. We show that such models
cannot both have a CVISI value approximating the values that have been measured
empirically from cortical spike trains and be LRD within the same parameter regime.

We begin in Section 2.2 with the theory of LRD as it applies to point processes in
general and give a specific result for renewal point processes. This section contains an
introduction to LRD which motivates the subsequent definitions of LRD for stochastic
point processes. This is followed by a statement and proof of a theorem that identifies
when a renewal point process is LRD. In Section 2.3, we discuss the evidence for LRD in
neural spike trains, including those produced by cortical neurons. This requires relating
empirical analyses as presented in the literature with the definition of a particular type of
LRD given in Section 2.2. In Section 2.4, we illustrate the main result by considering an
example from the class of high-variability cortical models that produce renewal outputs.
The model is a simple, but common, high-variability cortical model consisting of an
arbitrary combination of mutually-independent, Poisson excitatory and inhibitory inputs
converging on a single IF neuron. This model requires an approximate balance between
excitation and inhibition in order to produce output spike trains with variability matching
CVISI measurements from in vivo cortical neurons. Due to its simplicity, we are able to
show analytically that this model, within any single parameter regime, cannot produce
spike trains that simultaneously possess both the CVISI and LRD properties that have
been measured in real cortical neurons. Next, in Section 2.5, we generalize this result to
a large class of IF models. We first describe conditions on IF models that are sufficient
to ensure that they produce renewal spike trains and argue that the failure of the cortical
neuron model illustrated in Section 2.4 is generally applicable to this entire class of
models.
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2.2 Long-Range Dependence: Definitions and

Theory

2.2.1 Long-Range Dependence in Stochastic Processes

A stationary stochastic process {Xi : i ∈ Z} is said to have short-range dependence if
it possesses the following essentially equivalent properties (Cox, 1984), where Ck, for any
integer k, denotes an arbitrary finite constant:

(i) lim
n→∞

n∑
j=0

Cov{X0, Xj} = C1;

(ii) SX(0) = C2, where SX(ω) is the spectral density (or power spectrum) of {Xi};

(iii)
V ar

{∑n
j=1 Xj

}
n

∼ C3 as n → ∞.

Note that according to these properties, a short-range dependent process does not
necessarily have any dependence at all. For instance, a process where Xi is independent of
Xj for all i �= j is consistent with these three properties. In such a case, we might say that
zero dependence is just an extreme example of short-range dependence.

Property (i) above implies that for increasing lags the covariance decays quickly
enough that it is (infinitely) summable. On a practical level, this tells us that an arbi-
trarily large, though perhaps less than total, amount of the influence of the past can be
contained in a sufficiently large finite history of the process. Since the spectral density
function is just the Fourier transform of the autocovariance function, property (ii) is the
frequency domain equivalent of property (i). Finally, property (iii) expresses the fact that
the variance of the sample means decays to zero at least as quickly as 1/n.

Most classical statistical estimators and tests assume that a process conforms to prop-
erties (i)-(iii) above, and the “classical” types of stochastic processes fall into this category.
However, observations from many “physical” processes do not meet the requirements of
these three properties. Such processes are said to exhibit long-range dependence, and
this long-range dependence can result in grossly inaccurate results if classical statistical
methods are applied to processes that possess it (Beran, 1994; Cox, 1984). In contrast to
properties (i)-(iii) above, a long-range dependent stationary process {Xi} possesses the
following properties (Cox, 1984):

(i’) lim
n→∞

n∑
j=0

Cov{X0, Xj} = ∞;

(ii’) lim
ω→0

SX(ω) = ∞;

(iii’) lim
n→∞

V ar
{∑n

j=1 Xj

}
n

= ∞.

Thus, by property (i’), the covariance of a long-range dependent process decays so
slowly that it is not (infinitely) summable. Therefore, any finite history, no matter how
large, of such a process will necessarily leave out an infinitely large amount of the influence
from the past. Equivalently, according to property (ii’), such a process has a singularity in
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its spectral density at zero frequency. In addition, the variance of the sample means of a
long-range dependent process decays to zero more slowly than 1/n.

Property (i’), the divergence of the infinite sum of the covariances, or, alternately, the
correlations, is perhaps most helpful in forming an intuitive understanding of long-range
dependence. It is important to note that this is an asymptotic property (as are the other
two properties in the list) and that this asymptotic property is related to the asymptotic
form of the covariance, or correlation, function. That it is an asymptotic property means
that each individual correlation, by itself, is not critical. In other words, the correlation
at any fixed finite lag can be arbitrarily large or arbitrarily small for either a short-range
or long-range dependent process. The asymptotic form of the correlations is the crucial
element since long-range dependent processes can, and usually do, have correlations that
approach zero for arbitrarily large lags. Thus, long-range dependence results from the joint
effect of all correlations.

If we are going to define long-range dependence for point processes, then we need to
have a definition of long-range dependence for arbitrary stochastic processes. Any of the
three properties above would suffice as a definition (see, for example, Beran, 1994), but,
following Daley and Vesilo (1997) and due to its ease of use analytically and empirically,
we will use property (iii’) to define long-range dependence.

Definition 2.1. A stationary stochastic process {Xi : i ∈ Z}, for which Xi has finite
variance for all i, exhibits long-range dependence (LRD) when

lim sup
n→∞

V ar
{∑n

i=1 Xi

}
n

= ∞.

2.2.2 Long-Range Dependence in Stochastic Point Processes

A point process on the real line can be described by either its interpoint distances or by
the numbers of points in any arbitrary set of intervals on the real line. If the points of
a point process are given by the increasing sequence {τi : i ∈ Z}, then the sequence of
intervals is given by {Yi = τi − τi−1 : i ∈ Z}. On the other hand, the number of points in

an arbitrary interval (a, b], a < b, is given by N(a, b] = N
(
(a, b]

)
= #{i : τi ∈ (a, b]}. Then,

for example, the counts in a sequence of adjacent intervals of length T > 0 would be given
by

{
N

(
a + (i − 1)T, a + iT

]
: i ∈ Z

}
, where a is any real number.

Since either the sequence of interpoint intervals or the sequence of counts in adjacent
intervals (or both) can be long-range dependent, there are two different ways in which a
point process can exhibit long-range dependence. Again following Daley and Vesilo (1997),
we will call these two types of long-range dependence “long-range interval dependence”
and “long-range count dependence”, respectively. Thus, we have the following two
definitions:

Definition 2.2. (Daley & Vesilo, 1997) 2 A stationary point process N(·) on the real line
exhibits long-range interval dependence (LRiD) when the stationary sequence of interpoint

2The original definition of Daley and Vesilo (1997) does not contain the phrase “with finite variances”,
though the finiteness of the variances of the intervals is necessary and may have been implied.
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intervals {Yi}, with finite variances, is LRD in the sense that

lim sup
n→∞

V ar
{∑n

i=1 Yi

}
n

= ∞.

Definition 2.3. (Daley & Vesilo, 1997) A second-order stationary point process N(·) on
the real line exhibits long-range count dependence (LRcD) when

lim sup
t→∞

V ar
{

N(0, t]
}

t
= ∞.

The definition of LRiD is a direct analog of the general definition for LRD. The
definition for LRcD, however, takes a slightly different form since we wish to obviate the
use of the parameter T described above. This parameter is superfluous with regard to the
definition of LRcD since ∑n

i=1 N
(
(i − 1)T, iT

]
= N(0, nT ]

and nT goes to infinity as n goes to infinity.

2.2.3 Long-Range Dependence in Stochastic Renewal Point
Processes

In this chapter, we are considering models that produce renewal point processes, point
processes in which all interpoint intervals are mutually independent. Clearly, a renewal
point process cannot be LRiD, since by definition there is no dependence between the
intervals,3 but it can be LRcD (e.g. Daley & Vesilo, 1997; Lowen & Teich, 1993c, 1993d)
. However, when is a renewal point process LRcD? As it turns out, this question has
a straightforward answer: a renewal point process is LRcD when the variance of the
interpoint intervals is infinite. This was stated by Daley (1999), but only a terse argument
was included there. Due to the abbreviated nature of those comments,4 we will now state
and prove (following Daley’s argument) this result.

Theorem 2.1. A stationary renewal point process with distribution function F of the
generic interpoint-interval random variable X, which has F (0) = 0 and finite mean
µ = E{X}, is LRcD if and only if E {X2} = ∞.

Proof. Since the interpoint interval random variable X has a finite mean, the moments
E{N(0, 1]} = 1/µ and E{N2(0, 1]} are finite, where N(·) is the counting measure of the
point process. Therefore, by Theorem 3.5.III of Daley and Vere-Jones (1988),

E{N2(0, t]} =
∫ t

0

2U(s) − 1

µ
ds,

3This is true even if the variance of the interval distribution is infinite, even though Definition 2.2 is
not applicable to that case. If an extension of the concept of LRiD to the infinite interval variance case is
to be meaningful, a point process with independent intervals cannot also be LRiD.

4Another reason that we have included the proof of this theorem is that there is a mismatch between
the text and the equation in the argument of Daley (1999). The text specifies when equation (1.2) in that
paper diverges, but equation (1.2) is an equation for V ar

{
N(0, t]

}
, not V ar

{
N(0, t]

}
/t. The former,

which diverges for most interesting stochastic point processes, is only a necessary condition for long-range
dependence, whereas the latter is the definition of long-range dependence.
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where

U(t) =
∞∑

j=0

(
lim
h↓0

Pr
{
N(0, t] ≥ j|N(−h, 0] > 0

})

is called the expectation function. For a general stationary ergodic point processes with
finite second moments, U(t) is the analogue of the renewal function (and, for a renewal
point process, is the renewal function). The variance function can now be written as

V ar{N(0, t]} = E{N2(0, t]} −
(
E{N(0, t]}

)2

=
∫ t

0

2U(s) − 1

µ
ds −

(
t

µ

)2

=
∫ t

0

[
2U(s) − 1

µ
− 2s

µ2

]
ds

=
2

µ

∫ t

0

[
U(s) − s

µ

]
ds − t

µ

So,
V ar{N(0, t]}

t
=

2

µ

(
1

t

∫ t

0

[
U(s) − s

µ

]
ds

)
− 1

µ
,

which goes to infinity as t → ∞ if and only if the integrand goes to infinity. In other
words,

lim
t→∞

V ar{N(0, t]}
t

= ∞ if and only if lim
t→∞

(
U(t) − t

µ

)
= ∞, (2.1)

where the first limit is the definition (Definition 2.3) of LRcD.
Now, if σ2 = V ar{X2}, then for a renewal point process (Feller, 1971, Chapter XI,

Section 3, Theorem 1),

0 ≤ U(t) − t

µ
→ σ2 + µ2

2µ2
as t → ∞,

where the right side is replaced by ∞ if V ar{X2} does not exist. Therefore,

lim
t→∞

(
U(t) − t

µ

)
= ∞ if and only if E{X2} = ∞. (2.2)

Putting (2.1) and (2.2) together yields the desired result.

Remark. It may prove instructive to the reader to consider the following alternate
proof of the fact that an LRcD renewal point process necessarily has infinitely variable
interpoint intervals. This proof requires only a well known application of the central limit
theorem to renewal point processes (e.g. Cox, 1967, p. 40; Feller, 1971, p. 372). If the
variance of the generic interpoint interval random variable X is finite, then, for large t,
N(0, t] is asymptotically normally distributed with mean t/µ and variance σ2t/µ3, where µ
and σ2 are the mean and variance of X, respectively. Therefore, if E{X2} < ∞, then

lim
t→∞

V ar{N(0, t]}
t

=
σ2

µ3
< ∞,
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and the process is not LRcD. Thus, if the renewal point process is LRcD, then E{X2} =
∞.

Remark. Theorem 2.1 is restricted to stationary processes. However, since LRcD is a
property of the limiting behavior of the process, the renewal point process need only be
asymptotically stationary for the result to apply. This proves useful, for example, since
we often start a renewal point process with a point at the origin. Such a process is not
stationary, but is asymptotically stationary.

2.3 Long-Range Dependence in Cortical Spike

Trains

The spike trains of many neurons possess long-range dependence, although this term is
infrequent in the neurophysiological literature. Sometimes this property is called long-term
correlation, a designation that is quite similar to long-range dependence, but in other
contexts more specialized terms such as second-order self-similarity, fractal behavior, and
power-law (second-order) statistics are used. The use of the latter terms derives from the
fact that the correlation function (and other equivalent second-order statistical functions)
of a long-range dependent process usually assumes the form of a power-law function. Also,
since the power-law function of the power spectral density, the Fourier transform of the
correlation function, has the form of 1/fα for 0 < α < 2 under these conditions, long-range
dependent spike trains are sometimes designated as having 1/f fluctuations.

A large majority of the spike trains from mammalian sensory systems that have been
assayed for long-range dependence also exhibit it, and long-range dependence has also
been found in the visual system of certain insects (Turcott et al., 1995). Long-range
dependence has been found at many different levels of the mammalian visual and auditory
systems, including the primary auditory nerve (Teich, 1989; Teich & Lowen, 1994; Lowen
& Teich, 1996b), the lateral superior olive (Teich et al., 1990; Turcott et al., 1994), the
retina and lateral geniculate nucleus (Teich, 1996; Teich et al., 1997; Lowen et al., 2001),
and the visual cortex (Teich et al., 1996). Furthermore, long-range dependence has been
found in somatosensory cortex (Wise, 1981) and the mesencephalic reticular formation
(Gruneis et al., 1989, 1990, 1993). However, one notable exception to the existence of
long-range dependence in mammalian sensory neurons is the peripheral vestibular system
(Teich, 1989).

The papers mentioned above primarily analyze the count statistics of spike trains, but
none of these papers refer to long-range count dependence as formulated in Definition 2.3.
However, they all illustrate statistical characteristics of spike trains that are related to
long-range dependence. Often the Fano factor curves,

F (t) =
V ar{N(0, t]}
E{N(0, t]} ,

for these spike trains are shown to approximate a power-law for large counting times, t.
Specifically,

F (t) ∼ tα, for α > 0, as t → ∞.
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More generally, however, the Fano factor curves of these spike trains are shown to have a
form that diverges for large counting windows. This, according to the following lemma,
implies that the spike trains exhibit LRcD.

Lemma 2.2. If the Fano factor curve, F (t), of a stationary, orderly point process with
finite rate E{N(0, 1]} �= 0 diverges in the limit of large t, i.e.

lim
t→∞

F (t) = ∞, (2.3)

then the point process is LRcD.

Proof. Let ρ = E{N(0, 1]} be the rate of the point process. Thus (e.g. Cox & Isham,
1980, p. 31),

E{N(0, t]} = ρt.

So, by the definition of F (t),

F (t) =
V ar{N(0, t]}
E{N(0, t]} =

1

ρ
· V ar{N(0, t]}

t

Hence, using equation (2.3),

1

ρ
· lim

t→∞
V ar{N(0, t]}

t
= lim

t→∞
F (t) = ∞.

Therefore, since ρ is a finite, nonzero constant,

lim
t→∞

V ar{N(0, t]}
t

= ∞,

and by definition the point process is LRcD.

Another statistic of spike trains that is often shown to approximate a power-law is the
power spectral density. In this case, what is shown is that

S(f) ∼ 1/fα, for α > 0, as f → 0.

In general, however, a power spectral density that diverges in the zero frequency limit is
sufficient to imply that the spike train is LRcD.

Lemma 2.3. If the power spectral density, S(f), of a stationary, orderly5 point process of
finite (non-zero) rate has a singularity at zero frequency, i.e.

lim
f→0

S(f) = ∞, (2.4)

then the point process is LRcD.

5A point process N(·) on the real line is orderly if Pr{N(t, t + δ] > 1} = o(δ), for all t ∈ R. This
implies that the point process has no multiple simultaneous occurrences (see, e.g., Cox & Isham, 1980;
Daley & Vere-Jones, 1988).
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Proof. Let V (t) = V ar{N(0, t]} be the variance function, and let V ′(t) be the first
derivative of the variance function. Then (Cox & Lewis, 1966, pp. 74–75)

lim
t→∞

V ′(t) = π · lim
f→0

S(f) = ∞,

where the final equality follows from (2.4). Thus,

lim
t→∞

V ar{N(0, t]}
t

= lim
t→∞

V (t)

t
= lim

t→∞
1

t

∫ t

0
V ′(u)du = ∞.

Thus, we have shown that the previously mentioned analyses of spike trains, whether
using the Fano factor curve or the power spectral density, imply that those spike trains
are LRcD. In particular, in this chapter we are concerned with the fact that cortical
neurons exhibit LRcD, and we wish to determine whether high-variability cortical models
also exhibit LRcD. In the following two sections, we show that a certain class of high-
variability cortical models, those that produce renewal point process outputs, only
produce LRcD under conditions that produce erroneous CVISI values, at least according
to published empirical measurements. We will not concern ourselves with whether
cortical neurons also exhibit LRiD, though they likely do. This would require additional
complexity in our arguments that is unnecessary for showing the incompatibility of these
models with empirical long-range dependence analyses.

2.4 The Balanced Excitation-Inhibition Model

Gerstein and Mandelbrot (1964) first proposed that the output of a neuron is highly
variable if there is a balance between the amounts of excitation and inhibition in its
synaptic inputs. Later, Shadlen and Newsome (1994) used this idea as a solution to the
apparent incompatibility, noted by Softky and Koch (1992, 1993), of temporal integration
and high variability for cortical neurons. Work on this solution was further extended
in several subsequent studies (Brown & Feng, 1999; Feng & Brown, 1998a; Feng, 1999;
Shadlen & Newsome, 1998; Burkitt, 2000, 2001).

In this section, we will evaluate whether excitation-inhibition balance can produce
LRcD, in addition to high variability, in simple IF models. We restrict ourselves to the
simplest of these models, since (i) they can be handled analytically, (ii) they include the
primary models considered in the literature, and (iii) more complex models are covered by
the arguments for generic renewal point processes in the subsequent section. This exercise
will serve to illustrate the conflict between LRcD and realistic values of CVISI as it occurs
in a particular renewal model.

The model that we are considering here is the basic IF model, without leakage or
reversal potentials, that has both excitatory and inhibitory inputs, all of which are Poisson
processes and mutually independent. Each event, or “spike”, arriving on an input causes
a postsynaptic potential, a depolarizing potential (EPSP) for an excitatory input and
a hyperpolarizing potential (IPSP) for an inhibitory input. Both EPSPs and IPSPs are
Dirac delta functions, causing instantaneous jumps in the voltage, and, for simplicity and



17

because exact analytical results are available in this case, we begin with EPSPs and IPSPs
that are equal in amplitude. We denote the EPSP amplitudes by aE > 0 and the IPSP
amplitudes by aI > 0. Thus, in the present case, we can let a = aE = aI . Furthermore,
we let ME and MI denote the number of excitatory and inhibitory inputs, respectively,
and λE and λI denote the input rate for each excitatory and inhibitory fiber, respectively.
Since all inputs are independent Poisson processes, they can be combined such that only
two effective inputs need be considered: an excitatory input of rate ΛE = MEλE and an
inhibitory input of rate ΛI = MIλI .

The integral, with respect to time, of all of the resulting postsynaptic potentials is a
random walk, which forms the time-varying potential, V (t), of the IF model. When this
potential crosses a predetermined, constant threshold, Vth, an output spike is initiated.
Following an output spike, the voltage is reset to its resting level, v0, and the process
starts anew.

Since the inputs are Poisson processes, the postsynaptic potentials are delta functions,
and the IF neuron completely resets at each occurrence of an output spike, the output of
the present model is clearly a renewal process. Hence, the output is completely specified
by its interval distribution, or, equivalently, the first passage time of the potential V (t) to
level Vth from V (0) = v0.

Tuckwell (1988, pp. 128ff) has derived the interval density, f(t), for the output of this
model:

f(t) = θ̂
(

ΛE

ΛI

)θ̂/2 e−(ΛE+ΛI)t

t
Iθ̂(2

√
ΛE · ΛI t), t > 0,

where θ̂ =
⌈

Vth−v0

a

⌉
is the number of excitatory inputs that are required for V (t) to cross

threshold, �x� is the least integer greater than or equal to x, and Iρ(x) is the modified
Bessel function

Iρ(x) =
∞∑

k=0

1

k! Γ(k + ρ + 1)

(
x

2

)2k+ρ

.

Now, let X be an arbitrary interspike interval with density function f(t). Then,
according to Tuckwell (1988), the first three (central) moments of X are

Pr{X < ∞} =




1, if ΛE ≥ ΛI ,(
ΛE

ΛI

)θ̂
, if ΛE < ΛI

,

E{X} =




θ̂
ΛE−ΛI

, if ΛE > ΛI ,

∞, if ΛE ≤ ΛI

,

and

V ar{X} =




θ̂(ΛE+ΛI)
(ΛE−ΛI)3

, if ΛE > ΛI ,

∞, if ΛE ≤ ΛI

.
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Thus, in the case when ΛE ≤ ΛI , the coefficient of variation of the interspike intervals,
CVISI , does not exist. However, if ΛE > ΛI , the coefficient of variation is

CV {X} =

√√√√ ΛE + ΛI

θ̂(ΛE − ΛI)
.

Therefore, by adjusting ΛI within the interval [0, ΛE), the CVISI can be set to any value

in the interval [1/
√

θ̂,∞), with arbitrarily large values occurring as ΛI approaches ΛE.
In other words, as the amount of inhibition is increased to bring the model into a perfect
balance between excitation and inhibition, the CVISI goes to infinity.

Now we wish to know when the output of this process exhibits LRcD. Since the output
of the model is a renewal point process, by Theorem 2.1, we know that the output will be
LRcD if and only if E{X2} = ∞, assuming that E{X} < ∞. Hence, the model can only
be LRcD under the condition that ΛE ≤ ΛI .

6 Thus, in trying to fit this IF model to both
the CVISI and LRcD properties of real neurons, we find ourselves at an impasse. With the
amount of inhibition less than the amount of excitation, the model can match the CVISI

values measured from real neurons, but under these conditions it is not LRcD, since both
the mean and variance are finite. By making the amount of inhibition equal to or greater
than the amount of excitation, we may create LRcD in the model, but the CVISI becomes
infinite. Therefore, this model of highly variable cortical neurons cannot manifest LRcD,
while still producing interspike-interval variability consistent with empirical measurements.

Now suppose that we relax the condition that EPSPs and IPSPs have equal mag-
nitude. In other words, consider the case when aE �= aI . This is the model that was
proposed by Shadlen and Newsome (1994) for matching the variability of real cortical
neurons. This model, unlike the case when aE = aI , cannot be analyzed directly. However,
the potential V(t) in this case can be approximated by a Wiener process with drift, an
approximation that becomes exact as the input rates ΛE and ΛI go to infinity and the
PSP amplitudes aE and aI go to zero. Thus, we have that (Tuckwell, 1988, p. 135ff)

V (t) ∼ U(t) = v0 + σW (t) + µt, t > 0,

where W (t) is the standard Wiener process (or Brownian motion) and the mean and
variance are given by

µ = aEΛE − aIΛI and σ2 = a2
EΛE + a2

IΛI ,

respectively. For this Wiener process approximation, the first-passage time, or interval,
density is given by Tuckwell (1988):

f(t) =
θ√

2πσ2t3
exp

[
−(θ − µt)2

2σ2t

]
, t > 0,

where θ = Vth − v0 does not depend on the PSP amplitudes since we no longer have the
simplifying assumption that they are all equal. Furthermore, the first three moments of

6Although the model is quite likely to exhibit LRcD under these conditions, Theorem 2.1 does not
apply since E{X} = ∞ when ΛE ≤ ΛI .
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the random variable X with density f(t) are (Tuckwell, 1988)

Pr{X < ∞} =


1, if µ ≥ 0,

exp
[

2µθ
σ2

]
, if µ < 0

=




1, if aEΛE ≥ aIΛI ,

exp
[
−2(aIΛI−aEΛE)θ

a2
EΛE+a2

IΛI

]
, if aEΛE < aIΛI

,

E{X} =




θ
µ
, if µ > 0,

∞, if µ ≤ 0


 =




θ
aEΛE−aIΛI

, if aEΛE > aIΛI ,

∞, if aEΛE ≤ aIΛI

,

and

V ar{X} =




θσ2

µ
, if µ > 0,

∞, if µ ≤ 0


 =




θ(a2
EΛE+a2

IΛI)

aEΛE−aIΛI
, if aEΛE > aIΛI ,

∞, if aEΛE ≤ aIΛI

.

Thus, in the case when µ ≤ 0, or equivalently aEΛE ≤ aIΛI , the coefficient of variation of
the interspike intervals, CV (ISI), does not exist. However, if µ > 0, i.e. aEΛE > aIΛI , the
coefficient of variation is

CV {X} =

√
σ2

θµ
=

√√√√ a2
EΛE + a2

IΛI

θ(aEΛE − aIΛI)
. (2.5)

Therefore, we see that the CVISI may take any value in the interval
[√

aE/θ,∞
)

when
aEΛE > aIΛI , with arbitrarily large values occurring as aIΛI approaches aEΛE.

Thus, we are in the same predicament as before. If aEΛE > aIΛI , then the model can
be adjusted to match the CVISI values as measured from real neurons. However, under
this condition, both the mean and variance are finite, and, therefore, the model is not
LRcD. On the other hand, if aEΛE ≤ aIΛI the process may be LRcD, but the CVISI

is infinite. Therefore, even when the EPSP and IPSP are unequal, the IF model fails
to match both the interspike-interval variability and LRcD as measured in real cortical
neurons.

2.5 General Principles for Renewal Models

In the previous section, we showed that the basic high-variability IF model that requires
balanced excitation and inhibition cannot produce both a finite CVISI and LRcD at the
same time. However, this result is easily extended to all renewal models, a class that
includes a significant portion of the single-neuron high-variability IF models. By using
the term “single-neuron” we are excluding consideration of network models, where the
statistical nature of the entire set of inputs to each neuron is not explicitly specified,
but instead consists, at least partially, of outputs from other similar neurons within an
interconnected network.
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If each component of an IF model is renewal, i.e. has no memory of the past beyond
the last output spike, then output of this model must be renewal. Hence, the following
conditions are jointly sufficient to render the output of such a model renewal:

(i) all inputs to the IF neuron are Poisson processes;

(ii) the cross-covariance between any set of inputs is zero for any non-zero lag;

(iii) the PSPs are direct changes in the IF potential, and either the IF potential is reset
to a fixed value after the occurrence of each output spike or these reset values form a
set of independent and identically distributed random variables;

(iv) all other parameters of the model, e.g. threshold, leakage conductance, or reversal
potentials, either are constant, are set to a fixed value upon the occurrence of an
output spike, or have post-output-spike values that form a set of independent and
identically distributed random variables.

These conditions are not entirely general, but they are practically general for the high-
variability IF models that have been studied in the literature. Note that if the above con-
ditions are met, it does not matter whether the model has leakage or reversal potentials
or a dynamic threshold, as long as their parameters meet condition (iv). Furthermore, the
PSPs may have non-zero duration as long as condition (iii) is met.

Many of the non-network high-variability IF models in the literature meet these
four conditions and are therefore renewal. Excitation-inhibition balance models that fit
this category were considered by Shadlen and Newsome (1994), Brown and Feng (1999),
Feng and Brown (1998a, 1999), Feng (1999), Burkitt (2000, 2001) . Renewal models that
produced highly variable outputs due to correlations between inputs were considered by
Feng and Brown (2000a), Feng (2001), Feng and Zhang (2001), Salinas and Sejnowski
(2000). Other models that are renewal as well are the partial reset models considered
in Troyer and Miller (1997), Bugmann et al. (1997), the time-varying threshold model
considered in Wilbur and Rinzel (1983), and the nonlinear leakage model considered in
Feng and Brown (2000b).

From Theorem 2.1, we see that if any of these models have an interval distribution
with a finite mean, then either (i) their interval distribution also has a finite variance and
they are not LRcD or (ii) their interval distribution has infinite variance and they are
LRcD. In case (i), it might be possible to match empirically measured values of CVISI , but
the LRcD property of real neurons is unattainable. However, in case (ii), the model will
be LRcD, but it will be impossible to match empirically measured CVISI values. Thus,
just like the model that was considered in Section 2.4, all renewal models with finite-mean
intervals fail to match both the interspike-interval variability and LRcD as measured in
real cortical neurons.

The preceding argument assumes that the interval distribution has a finite mean.
The example in Section 2.4, where the limit of CVISI as the model approached the
infinite-mean condition could be determined analytically, shows that at least some renewal
models with infinite mean intervals fail to produce the required variability and LRcD
properties, and fail in a manner similar to that described in the preceding argument
for the finite-mean case. This, however, does not prove that all such models fail in this
way. Nevertheless, models with infinite mean intervals have, at least, a couple degenerate
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properties. First, such a model cannot be stationary. This means, for instance, that if
we were to analyze or simulate a renewal point process with an infinite mean interval,
we would need to begin with a point at some specified time, for instance at the origin.
Second, since an interval distribution with an infinite mean will also have an infinite
variance, the CVISI has no meaning for such a model. Therefore, whether or not the
model is LRcD, a direct comparison of the interval variability of the model with that of
real cortical neurons is impossible using a single measure.

To test whether such a model is reasonable, we should consider the behavior of
both the sample mean and the sample variance of interspike intervals from physiological
recordings as an increasing number of interspike intervals are included in the calculation.
If both increase without bound for long recordings from cortical neurons, then it is
possible that a renewal model with infinite mean interval would be reasonable. Even so,
unless the sample CVISI values (the sample standard deviation divided by sample mean)
converge to a finite value as the amount of data included in the calculations is increased,
these values are unfit as model constraints. However, to the best of our knowledge, this
convergence analysis has not been carried out on spike trains recorded from cortical
neurons.

2.6 Discussion

A number of different types of integrate-and-fire models have been created in order
to explain how cortical neurons can integrate over large numbers of inputs while still
producing highly variable outputs. Although these models can produce values for the
coefficient of variation of interspike intervals similar to those calculated from in vivo
cortical spike trains, we considered whether such models can also produce long-range
dependence in their spike counts, a property that also is known to exist in cortical spike
trains. Based on the observation that a large class of these models produce outputs that
are renewal point processes, we were able to prove analytically that the output of these
models cannot simultaneously have both a finite coefficient of variation of interspike
intervals and long-range dependence in its spike counts. Therefore, assuming that the
spike trains of in vivo cortical neurons are long-range count dependent, none of these
renewal models produce highly variable outputs in a way that is consistent with the
properties of cortical spike trains. Thus, we suggest that their success in representing the
cortical processing that leads to highly variable spike trains is doubtful.

The approach that we have taken in this chapter has allowed us to handle a large
number of models analytically without having to deal with the details of each specific
model. In fact, most of these models are analytically intractable in detail. Furthermore,
the consideration of a general statistical description that is applicable to many models
adds to our intuition of cortical variability and narrows the range of feasible models for
future studies. The arguments presented in this chapter highlight the need for more
thorough study of the variability of cortical spike trains before judging the validity of
models of this variability and drawing general conclusions from them. In particular, the
insufficiency of the CVISI estimator alone as a measure of this variability and the necessity
of also using a measure that is sensitive to the correlational structure of the spike trains is
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demonstrated.
We have assumed, for the sake of argument, that empirical measurements of the

CVISI of cortical spike trains, which have resulted in values typically in the range from
0.5 to 1.2, are valid. However, another possible scenario exists. If the “real” CVISI of
cortical spike trains was actually very large, such that for all practical purposes it could
be assumed infinite, estimates of CVISI from short-duration recordings of cortical spike
trains might still be small. Under such conditions, it is theoretically possible that cortical
spike trains could be long-range count dependent, but that empirical estimates of CVISI

could be on the order of one. However, since CVISI estimates in this case would increase
with increasing recording duration, and since such estimates have been measured under
numerous recording conditions by many different researchers, this potentiality seems
improbable. More likely, under such conditions, empirical estimates of CVISI would be
widely variable and span a much larger range than 0.5 to 1.2. However, to rule out this
possibility, the behavior of the CVISI estimate as an increasing amount of the recording
duration is included in the calculation should be analyzed in future studies in order to
determine whether it converges or diverges.

By considering long-range count dependence, in addition to the CVISI , we were able
to show that a large portion of the single neuron models of cortical high variability are
incompatible with cortical spike trains. The incompatibility of one of these models, the
standard leaky integrate-and-fire model with Poisson inputs, with cortical spike trains
was also found by Shinomoto and his colleagues (Shinomoto & Sakai, 1998; Shinomoto,
Sakai, & Funahashi, 1999). They argued that the leaky integrate-and-fire model could
not match both the coefficient of variation and the skewness coefficient of the interspike-
interval density of cortical spike trains. The skewness coefficient, or just skewness, is
the third central moment divided by the standard deviation cubed and is a measure of
the symmetry of a distribution. Our result, however, has several advantages over the
arguments in these papers. First, our result is more generally applicable. Second, their
arguments were based on an approximation to the leaky integrate-and-fire model, whereas
ours are directly applicable to the models themselves. Third, in order to discount the
models, they placed restrictions on the parameter ranges of the models, something that
was unnecessary in our arguments.

Our results apply only to renewal models, but other models of the high variability
present in cortical spike trains exist that do not necessarily produce renewal outputs. In
particular, one type of model is almost identical to the models considered in Section 2.4,
except that the inputs are not necessarily Poisson processes. Instead, in these models, the
inputs are allowed to be any renewal point process (Feng, 1997; Feng & Brown, 1998b;
Feng et al., 1998). Therefore, since a Poisson process is the only type of renewal point
process with no memory, or temporal correlation, non-Poisson renewal inputs render the
entire model non-renewal and the arguments of this chapter do not apply. Furthermore,
even this slight increase in complexity renders analytical treatment of the basic IF model,
like that in Section 2.4, intractable. In Chapter 3, we will, therefore, investigate these
models using a combination of simulations and partial analysis to determine their validity
as explanations of high cortical variability.

Another set of high-variability models consist of interconnected networks of integrate-
and-fire neurons. In these models, the output of each individual neuron is highly variable
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due to the complex network dynamics. The output of each neuron in such a network is
unlikely to be a renewal point process, since temporal correlations are probably present
in the network dynamics. However, only one of these models has been tested for long-
range dependence. In simulations of their network, Usher and his colleagues (Usher et al.,
1994, 1995) demonstrated that the outputs of individual units had power spectrums that
behaved like power-laws at low frequencies while the coefficient of variations of their
interspike intervals were still approximately in the range of those measured from cortical
spike trains. Thus, since a power spectrum that follows a power-law demonstrates the
presence of long-range count dependence (see Section 2.3), their model accomplishes
exactly what we have shown to be impossible for renewal models. However, a further
test of their model, which was unnecessary when considering renewal models, would be
to compare both the long-range count dependence and long-range interval dependence of
its individual outputs with measurements from cortical spike trains. This is currently the
topic of ongoing work in our lab.

As reviewed in Section 2.3, many non-cortical sensory neurons are known to exhibit
long-range count dependence, including neurons in the lateral geniculate nucleus, which
are inputs for visual cortex. This is suggestive of a solution to the problem raised in this
chapter. We speculate that if the inputs to an integrate-and-fire model had more realistic
long-range dependent properties, similar to those found in the neurons that project into
the cortex, then the output of the model would also have variability and long-range count
dependence in accord with cortical spike trains. The answer to this proposal is beyond
the scope of this chapter, as it requires consideration of deeper issues related to the long-
range dependence of spike trains. In Chapter 3, we will develop the theory necessary to
evaluate this proposal and will then study its merits. Nevertheless, Sakai et al. (1999)
and Shinomoto and Tsubo (2001) have shown that temporally correlated inputs to leaky
integrate-and-fire models can produce not only coefficients of variation and skewness
coefficients of interspike intervals, but also correlation between consecutive interspike
intervals, that match those estimated from cortical spike trains. Although their study
of the correlation between consecutive interspike intervals would not reveal long-term
correlations, their result lends support to the idea that long-term correlations in the inputs
will result in long-term correlations in the output of integrate-and-fire models.
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Chapter 3

Long-Range Dependence and Models of the High

Interspike Interval Variability of Cortical Neurons II:

Models with Non-Poissonian Inputs

ABSTRACT The empirical observation that the variability of the interspike
intervals of cortical spike trains is higher than expected from the classical
integrate-and-fire model has led to a number of proposals for modifications to
this model that increase its output variability. However, we have suggested
previously that long-range dependence should also be considered when matching
models to the variability of cortical spike trains, and have shown that an
entire class of integrate-and-fire models are incapable of producing long-range
dependence while simultaneously exhibiting interspike interval variability that
matches empirical measurements. Here we study two integrate-and-fire models
that are not contained within this class of models, one previously studied by
Feng and Brown and one that is new, in order to evaluate whether they are
capable of producing both long-range dependence and realistic interspike interval
variability simultaneously. Whereas these “high-variability” integrate-and-fire
models usually have Poisson process inputs, the first model has non-Poissonian
renewal point process inputs, and the second model has fractional-Gaussian-
noise-driven Poisson process inputs. Non-Poissonian renewal point processes
are common generalizations of the interval independence property of the
Poisson process, and thus the first model is a natural extension of standard
high-variability integrate-and-fire models. The fractional-Gaussian-noise-driven
Poisson process was chosen for the second model because it shares many
statistical attributes with sub-cortical neurons in sensory pathways, including
inputs to the cortex. The confluence of our analytical and simulation results
implies that the renewal-input model is capable of producing high variability
and long-range dependence comparable to that seen in spike trains recorded
from cortical neurons, but only if the interspike intervals of the inputs have
infinite variance. On the other hand, the second model is able to produce similar
results with inputs that have finite-variance interspike intervals. Hence, we
suggest that the second model is to be preferred, since its inputs are better



25

justified based on physiological recordings.

3.1 Introduction

The integrate-and-fire (IF) model is a common model of general neuronal processing when
simplicity is of the essence. Its simplicity is particularly beneficial when one wishes to
model a large network of interconnected neurons, such as portions of the cortex. The
essential features of neuronal dynamics that the IF model retains are a potential that is
the result of the integration of a number of inputs and the production of a stereotypical
output event when this potential crosses a threshold. Furthermore, this basic IF model
can be modified to incorporate additional features that one may also deem essential, the
most common being leakage that causes the potential to decay to its resting state when no
input is applied.

Each neuron in the cortex receives a very large number of inputs, but produces a
relatively low output firing rate, which is on the order of that of each individual input.
In order for the standard, nonleaky IF model to have a large number of inputs and
an output spike rate like its inputs, it must require a large number of input spikes to
produce each output spike. Thus, although the inputs may contain a high degree of
variability, the output will typically be very regular due to the averaging mechanism
of the integrator. However, it has been known for some time that the spike trains of
cortical neurons are quite variable. This discrepancy can be easily explained with a
leaky IF model if the rate of decay of the potential is short relative to the time between
output spikes. This explanation seems reasonable for the conditions under which the
variability of cortical neurons has typically been measured, when the firing rates have
been low. However, Softky and Koch (1992, 1993) showed that this high variability, as
measured by the coefficient of variation (the standard deviation divided by the mean) of
the interspike intervals (CVISI), persists even when cortical neurons produce high firing
rates with interspike intervals that are short relative to reasonable decay times due to
membrane leakage. This apparent contradiction between the IF model and physiological
measurements suggested that the IF model does not represent the essential nature of
neuronal dynamics.

Since this finding, there have been many responses to this paradox. Softky and Koch
(1992, 1993) suggested that cortical neurons act as coincidence detectors instead of as
integrators, where the coincidence detection mechanism is likely to be located in the
dendrites (see, also, Softky, 1994, 1995). Others (Shadlen & Newsome, 1994; Brown &
Feng, 1999; Feng & Brown, 1998a; Feng, 1999; Shadlen & Newsome, 1998; Burkitt, 2000,
2001) have shown that the notion of the cortical neuron as integrator may be retained
if the amounts of excitation and inhibition at the input are approximately balanced.
Furthermore, a number of modifications to the IF model have been postulated to reconcile
it with the high variability of cortical neurons (reviewed in Section 2.1).

Almost without exception, the comparisons with respect to variability that have
been made between IF models and cortical neurons have used the CVISI . However,
measures of the variability of interspike intervals do not exhaustively describe even the
second-order statistical structure of these intervals, much less of the spike train itself.
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In Chapter 2, we suggested that another important statistical aspect of cortical spike
trains that should be considered when building models is long-range temporal dependence.
Long-range dependence (LRD) denotes that the dependence between distant random
variables in a stochastic process decreases “slowly” as the distance is increased, and is
sometimes referred to as long memory. In particular, finite variance processes with long-
term correlation or second-order self-similarity are LRD. Evidence of LRD has been found
in the neurons of many sub-cortical sensory pathways (Teich, 1989; Teich & Lowen, 1994;
Lowen & Teich, 1996b; Teich et al., 1990; Turcott et al., 1994; Teich, 1996; Teich et al.,
1997; Lowen et al., 2001), as well as in the activity of cortical neurons (Teich et al., 1996;
Gruneis et al., 1989, 1990, 1993; Wise, 1981).

In Chapter 2, we showed analytically that an entire class of IF models, which includes
a large portion of those that have been used to explain high cortical variability, are
incapable of producing long-range dependence while simultaneously exhibiting interspike
interval variability that matches empirical measurements. The argument is based on
the observation that many of the high-variability IF models produce outputs which are
renewal point processes, since Poisson process inputs do not have any memory and the
remainder of the model resets after each output spike. Furthermore, we showed, based
on the arguments of Daley (1999), that a renewal point process is LRD if and only if
the interpoint intervals have infinite variance, and thus infinite CVISI . Hence, such IF
models are incapable of producing outputs that have values of CVISI in the range of those
measured from cortical spike trains (usually within the range of 0.5 to 1.5) while still
exhibiting LRD.

There are two general types of high-variability IF models in the literature to which
the arguments of Chapter 2 do not pertain: the models of Feng and his coworkers (Feng,
1997; Feng & Brown, 1998b, 1998a; Feng et al., 1998) which use renewal point processes
other than the Poisson process as inputs and models which consist of large networks of
interconnected IF neurons that produce high variability through network dynamics (Usher
et al., 1994, 1995; Tsodyks & Sejnowski, 1995; Vreeswijk & Sompolinsky, 1996, 1998). In
this chapter, we will study the ability of the former set of models to produce physiological
values of CVISI and LRD; the latter set is the subject of future work.

Feng and his colleagues used two types of non-Poissonian renewal point processes
as inputs to their IF model. One had interspike intervals distributed according to the
positive Gaussian distribution, and the other had interspike intervals distributed according
to a Pareto distribution. The significance of these choices is that the positive Gaussian
distribution has a shorter tail than the exponential distribution, the distribution of
intervals for a Poisson process, and the Pareto distribution has a longer tail than the
exponential distribution. Since the superposition of non-Poissonian renewal processes is
not a renewal process, the cumulative inputs to the integrate-and-fire neuron in these
model is not renewal, having a dependence structure that is longer than the interspike
intervals. Hence, the arguments of Chapter 2 do not apply.

Feng and his coworkers found that both of these models, the one with positive-
Gaussian-renewal inputs and the one with Pareto-renewal inputs, can produce values of
CVISI similar to those measured in actual cortical neurons, if the amounts of excitation
and inhibition are appropriately balanced. With positive-Gaussian-renewal inputs, the
IF model requires a larger amount of inhibition, closer to the amount of excitation, than
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does the standard IF model with Poisson inputs. On the other hand, with Pareto-renewal
inputs, the IF model requires less inhibition, farther from the amount of excitation, than
does the Poisson-input model. For any of these models, if the amount of inhibition is too
large, the CVISI of the output of the model will be much larger than the values that have
been measured in vivo. Thus, a specific goal will be to determine whether the outputs
of these models exhibit LRD when the excitation and inhibition levels are such that the
model produces physiological values of CVISI .

Furthermore, we will describe and study a new model for the high variability of
cortical neurons and test its ability to produce both LRD and physiological values of
CVISI . In this model, instead of changing the interspike interval distribution of the inputs
directly, we will create dependence between the intervals within each input. In fact, the
dependence will be strong enough that each input will be LRD. This model is motivated
by the fact that LRD of this type has been found in a majority of the sub-cortical sensory
neurons that have been assayed for it (Teich, 1989; Teich & Lowen, 1994; Lowen & Teich,
1996b; Teich et al., 1990; Turcott et al., 1994; Teich, 1996; Teich et al., 1997; Lowen et al.,
2001). This includes neurons in the lateral geniculate nucleus that serve as inputs to visual
cortical areas (Teich, 1996; Teich et al., 1997; Lowen et al., 2001).

3.2 Long-Range Dependence in Point Processes

3.2.1 General Concept of Long-Range Dependence

For a stationary stochastic process, {Xi : i ∈ Z}, with finite variance, LRD may be
defined using the asymptotic behavior of any of three functions related to the second-order
properties of the process (Cox, 1984; Beran, 1994). The most obvious definition says that
such a process is LRD when the sum of the covariances (or correlations) diverges, i.e. when

lim
n→∞

n∑
j=0

Cov{X0, Xj} = ∞.

Since the power spectral density (or power spectrum) is the Fourier transform of the
autocorrelation of a process, an equivalent definition is that the power spectral density
of an LRD process has a pole at the origin. Finally, LRD may be defined using the
asymptotic behavior of the variance of the sum of the random variables:

lim
n→∞

V ar
{∑n

j=1 Xj

}
n

= ∞. (3.1)

Whichever definition above is used, the essential feature of LRD is that the depen-
dence between the random variables decays slowly as the distance between them increases,
where the slowness of the decay that is necessary for finite variance processes to be LRD
is specified by the definitions above. The absolute magnitude of the dependence for
widely separated random variables is not the issue, only the relationship between the
dependencies at different lags.
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3.2.2 Types of Long-Range Dependence in Point Processes

For point processes two types of LRD are possible. A point process may be specified
by either the joint distribution of the intervals between successive points or the joint
distribution of the number of points in arbitrary sets. Accordingly, they may exhibit LRD
in either the sequence of interpoint intervals or in the sequence of counts.

Daley and Vesilo (1997) have suggested definitions for these two types of LRD. To
define LRD in the interpoint intervals, they considered the asymptotic behavior of the sum
of the intervals.

Definition 3.1. (Daley & Vesilo, 1997) A stationary point process N(·) on the real line
exhibits long-range interval dependence (LRiD) when the stationary sequence of interpoint
intervals {Yi} with finite variances is LRD in the sense that

LRiD: lim sup
n→∞

V ar
{∑n

i=1 Yi

}
n

= ∞.

Since the count in an interval (0, t], denoted by N(0, t], may be written as the sum of
the counts in n ∈ N equal-length, successive intervals, i.e.

N(0, t] =
n∑

i=1

N
(

i − 1

n
· t, i

n
· t

]
,

they suggest the following definition for LRD in the counts of a point process.

Definition 3.2. (Daley & Vesilo, 1997) A second-order stationary point process N(·) on
the real line exhibits long-range count dependence (LRcD) when

LRcD: lim sup
t→∞

V ar
{

N(0, t]
}

t
= ∞.

3.2.3 The Moment Index and the Hurst Index

The two types of LRD, LRcD and LRiD, are not independent. In order to study their
relationship, it is helpful to define two concepts: the moment index and the Hurst index.
The moment index, κ, of a non-negative random variable indicates which moments exist.

Definition 3.3. (Daley, 1999) The moment index of a random variable X with distribu-
tion function F is

κ ≡ sup
{
k ≥ 0 : µk ≡ E

(
Xk

)
=

∫ ∞

−∞
xkdF (x) < ∞

}
.

Thus, all moments less than κ exist, while all moments greater than κ are infinite.
The κth moment can either exist or not. Of course, we may also say that κ is the moment
index of the distribution of X, say. In the sequel, we will particularly be concerned with
the moment index of the (marginal) distribution of the interpoint intervals of a point
process, and, therefore, κ will always refer to this particular moment index.

The Hurst index, H, is a measure of the self-similarity of a stochastic process.



29

Definition 3.4. (e.g. Beran, 1994; Samorodnitsky & Taqqu, 1994) The real-valued
stochastic process Y (t), with continuous time parameter t, is self-similar with Hurst index
H if for all time-rescaling factors c > 0,

c−HY (ct)
d
= Y (t),

where “
d
=” means “is equal in distribution to”.

If the covariances of a self-similar process exist and decay to zero as the lag is in-
creased, then (Beran, 1994, p.53)

0 < H < 1.

Since a (non-constant) self-similar process is necessarily nonstationary (Beran,
1994, pp. 50f), it is not directly useful in modeling data that appear stationary. How-
ever, a self-similar process Y (t) can have stationary increments X(t) ≡ Y (t) − Y (t −
s), for some fixed s > 0. It is these stationary increment processes that are suitable for
modeling long-range dependent processes.

Let Y (t) be a self-similar stochastic process with stationary increments. Then an
increment process can be defined by Xi = Y (i) − Y (i − 1), and we will associate the Hurst
index H of Y with X. The value of H indicates the type and strength of the dependence
present in the stochastic process X. If H = 0.5, then Xi and Xj are uncorrelated for
all i �= j, i.e. the correlations are zero for all non-zero lags. An example of a self-similar
process with H = 0.5 is Brownian motion, of which (“white”) Gaussian noise is the
stationary increment process. If 0 < H < 0.5, then the correlations of the increment
process are negative for large lags, a behavior often referred to as “negative dependence”.
In this case (Beran, 1994, p. 52),

∞∑
i=−∞

Cov{X0, Xj} = 0.

Since the addition of even a minute disturbance to such a process is deleterious to this
property, it is very unstable. Thus, for all practical purposes, the increments of self-similar
processes with H < 0.5 are not useful as models. Finally, if 0.5 < H < 1, the correlations
of the increment process are positive, and they decay to zero so slowly that

∞∑
i=−∞

Cov{X0, Xj} = ∞.

Thus, in this case, the increment process is LRD, and a larger value of H signifies stronger
dependence.

In general, however, the Hurst index does not need to be associated with a self-similar
process or its increments. Instead of being a “self-similarity parameter”, it may be thought
of as a “long-memory parameter” for stationary processes. In fact, the Hurst index
derives its name from the exponent parameter that Hurst (1951) used to demonstrate the
existence of long-range dependence in records of the level of the Nile River and records of
other geophysical processes.
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To see the analogy between the use of the Hurst index as a self-similarity parameter
and its use as a long-memory parameter, consider the variance of the sample mean X̄ for
the increments of a self-similar process. For such a process (Beran, 1994, p. 54),

V ar{X̄} = V ar

{
1

n

n∑
i=1

Xi

}
= σ2n2H−2,

where σ2 = V ar{Xi}, or
V ar {∑n

i=1 Xi}
n

= σ2n2H−1, (3.2)

for any integer n > 0. If H = 0.5, then this equation becomes

V ar {∑n
i=1 Xi}

n
= σ2 < ∞,

which implies that

lim
n→∞

V ar {∑n
i=1 Xi}

n
< ∞.

This inequality is the complete negation of the property (3.1) for a long-range dependent
process. On the other hand, if H > 0.5, then the exponent of n in (3.2) is positive, and the
limit as n → ∞ is infinite, implying long-range dependence. Now, (3.2) may be written as

V ar

{
n∑

i=1

Xi

}
= σ2n2H .

Therefore, an alternate definition of the Hurst index, which is more closely related to the
concept of long-range dependence, is applicable to all stationary stochastic processes, but
is still consistent with its prior interpretation in the context of self-similar processes, is

H = sup

{
h : lim sup

n→∞

V ar {∑n
i=1 Xi}

n2h
= ∞

}
.

For point processes, Daley (1999) has defined the Hurst index in an analogous manner
with respect to its counting process.

Definition 3.5. (Daley, 1999) The Hurst index of a stationary, ergodic,1 orderly2 point
process N(·) with finite second moment is

H = sup

{
h : lim sup

t→∞

V ar{N(0, t]}
t2h

= ∞
}

.

1A stationary point process N(·) with finite mean density m = E{N(0, 1]} is ergodic if
Pr{limx→∞ N(0, x]/x = m} = 1 (Daley, Rolski, & Vesilo, 2000).

2A point process N(·) on the real line is orderly if Pr{N(t, t + δ] > 1} = o(δ), for all t ∈ R. This
implies that the point process has no multiple simultaneous occurrences (see, e.g., Cox & Isham, 1980;
Daley & Vere-Jones, 1988).



31

Since, for the process assumed in this definition, V ar{N(0, t]} = o(t2) for t → ∞, the
Hurst index must be no larger than one. On the other hand, as long as it is not the case
that the point process is zero with probability one,

lim sup
t→∞

V ar{N(0, t]}
t2ε

= ∞, for any ε ≤ 0.

So, the Hurst index for this point process must be positive. Thus, 0 < H ≤ 1, which is
the same range that we had for self-similar processes, save the possible inclusion of one.
Furthermore, according to Definition 3.2, if a point process is LRcD, then H ≥ 0.5. In
practice, however, most non-LRcD stochastic point processes have H = 0.5, while LRcD
point processes have H > 0.5.

The moment index of the marginal interval distribution and the Hurst index for a
point process are related in the following manner:

Lemma 3.1. Let N(·) be a stationary, ergodic, orderly point process with finite variance
(i.e. E{[N(A)]2} < ∞ for bounded A), and let F be the marginal distribution of its
stationary sequence of intervals. If N is LRcD with Hurst index 0.5 < H < 1 and κ is the
moment index of F , then 2H + κ ≥ 3, with equality if N is a renewal point process.

Proof. See Daley (1999) and Daley et al. (2000).

Furthermore, the moment index of the interpoint intervals is sufficient in some
instances to show that a point process is LRcD, as described in the following lemma.

Lemma 3.2. Let N(·), a point process, and κ, its interval moment index, be defined as in
Lemma 3.1. Then:

(i) If κ < 2, then N is LRcD.

(ii) If N is a renewal point process that is LRcD, then κ < 2.

Proof. For (i), see Daley et al. (2000). For (ii), see Daley (1999) and Theorem 2.1.

These results have been extended somewhat by Kulik and Szekli (2001). Their results
are based on stochastic orderings of point processes, which is beyond the scope of this
study. Essentially, they showed that if the correlation between the interpoint intervals of a
point process N(·) is increased, then the variability of N (i.e. the corresponding counting
process) is increased as well. Thus, combining this with (ii) in Lemma 3.2, they showed
that a finite-intensity point process is LRcD if its interpoint intervals have infinite variance
and are positively dependent.

Finally, to complete our representation of LRD in point processes, we need an index
of the dependence between the interpoint intervals. The Hurst index H of a point process
was defined on the basis of the counts of the process, but we may also define the Hurst
index of the intervals of the process.

Definition 3.6. Let N(·) be a stationary, ergodic, orderly point process with finite second
moment, and let {Yi} be the stationary sequence of its interpoint intervals, also with finite
second moment. Then the interval Hurst index of this point process is

HI = sup


h : lim sup

n→∞

V ar
{∑n

i=1 Yi

}
n2h

= ∞

 .
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Since the sequence of intervals is stationary,

V ar
{ n∑

i=1

Yi

}
=

n∑
i=1

V ar {Yi} + 2
n∑

j=2

j−1∑
i=1

Cov {Yi, Yj}

= nV ar {Y1} + 2
n∑

j=2

j−1∑
i=1

Cov {Yi, Yj}

≤ nV ar {Y1} + 2
n∑

j=2

j−1∑
i=1

V ar {Y1}

≤ nV ar {Y1} + 2n2V ar {Y1} .

Thus,

lim sup
n→∞

V ar
{∑n

i=1 Yi

}
n2

< ∞,

and so the interval Hurst index can be no greater than one. Furthermore, if the intervals
of the point process are not all identical, then

lim sup
n→∞

V ar
{∑n

i=1 Yi

}
n2ε

= ∞, for any ε < 0.

So, the interval Hurst index can be no smaller than zero. Hence, as was the case for the
(count) Hurst index, 0 ≤ HI ≤ 1. Also, according to Definition 3.1, if the point process
is LRiD, then HI ≥ 0.5. So the Hurst index of a point process describes the amount of
LRcD, while the interval Hurst index describes the amount of LRiD.

3.2.4 Relationship between the Different Types of Long-Range
Dependence and the Variability of Intervals

The results reviewed in Section 3.2.3 illustrate part of the interrelationship of the vari-
ability of interpoint intervals and the two types of LRD in point processes: LRiD and
LRcD. A complete theory of this relationship is not currently available, but, by combining
general analytical results with results for specific examples of point processes, we can paint
a rough picture of the interplay between LRiD, infinite-variance intervals, and LRcD.

The LRcD renewal point process serves as an example of an LRcD point process which
does not exhibit LRiD, but has interpoint intervals with infinite variance. Conversely, Da-
ley et al. (2000) described and analyzed a Wold process that is LRcD and has interpoint
intervals with finite variance, but does exhibit LRiD. Thus, LRcD can exist when the
interpoint intervals either have infinite variance or are LRD, and, presumably, cannot exist
in a point process without the presence of at least one of these interval properties.

Reasonably broad conditions under which the infinite variance of the interpoint
intervals produces LRcD are known, although the production of LRcD by LRiD has not
been studied as carefully. Kulik and Szekli (2001) have shown that infinite variance of the
interpoint intervals produces LRcD in a stationary point process with finite intensity if the
interpoint intervals are also positively dependent. On the other hand, Daley et al. (2000)
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have shown that if the infinite variance condition is strengthened somewhat that a point
process is LRcD regardless of the structure of the interpoint interval dependence. They
proved that any stationary point process for which the moment index of the interpoint
intervals satisfies κ < 2, i.e. some moment of order less than two is infinite, is LRcD.

Given the previous discussion, it is reasonable to conjecture that a point process that
is LRiD and has infinite-variance interpoint intervals should also be LRcD. Although this
may be true, it has not been explicitly proven. However, from the previously described
results of Kulik and Szekli (2001) and Daley et al. (2000), clear examples of point pro-
cesses that are LRiD, have infinite interval-variance, and are LRcD are readily obtained.
For instance, the dependence between the interpoint intervals of a point process may be
both long-range and positive at all lags. Thus, according to the results of Kulik and Szekli
(2001), such a process would be LRcD if its intervals had infinite variance. On the other
hand, according to Daley et al. (2000), a point process with interpoint intervals having
infinite variance and being LRiD is certainly LRcD if there is also some infinite moment
of the interpoint intervals that is less than order two. Finally, Resnick and Samorodnitsky
(1997) have described a model with random variables having an exponential marginal
distribution and a “very flexible correlation function”. If the sequence of random variables
in this model is made to be LRD and is used as the interpoint intervals of a point process,
then the resultant point process is, by definition, LRiD. Kulik and Szekli (2001) suggested
that if the marginal distribution of these random variables were made to have infinite
variance using the inverse transform method, then a point process that both exhibits LRiD
and has infinite-variance interpoint intervals would result.

3.2.5 Long-Range Interval Dependence and Infinitely-Variable
Intervals

We have so far only discussed the definition of LRD for processes with finite variance.
Likewise, the definition of LRiD (Definition 3.1) assumes that the intervals of the point
process have finite variance. The lack of a general definition of LRD for infinite-variance
processes, and the consequent lack of a definition of LRiD for point processes with infinite-
variance intervals, is a significant hindrance to the formation of a complete theory of LRD
in point processes. However, the problem with these definitions is that they are based
upon the variance. Furthermore, for an infinite-variance process, none of the second-order
statistics, the statistics upon which all common definitions of LRD are based, exist. Thus,
other conceptions of LRD must be developed that apply when these statistics do not exist.
First, however, in order to properly handle infinite-variance processes, a theory of infinite-
variance distributions is necessary. For our purposes, the theory of stable distributions will
suffice.

The stable distributions are the only limiting distributions for normalized sums of
independent, identically distributed random variables. Hence, the central limit theorem
implies that the Gaussian (or “normal”) distribution is a stable distribution, but this is
the only stable distribution with finite variance. On the other hand, there are numerous
stable distributions with infinite variance. Often stable distributions, or stable random
variables, are said to be α-stable. This derives from the use of the variable α to designate



34

a key parameter of the stable distributions, the index of stability. For the Gaussian
distribution, α = 2. But for all other stable distributions, 0 < α < 2, and the probability
tails, Pr{X > x} and Pr{X < −x}, of these distributions decay as power functions of
the form |x|−α. The index of stability is also related to the moments of α-stable random
variables. If X is an α-stable random variable with 0 < α < 2, then (Samorodnitsky &
Taqqu, 1994, Property 1.2.16)

E|X|p < ∞ if 0 < p < α, and E|X|p = ∞ if p ≥ α.

One way to define LRD for infinite-variance processes is by analogy. For instance, the
fractional Gaussian noises (fGns) are the increment processes of the fractional Brownian
motions (fBms), the only Gaussian self-similar processes with stationary increments. As
discussed above for stationary increments of self-similar processes in general, each fGn has
an associated Hurst index, H, that is the self-similarity parameter of the corresponding
fBm. This Hurst index is a measure of the strength of the dependence in fGn, and fGn
has LRD when H > 1/2 and negative dependence when H < 1/2. Now, several different
types of α-stable random processes, i.e. those with α-stable marginal distributions, may be
created by extending different representations of fBm (see, e.g., ch. 7 of Samorodnitsky &
Taqqu, 1994). By analogy, the increments of these α-stable marginal distributions are said
to have LRD when H > 1/α and negative dependence when H < 1/α (Samorodnitsky &
Taqqu, 1994, pp. 345, 366f, 382f). This, of course, is consistent with fGn, since α = 2 for
the Gaussian distribution.

Although defining LRD by analogy is profitable for certain infinite-variance processes
that are derived from finite-variance processes, this method is obviously limited and
cumbersome since a generally applicable definition cannot be produced. Furthermore, it
is not useful for data analysis unless the source of the data is known to be well-modeled
by a process that is analogous (or identical) to a finite-variance process. This method
can, however, lead to some general intuitions about LRD in infinite-variance process. For
instance, the discussion of α-stable random processes derived from fBm suggests that the
boundary between LRD and negative dependence may be 1/α, which is never smaller
than 1/2, for all α-stable random processes. In addition, since this boundary is 1/2 for
all finite-variance processes, it also seems likely that any process within the domain of
attraction of an α-stable random process has a boundary of H = 1/α between LRD and
negative dependence. Since the Hurst index, H, must lie in the interval (0, 1), we have the
further implication that an α-stable random process with 0 < α ≤ 1, and potentially any
random process in the domain of attraction of this α-stable random process, cannot be
LRD.

Another strategy for defining LRD in infinite-variance processes is by making use of
a measure that generalizes the covariance, in the sense that it reduces to the covariance
for finite-variance processes. Two such measures in the case of stable random variables
are the covariation and the codifference (Samorodnitsky & Taqqu, 1994, Ch. 2), which
both reduce to the covariance in the case of Gaussian-distributed random variables.
The usefulness of the covariation, however, is limited, since it is not defined for α-stable
random variables with 0 < α ≤ 1, is not (in general) symmetric in its arguments, and
is not (in general) additive in its second argument. Thus, the codifference seems more
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promising, and, for instance, Kokoszka and Taqqu (1993, 1994, 1995, 1996) have shown
that the summability of the codifference is useful for distinguishing between short-range
and long-range dependence in certain autoregressive-moving average processes with stable
innovations. But both of these measures have only been defined and analyzed for stable
random variables, so their usefulness for other random variables is open to question.

The final method for distinguishing LRD in infinite-variance processes that we will
mention makes use of the sample correlation. Although the correlation is not defined for
infinite-variance random variables, the sample correlation can obviously be calculated for
a sample from an infinite-variance process. Assuming that the sample correlation retains
pertinent properties when applied to an infinite-variance process, its asymptotic properties
should be useful for distinguishing short-range and long-range dependence. The study
of Davis and Resnick (1986) supports this argument. They found that in the case of the
moving average process

Xn =
∞∑

j=−∞
cjZn−j,

where {Zi} is a sequence of independent and identically distributed random variables
called the innovations, the sample correlation converges to the same function of the
coefficients {cj} whether the innovations {Zi} have finite or infinite variance.

For the types of point processes that are useful for modeling neural data, the variance
of the counts is finite. Thus, in this case, infinite-variance problems are not encountered
with respect to LRcD. However, it is often necessary to consider point processes that have
interpoint intervals with infinite variance, which subverts our definition of LRiD. In this
chapter, we will use, essentially, the last of the three strategies above for handling infinite-
variance processes when we consider LRiD. Thus, we will assume that the sample statistics
will asymptotically behave in a similar manner whether the intervals have infinite variance
or not. Furthermore, we will see that results based upon this assumption are coherent.

3.3 Statistical Procedures for Recognizing Long-

Range Dependence in Point Processes

3.3.1 Shuffled Surrogate Data

Shuffled surrogate data can prove useful in determining the relative contributions of
infinite-variance intervals and LRiD to LRcD in a point process. Teich, Lowen, and their
coworkers (Teich et al., 1990; Lowen & Teich, 1992; Teich & Lowen, 1994; Turcott et al.,
1995; Lowen & Teich, 1996b; Teich et al., 1996; Turcott & Teich, 1996; Teich et al., 1997)
have made extensive use of this method to “distinguish those properties of the data that
arise from correlation among intervals from those properties inherent in the form of the
[distribution of interval lengths]” (Turcott & Teich, 1996). The recent work of Daley and
his coworkers (Daley & Vesilo, 1997; Daley, 1999; Daley et al., 2000), and Kulik and Szekli
(2001), as well as that in Chapter 2, however, offer a more precise understanding of the
information that is available from the shuffled surrogate data.

A set of shuffled surrogate data is formed by shuffling the interpoint intervals of a
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X'5X'1 X'3X'2 X'4= = = = =

Figure 3.1: The shuffling procedure used to produce surrogate data.

finite sample from a stochastic point process or of related empirical data. This process
is depicted in Figure 3.1 for a short sample from a point process. In general, if the
sequence of interpoint interval lengths in the original data set is denoted by the sequence
X1, X2, . . . , Xn, then the sequence of interpoint interval lengths in the surrogate data set
is a random permutation of this sequence X ′

1, X
′
2, . . . , X

′
n such that the sets {Xi : i =

1, 2, . . . , n} and {X ′
i : i = 1, 2, . . . , n} are identical. The surrogate point process formed

from the shuffled intervals has the same distribution of interpoint intervals as the original,
but the dependency structure of the interpoint intervals has been disrupted. Thus, the
surrogate point process is essentially equivalent to a sample from a renewal point process
that has an interpoint interval distribution equivalent to the marginal distribution of
the intervals in the original point process. Therefore, the surrogate point process cannot
be LRiD, and any LRcD present is due to the high variability of the interspike interval
distribution (Daley, 1999; Theorem 2.1). Consequently, we expect that for a point process
with no LRiD the “amount” of LRcD in the surrogate data would be equivalent to
that in the original data, since no LRcD would be destroyed by the shuffling procedure.
Furthermore, for a point process with finite-variance interpoint intervals, we expect that
the surrogate data would have no LRcD, since only infinite-variance intervals can create
LRcD in the shuffled data. The results of these arguments are presented in Table 3.1
as the four possible combinations of finite- or infinite-variance intervals and LRiD or no
LRiD.

3.3.2 Statistical Functions for the Variance of Aggregations

In order to investigate the presence of LRD in point processes, we need to examine the
behavior of the variance of aggregations of random variables as the aggregation size
increases. The variance of a time series for different amounts of aggregation can be plotted
in numerous ways. Consider a discrete, stochastic time series X1, X2, X3, . . . , and let

X(M) =
M∑
i=1

Xi

be the aggregation of M adjacent random variables in the time series. One could simply
plot the variances of the aggregations, V ar

{
X(M)

}
, versus the amount of aggregation, M .
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LRiD in LRcD in LRcD in
Variance of Original Original Surrogate “Amounts”
Intervals Data? Data? Data? of LRcD

Finite No No No Original = Surrogate
Finite Yes Yes No Original > Surrogate
Infinite No Yes Yes Original = Surrogate
Infinite Yes Yes Yes Original > Surrogate

Table 3.1: The four different scenarios for the presence or absence of long-range depen-
dence in a point process and their effect on shuffled surrogate data. The four possibilities
are determined by whether the interpoint intervals are finite and whether the point process
is LRiD.

This would yield a curve of non-negative slope, where the slope on a double logarithmic
plot would equal one if the random variables are independent. A more common method,
often called the variance-time curve, is to plot V ar{X̄(M)} versus M , where

X̄(M) =
1

M

M∑
i=1

Xi

is the mean value of the aggregated variables. Since

V ar{X̄(M)} =
1

M2
V ar

{
X(M)

}
,

the variance-time curve has a non-positive slope, with a double logarithmic slope of
negative one implying that the random variables are independent. For our variance of
counts and variance of aggregated intervals, we have chosen a third method, which is
analogous to plotting

1

M
V ar

{
X(M)

}
(3.3)

versus M for the time series X1, X2, X3, . . . . This results in a curve that will have a slope
of zero if there is no dependence between the random variables, a positive slope if there is
positive dependence, and a negative slope if there is negative dependence. This facilitates
simple qualitative interpretation of these graphs. Furthermore, (3.3) yields expressions
that differ by only a constant from the limit arguments in the definitions of LRcD and
LRiD. We will make this statement more explicit as we introduce the precise functions
that we have chosen to graph.

3.3.3 The Fano Factor Curve

By and large, Teich, Lowen, and their coworkers (see references given above) have used the
Fano factor curve (FFC) to investigate the differences between original neural recordings
and shuffled surrogate data. The Fano factor (Fano, 1947; Teich, 1989; Lowen & Teich,
1991; Thurner et al., 1997), which is also known as the index of dispersion of counts (Cox
& Isham, 1980, pp. 12, 32), of a stationary point process for a given counting interval
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length t is the variance of N(0, t] divided by the mean of N(0, t], i.e. ratio of the count
variance to the count mean. The FFC is the graph of the function F(t) that maps each
value of t to the value of the Fano factor for a counting interval length of t.

For a Poisson process, the Fano factor is equal to one for all values of t. Hence, the
FFC of a Poisson process is a horizontal line at one. Furthermore, for any stationary,
orderly point process, (e.g. Cox & Isham, 1980, pp. 32f),

E{N(0, δ)} = λδ and V ar{N(0, δ)} = λδ + o(δ),

where λ = E{N(0, 1)} is the rate of the process. Therefore, as the counting interval length
decreases to zero, the Fano factor approaches one, i.e.

lim
δ↓0

F(δ) = lim
δ↓0

V ar{N(0, δ)}
E{N(0, δ)} = lim

δ↓0
1 +

o(δ)

λδ
= 1. (3.4)

Decreases in the FFC are caused either by marginal interval distributions with variance
that is lower than that of the exponential distribution (the interval distribution for a
Poisson process) with an equivalent mean or by negative correlation between intervals.
On the other hand, increases in the FFC are caused either by interval distributions with
higher variance than that of the exponential distribution or positive correlation between
intervals. Moreover, these increases or decreases in the FFC of the original data will only
be present in the FFC of surrogate data if they were created by the shape of the interval
distribution; deviations of the original-data FFC from a horizontal line that are due to
correlations in the sequence of intervals will disappear in the surrogate-data FFC.

In particular, the FFC of an LRcD point process will, as the counting interval length
increases, increase without bound. This fact is evident in the similarity between the Fano
factor and the limit argument in the definition for LRcD (Definition 3.2). More explicitly,
for a stationary, orderly point process,

F(t) =
V ar{N(0, t]}
E{N(0, t]} =

V ar{N(0, t]}
t E{N(0, 1]} =

(
V ar{N(0, t]}

t

) (
1

E{N(0, 1]}

)
, (3.5)

where the first expression is the limit argument in the definition of LRcD, and the second
is a constant.

The top row of Figure 3.2 shows some illustrative pairs of Fano factor curves that
exemplify the basic types of differences that commonly occur between the FFCs of original
and surrogate data in neural recordings and models that are LRD. Figure 3.2a depicts
the FFCs for samples from an LRcD renewal point process. In this case, the interpoint
intervals are completely independent, and LRcD is present only if the interval distribution
has infinite variance (Daley, 1999; Theorem 2.1). Thus, shuffling the intervals does not
change the statistical properties of the point process, and the FFCs for the original and
surrogate data are nearly the same. The outputs of the models dealt with in Chapter 2
would produce this effect in their FFCs.

Figure 3.2b illustrates representative FFCs for point processes with LRiD and finite-
variance interpoint intervals. In this case, although the FFC for the original data increases
without bound, the FFCs for surrogate data approach a constant limiting value. If the
standard deviation of the intervals is equal to their mean, as in the case of exponentially
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Figure 3.2: Fano factor curves and curves of the index of dispersion of intervals for finite-
length samples from three point process types related to neural spike trains and models.
Shuffled surrogate data (dashed lines) is formed by randomly shuffling the interpoint
intervals of the original sample data from the point process. (a) The curves for a renewal
process with an interval distribution possessing infinite variance. (b) The curves for a
point process with intervals that are long-range dependent and have a distribution with
finite variance. The three Fano factor curves for shuffled surrogate data and three sets
of index-of-dispersion curves are from processes with interval variability greater than a
Poisson process (top), equal to a Poisson process (middle), and less than a Poisson process
(bottom). (c) The curves for a point process with intervals that are long-range dependent
and have a distribution with infinite variance.
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distributed intervals, then the asymptotic value of the surrogate-data FFC will be one.
If the interval variance is larger than in this case, then the surrogate-data FFC will
asymptotically approach a value greater than one, and if it is less, then the FFC will
approach a value less than one.

Finally, Figure 3.2c depicts the FFCs for an LRcD point process that both is LRiD
and has intervals distributed with infinite variance. In this case, the FFC for the shuf-
fled surrogate data increases without bound due to the infinite variance of the interval
distribution. However, since the intervals are also LRD, this FFC is not the same as the
FFC for the original data. Instead, the surrogate-data FFC has a shallower slope than the
original-data FFC due to the loss of LRiD caused by the shuffling procedure.

3.3.4 The Index-of-Dispersion Curve for Intervals

The FFC is the index of dispersion of the counts for different size counting windows, or
“aggregations of time”, and is closely related to the definition of LRcD. An analogous
curve that is closely related to the definition of LRiD may be defined for the intervals of
a point process. We will call this curve the index-of-dispersion curve, where it should be
understood that we are referring to the index of dispersion of the interpoint intervals since
the index of dispersion of the counts has another name (i.e. the Fano factor).

The index of dispersion of the intervals of a point process is defined as the variance of
the intervals divided by the square of the mean of the intervals (see, e.g., Cox & Isham,
1980, p. 12), i.e.

IX =
V ar{X}(
E{X}

)2 ,

where X is the interval random variable. We may therefore define the index of dispersion
for aggregations of k consecutive intervals as

I(k) =
V ar

{∑k
i=1 Xi

}
k

(
E{X}

)2 , k ∈ N

(see, e.g., Cox & Isham, 1980, p. 35). The index-of-dispersion curve (IDC) of the intervals
is the graph of the function I(k).

The denominator of the Fano factor is the mean of the counts, whereas the denomi-
nator of the index of dispersion of the intervals is the square of the mean interval length.
The purpose for this difference is so that, in each case, the statistic enables a straightfor-
ward comparison to be made between the point process being analyzed and the Poisson
process. The variance of the counts for some specified window size is equal to the mean
count for a Poisson process, whereas the standard deviation of its interpoint interval
lengths is equal to the mean interval length. Thus, the index of dispersion of interval
aggregations for a Poisson process is equal to one for all aggregation sizes k, and its IDC is
a horizontal line at one. More generally, if the intervals of a point process are independent,
then, since in this case

V ar

{
k∑

i=1

Xi

}
= k V ar{X},
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the IDC is a horizontal line at the value of V ar{X}/(E{X})2.
When the intervals of a point process are not independent, the leftmost value of the

IDC, i.e. I(1), is still equal to V ar{X}/(E{X})2. However, the curve will eventually
increase or decrease. If intervals at a certain lag are negatively correlated, then the IDC
will decrease at the aggregation level equal to this lag. Increases in the IDC, on the other
hand, indicate lags at which the intervals are positively correlated. In particular, the IDC
of an LRiD point process will, as the aggregation level increases, increase without bound.
This can be proven by relating the index of dispersion of aggregated intervals to the limit
argument in the definition for LRiD (Definition 3.1). Specifically,

I(k) =
V ar

{∑k
i=1 Xi

}
k

(
E{X}

)2 =


V ar

{∑k
i=1 Xi

}
k





 1(

E{X}
)2


 , (3.6)

where the first expression is the limit argument in the definition of LRiD, and the second
is a constant. Furthermore, when the intervals of a stationary point process have finite
variance, the IDC is asymptotically related to the FFC by the equation (Cox & Isham,
1980, p. 36)

lim
k→∞

I(k) = lim
t→∞

F(t). (3.7)

From this we can prove the following partial complement to Lemma 3.2:

Proposition 3.3. Let N(·) be a stationary, ergodic, orderly point process with finite
variance (i.e. E{[N(A)]2} < ∞ for bounded A) and a stationary sequence of intervals
{Xi : i ∈ N} that has finite variance. Then N is LRcD if and only if it is LRiD.

Proof. This result follows directly from (3.7), (3.6), (3.5), and the definitions of LRcD and
LRiD.

The bottom row of Figure 3.2 shows some illustrative pairs of IDCs that correspond
to the FFCs above them. For the renewal process of Figure 3.2a, the IDCs for the original
and shuffled data are practically identical, as were the FFCs. Furthermore, in accordance
with the preceding discussion, the IDCs are essentially horizontal lines, owing to the
independence of the intervals in both sets of data. Theoretically, the values of the index
of dispersion of aggregated intervals should be infinite, since the variance of the interpoint
interval distribution is infinite. But since they are derived from estimated values from a
limited sample of the process, the IDCs are, of course, at finite values. These estimated
values, however, are high, being approximately equivalent to the highest values of the
corresponding FFCs. If the length of the sample from the renewal process is gradually
increased, then the trend should be for these calculated IDCs to move upwards without
bound.

In Figure 3.2b, the LRiD of the point process is evident in the ever-increasing original-
data IDCs. The IDCs for the shuffled surrogate data, on the other hand, are horizontal
lines, since the shuffling procedure destroys the serial dependence between the intervals
and the intervals have finite variance. The three sets of IDCs (top, middle, and bottom)
correspond to the three surrogate-data FFCs (top, middle, and bottom, respectively).
So if the standard deviation of the intervals is equal to their mean, as in the case of
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exponentially distributed intervals, then the IDCs at one “aggregated” interval are equal
to one. If the interval variance is larger than the mean, then the IDCs have a value greater
than one at one interval, and if it is less than the mean, then the IDCs have a value less
than one at one interval.

Lastly, the IDCs in Figure 3.2c do not differ significantly in shape from those in
Figure 3.2b, although the point processes are statistically different in these two cases.
What can be seen from these IDCs is that the point process is LRiD, as evident from the
ever-increasing IDC for the original data. Furthermore, whereas the slope of the original-
data IDCs in Figure 3.2b are approximately the same as those in the corresponding FFCs,
the slope of the original-data IDC in Figure 3.2c is shallower than the original-data FFC.
In terms of the Hurst indices, this means that in Figure 3.2b HI ≈ H, while in Figure
3.2c HI < H. This implies that only some of the LRcD is due to LRiD. The rest, of
course, is due to the infinite variance of the intervals. However, as in Figure 3.2a, the
infinite variance of the interval distribution is not evident in the IDCs alone due to the
finite sample time. But, as the length of the sample increases, the vertical position of these
curves should, on average, move upwards without bound.

3.3.5 Analysis of Long-Range Dependence in Point Process
Data

In the previous sections we have defined a statistical procedure, the FFC, for recognizing
LRD in the counts of point process data, and another, the IDC, for recognizing LRD
in the intervals of point process data. Together these two statistical curves can often
detect the presence of infinite variance in the interpoint intervals as well. Furthermore,
by comparing these statistical curves for an original set of data with those for a set of
data obtained by randomly shuffling the original interpoint intervals, a more robust
and sensitive indicator of the presence of LRcD, LRiD, and infinite interval-variance is
produced. Thus, using the original-data FFC and IDC and the surrogate-data FFC and
IDC in combination is a good strategy for discerning among the four potential scenarios
of Table 3.1 for LRD in point process data. In addition, this process provides information
on the strength of LRcD in the data and the relative contributions of LRiD and infinite-
interval variance to its presence.

3.4 Long-Range Dependence in Neural Spike Trains

Statistical properties related to LRD have been found in the spike trains of many different
neural systems. These properties include second-order self-similarity and power-law
(second-order) statistics, and are often studied within the context of fractal theory.
Section 2.3 contains further description of these statistical properties and their relationship
to LRD. In the following, we will not discriminate between the precise terminology used
by other researchers but will refer to all of these properties as LRD. LRD has been
investigated primarily in the sub-cortical and cortical sensory systems of mammals,
although it has also been found in the visual system of certain insects (Turcott et al.,
1995). Furthermore, almost all of the systems where LRD has been investigated have
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provided evidence of its existence. The main exception is the peripheral vestibular system
(Teich, 1989). This difference should not be surprising, however, since the pattern of firing
in these neurons is clearly qualitatively different than the firing in, for instance, visual and
auditory neurons. Whereas the spike trains of the latter seem to be very irregular, the
former tend to be quite periodic.

3.4.1 Long-Range Dependence in Sub-Cortical Neurons

Long-range dependence has been found at several different sub-cortical levels of the
mammalian visual and auditory systems. Primarily, the studies relevant to LRD in the
visual and auditory systems have been undertaken by Teich, Lowen, and their coworkers.
They have found LRD in the primary auditory nerve (Teich, 1989; Teich & Lowen, 1994;
Lowen & Teich, 1996b), the lateral superior olive (Teich et al., 1990; Turcott et al., 1994),
and the retina and lateral geniculate nucleus (Teich, 1996; Teich et al., 1997; Lowen et al.,
2001). In all of these sub-cortical auditory and visual neurons, though LRD is evident
in the power-law growth of the FFC, the FFC for shuffled surrogate data asymptotes
to a constant below one. Thus, the LRcD in these systems is a result of LRiD, and the
intervals have sub-Poissonian variability.

In addition to the lateral geniculate nucleus, LRD has also been found in ventrobasal
neurons of the thalamus (Kodama, Mushiake, Shima, Nakahama, & Yamamoto, 1989).
However, the study of these neurons did not produce data that can be used to draw
conclusions about the presence of LRiD and the variability of the interspike intervals.

3.4.2 Long-Range Dependence in Cortical Neurons

In the cortex, LRD has been found in somatosensory cortex (Wise, 1981), the mesen-
cephalic reticular formation (Yamamoto, Nakahama, Shima, Kodama, & Mushiake, 1986;
Gruneis et al., 1989, 1990, 1993), and the hippocampus (Mushiake, Kodama, Shima,
Yamamoto, & Nakahama, 1988; Kodama et al., 1989), but these studies did not produce
data that can be used to distinguish high interval variability and LRiD. The only helpful
study in this regard is that of Teich et al. (1996), who found LRD in primary visual cor-
tex. In contrast to the results in sub-cortical systems, in the cortex, the FFCs for shuffled
surrogate data asymptote to a value larger than one. Thus, although the FFCs for the
original spike trains from both sub-cortical and cortical neurons are similar to that in
Figure 3.2b, the FFCs for shuffled surrogate data are different between these two sections
of the nervous system. The surrogate-data FFCs for sub-cortical neurons are similar to the
bottom dashed curve in Figure 3.2b, whereas those for cortical neurons are similar to the
top dashed curve in this figure.

The results for cortical neurons signify that, as in sub-cortical neurons, the LRcD in
the spike trains is due to LRiD. However, unlike the interspike intervals in sub-cortical
neurons, those in cortical neurons are more highly variable than the intervals of a Poisson
process, but this variability is still finite. Thus, the data of Teich et al. (1996) lends
further support to the conclusion of Chapter 2 that high-variability IF models with
renewal outputs, which would result in curves like those in Figure 3.2a, do not match the
statistical properties of real cortical neurons.
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3.5 Integrate-and-Fire Models with Renewal Point

Process Inputs

3.5.1 The Integrate-and-Fire Models of Feng and His Coworkers

The arguments in Chapter 2 showed that any model of cortical neurons that produces a
renewal output cannot exhibit both CVISI values and LRcD properties that are similar to
those seen in real cortical neurons. The (renewal) output of such models either is LRcD
and has infinite CVISI or is not LRcD and has finite CVISI .

However, there are a number of high-variability models that produce output spike
trains that are not renewal point processes (RPPs). One type of non-renewal, high-
variability model includes the models analyzed by Feng and his coworkers (Feng, 1997;
Feng & Brown, 1998a, 1998b; Feng et al., 1998; Feng, 1999). These models are identical
to the class of models considered in Chapter 2, except that the inputs are no longer
Poisson point processes. Instead, the inputs can be any other type of RPP, and hence
the cumulative inputs consisting of the superposition of all excitatory inputs and the
superposition of all inhibitory inputs are no longer memoryless.

In particular, Feng and his coworkers considered RPP inputs with positive Gaussian
and Pareto interval distributions. The former has a tail that decreases to zero faster than
the exponential distribution (i.e. that of a Poisson process), and the latter has a tail that
decreases to zero slower than the exponential distribution. In general, they found that
both longer tailed input distributions and more closely balanced amounts of excitation
and inhibition increased the CVISI of the output. This suggests that the CVISI of an
IF model with RPP inputs can be within the physiologically realistic range, regardless
of the interval distributions of the RPPs, if the ratio between the amounts of excitation
and inhibition is properly adjusted. The necessary range of inhibition-excitation ratios,
however, does depend on the interval distribution of the inputs. In particular, for long-
tailed input distributions, less inhibition is required to produce realistic CVISI values,
whereas for short-tailed input distributions, the amount of inhibition needs to be much
closer to the amount of excitation (Feng & Brown, 1998a).

The IF model with Poisson inputs raises enough analytical difficulties that we do
not expect that complete analytical results can be obtained for the case of general RPP
inputs. However, a few general observations can be made. First, due to the integration
mechanism, the likelihood of the occurrence of an output spike immediately following
another output spike is low, but will increase as the time since the last output spike
increases. Thus, at small counting windows, we expect the counts to be negatively
correlated. This will not, however, affect the correlation structure of the intervals, since
the IF mechanism completely resets at the occurrence of each output spike. Therefore,
the IF mechanism cannot, by itself, create memory in the model that is longer than the
interspike intervals of the output. Hence, the medium- and long-term memory properties
of the output must be governed by the inputs and the mechanisms by which they are
combined.

The combination of the inputs may be considered as two separate component pro-
cesses: superposition and excitation-inhibition interaction. For Poisson inputs, the
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excitation-inhibition interaction can effect long-term memory by producing high interval
variability (Tuckwell, 1988; Section 2.4), but with concomitant increases in the mean
interval length. Balancing the amounts of excitation and inhibition will presumably have
a similar type of effect when the inputs are RPPs. Any additional memory properties of
the output, in particular those that are longer than the interspike intervals, must therefore
originate in the superpositions of the input point processes. Thus, we should be able to
gain some further intuition about the memory properties of the IF model with RPP inputs
by considering the dependency structures of superpositions of RPPs.

3.5.2 Analytical Results for the Superposition of Renewal Point
Processes

The Superposition of Generic Renewal Point Processes

Before focusing successively on the superposition of RPPs with positive Gaussian and
Pareto distributions, we collect here, or develop when necessary, some useful general
results. It is well known that as the number of component RPPs increases, under proper
normalization, their superposition approaches a Poisson process (Cox & Smith, 1954;
Khintchine, 1960, Chapter 5; Cox, 1967, Section 6.6). Thus, as the number of inputs to
the IF model increases, the model becomes more similar to that considered in Chapter 2,
where the output was LRD if and only if the variance of the intervals of the output was
infinite. Clearly, then, as the number of RPP inputs increases, the model will become less
and less likely to possess both a finite CVISI and LRD.

The forms of the interpoint interval distribution and the serial dependence between
the intervals in the superposition, for any fixed, finite number of inputs, will indicate
the direction from which it approaches the Poisson process as more component processes
are added. Let G(t) be the marginal (cumulative) distribution function of the intervals
of the superposition of p independent RPPs, each with intervals distributed according
to F (t) with a mean of µ. Then, the distribution functions of the components and the
superposition are related by (Cox & Smith, 1954; Lawrance, 1973)

1 − G(t) =
(
1 − F (t)

) [∫ ∞

t

1 − F (s)

µ
ds

]p−1

. (3.8)

Thus, for any given interval distribution for the component RPPs, the form of the interval
distribution of their superposition can be calculated.

Next, we consider the dependency structure of the intervals of the superposition
process. Gath (1974) found, in a computer simulation study, that the intervals in the
superposition of independent RPPs are negatively correlated. Although typically true for
those RPPs that are used to model physical processes, this is not a general result for all
RPPs (Enns, 1970; Linebarger & Johnson, 1986).

However, Enns (1970) established some general analytic results regarding the covari-
ance between two adjacent intervals in the superposition of an arbitrary number of RPPs.
Let H(t) be the distribution of the forward recurrence time, i.e. the time interval from
an arbitrary time to the next event, of each of the component processes, which has the
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density

h(t) =
1 − F (t)

µ
.

Enns (1970) showed that the covariance between the lengths of two adjacent intervals, τn

and τn+1, in the superposition process is

lim
n→∞Cov(τn, τn+1) = µ2I(p), (3.9a)

where

I(p) =
∫ ∞

0

(
h(t) ∗ h(t)

)(
1 − H(t)

)p−1
dt − 1

p2
, (3.9b)

and the symbol ∗ denotes convolution. If there is only one component process, then
I(1) = 0, which is consistent with the superposition process being an RPP. But, in
addition, limp→∞ I(p) = 0. This means that the superposition process approaches an RPP
as the number of components is increased, in agreement with the aforementioned result
that the superposition approaches a Poisson process in this case.

When the hazard rate of the component RPPs is monotone, then the sign of its
derivative can be used to determine the sign of I(p), and thus, by (3.9a), of the covariance
of adjacent intervals in the superposition process. The hazard rate of an RPP having an
interval distribution F (t), with probability density function f(t) = d

dt
F (t), is

z(t) =
f(t)

1 − F (t)
.

The hazard rate can be interpreted as

z(t) = lim
δ→0+

Pr
{
N(0, t] = 0 and N(t, t + δ] = 1 | N({0}) = 1

}
δ

,

where the numerator is the probability that the next point occurs in the interval (t, t + δ]
given that a point occurred at time zero. When the hazard rate of the inputs is monotone
non-decreasing, then I(p) ≤ 0, and when it is monotone non-increasing, then I(p) ≥
0 (Enns, 1970). The exponential distribution, which has a constant hazard rate (i.e.
both non-decreasing and non-increasing), is the boundary case, yielding I(p) ≡ 0 and
uncorrelated intervals in the superposition, which is consistent with the fact that the
superposition of a number of Poisson processes is also a Poisson process. Thus, if the
hazard rate of the inputs is monotone non-decreasing but also non-constant, then I(p) < 0,
and adjacent intervals in the superposition process are negatively correlated. On the other
hand, if the hazard rate of the inputs is monotone non-increasing and non-constant, then
I(p) > 0, and adjacent intervals in the superposition process are positively correlated.

We are particularly interested here in the variability and long-term memory properties
of the output of the model. Since the integration and threshold mechanisms themselves
cannot produce LRD, the only possible sources of LRD are the two superpositions of
the inputs, one for the excitatory inputs and one for the inhibitory inputs, and their
excitatory-inhibitory interaction.
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In order to evaluate the LRD of a superposition of independent RPPs, we can consider
the variance function V (t) ≡ V ar{N(0, t]}, which is the variance of the number of events
in an interval of length t. For a single RPP with a finite-variance interval distribution, it is
known (e.g. Cox & Smith, 1954; Cox, 1967; Feller, 1971) that

V (t) ∼ σ2t

µ3
as t → ∞,

where µ and σ2 are, respectively, the mean and variance of the interval distribution. Thus,
the variance function of the superposition of p independent, statistically-identical RPPs is

VS(t) ∼ pσ2t

µ3
as t → ∞, (3.10)

where µ and σ2 are the mean and variance of the component processes. Therefore, if the
component processes have finite interval variances, and thus are not LRcD, then their
superposition has finite variance and is not LRcD.

Actually, the connection between the interval variance of the component processes
and the LRcD of their superposition is even stronger than the preceding discussion
indicates. Theorem 2.1 states that an RPP is LRcD if and only if its intervals have infinite
variance. The proof given there can be readily adapted to obtain a similar result for the
superposition of a finite number of independent, statistically-identical RPPs.

Theorem 3.4. Suppose that N1(·), N2(·), . . . , Np(·) are p independent stationary RPPs,
each with the same distribution function F of their generic interpoint interval random
variable X, which has F (0) = 0 and finite mean µ = E{X}. Then the superposition of
these p RPPs, NS(t) =

∑p
i=1 Ni(t), is LRcD if and only if E {X2} = ∞, i.e. the variance

of the intervals in the component processes are infinite.

Proof. From the proof of Theorem 2.1, we have that for each of the component processes

V ar{Ni(0, t]} =
2

µ

∫ t

0

[
U(s) − s

µ

]
ds − t

µ
, i = 1, 2, . . . , p,

where

U(t) =
∞∑

j=0

(
lim
h↓0

Pr
{
Ni(0, t] ≥ j|Ni(−h, 0] > 0

})
, i = 1, 2, . . . , p,

is called the expectation function in general, or, in the case of renewal processes, is the
renewal function. Thus, since the processes are independent, the variance function of their
superposition is

V ar{NS(0, t]} =
p∑

i=1

V ar{Ni(0, t]} =
2p

µ

∫ t

0

[
U(s) − s

µ

]
ds − pt

µ
.

So,
V ar{NS(0, t]}

t
=

2p

µ

(
1

t

∫ t

0

[
U(s) − s

µ

]
ds

)
− p

µ
,
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which goes to infinity as t → ∞ if and only if the integrand goes to infinity. In other
words,

lim
t→∞

V ar{NS(0, t]}
t

= ∞ if and only if lim
t→∞

(
U(t) − t

µ

)
= ∞. (3.11)

But, we also have, from the proof of Theorem 2.1, that

lim
t→∞

(
U(t) − t

µ

)
= ∞ if and only if E{X2} = ∞. (3.12)

Putting (3.11) and (3.12) together yields the desired result.

Remark. This theorem can easily be generalized to the case where the component
processes have different interval distribution functions. In that case the superposition
process is LRcD if and only if one or more of the component processes has intervals with
infinite variance. Since this generalization is unnecessary for the results of this chapter, we
have chosen the more specialized form above in order to, for the reader’s sake, reduce the
notational complexity of the proof.

The Superposition of Renewal Point Processes with Positive Gaussian Interval
Distributions

We now apply the general theory of Section 3.5.2 to examine the properties of the
superposition of inputs in the models of Feng and his coworkers. The RPP inputs of
one of their models possessed interpoint intervals distributed according to a positive
Gaussian distribution.

The positive Gaussian distribution is an example of a distribution that has a support
of [0,∞) and a tail that is shorter than the exponential distribution. If X is a random
variable with a Gaussian, or normal, distribution and a mean of zero, then Y = |X| has a
positive Gaussian, or “folded” Gaussian, distribution. The probability density function of
the positive Gaussian distribution is

f(t) =




2
πµ

exp
(
− t2

πµ2

)
, if t ≥ 0;

0, otherwise,

where µ > 0 is the expected value. Since its tail is shorter than the exponential distri-
bution, which has a variance of µ2 when its mean is µ, the positive Gaussian distribution
must have a variance that is less than µ2. Specifically, its variance is (π

2
− 1) µ2.

First, we consider the marginal distribution of the intervals in the superposition of p
independent RPPs, all with positive Gaussian interval distributions and means of µ. Let
F (t) and G(t) be the (cumulative) distribution functions of the intervals of the component
and superposition processes, respectively. Then, the tail of the superposition interval



49

distribution may be calculated using (3.8):

1 − G(t) = erfc

(
t

µ
√

π

) 
∫ ∞

t

erfc
(

t
µ
√

π

)
µ

dx




p−1

= erfc

(
t

µ
√

π

) [
e
− t2

πµ2 − t

µ
erfc

(
t

µ
√

π

)]p−1

, for t ≥ 0,

where

erfc(x) =
2√
π

∫ ∞

x
e−s2

ds

is the complementary error function. Since (i) the complementary error function is always
between zero and one, (ii) the second term in the difference above must be positive, and
(iii) p is a positive integer,

1 − G(t) ≤ e
− (p−1)t2

µ2√π .

Thus, the tail of the interval distribution for the superposition process decreases faster
than an exponential function, as is the case for the component processes. In particular,
this result implies that the intervals of the superposition process have finite means and
variances.

The results of Enns (1970), reviewed in Section 3.5.2, can be used to study the corre-
lation between adjacent intervals in the superposition process. It is shown in Appendix A
that the hazard rate of an RPP with positive-Gaussian-distributed intervals is monotone
increasing. Hence, the intervals in the superposition of such RPPs are negatively corre-
lated. This is a common result for RPPs that are used to model real phenomena. If the
hazard rate is increasing, then, as time passes since the last event, it becomes more likely,
per unit time, that the next event will occur. Conversely, if the hazard rate is decreasing,
then, as time passes, it becomes less likely, per unit time, that the next event will occur.
In the theory of renewal models of component failures, the latter case implies that with
use the component becomes more and more reliable, which is typically not true of actual
physical components. On the contrary, a component usually degrades with use.

Since any distribution with a tail that is shorter than the exponential distribution
has finite variance, Theorem 3.4 asserts that the superposition of RPPs with this kind
of interval distribution are not LRD. For component processes with intervals distributed
according to a positive Gaussian distribution, (3.10) implies that the asymptotic behavior
of the variance function of the superposition process is given by

VS(t) ∼ p[(π
2
− 1)µ2]t

µ3
=

p(π
2
− 1)t

µ
as t → ∞.

Thus, in accordance with Theorem 3.4, the limit of VS(t)/t, as t → ∞, is a finite constant.
More instructive is the asymptotic behavior of the FFC. For the superposition of positive
Gaussian RPPs, as the counting interval length increases, the Fano factor approaches

lim
t→∞

FS(t) = lim
t→∞

VS(t)(
pt
µ

) =
π

2
− 1 ≈ 0.5708 < 1,
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which is independent of the number of component processes, p, and the parameter µ of
their interval distribution. The fact that the Fano factor is less than one is in agreement
with the prior finding that (at least) adjacent intervals are negatively correlated in the
superposition.

The Superposition of Renewal Point Processes with Pareto Interval Distribu-
tions

In addition to the model with positive-Gaussian-distributed inputs, Feng and his coworkers
considered another model with RPP inputs that had intervals distributed according to
the Pareto distribution. The Pareto distribution is an example of a distribution that
has a support of [0,∞) and a tail that is longer than the exponential distribution. The
probability density function of the Pareto distribution is

f(t) =


αKα (t + K)−α−1, if t ≥ 0;

0, otherwise,
(3.13)

with parameters K > 0 and α > 0. K is essentially a normalization constant, while the use
of α here is analogous to its use in the theory of α-stable random variables. Consequently,
the tail probability Pr{X > x} of a Pareto-distributed random variable decays as x−α,
and only the moments less than α exist. The mean of the Pareto distribution, if α > 1, is
K/(α − 1), while, if α > 2, the variance is 2K2/[(α − 1)(α − 2)].

We again consider the marginal distribution of the intervals in the superposition of
p independent RPPs, but now we let the intervals in the component processes be Pareto
distributed with parameters K and α. Let F (t) and G(t) be the (cumulative) distribution
functions of the intervals of the component and superposition processes, respectively.
Then, integrating (3.13) and subtracting the result from one yields

1 − F (t) = Kα (t + K)−α, for t ≥ 0. (3.14)

Now, (3.8) can be used to calculate the tail of the superposition interval distribution when
α > 1:

1 − G(t) =

(
Kα (t + K)−α

) [∫ ∞

t

Kα (s + K)−α

K/(α − 1)
ds

]p−1

= Kα+(α−1)(p−1) (t + K)−α
[∫ ∞

t
(α − 1) (s + K)−α ds

]p−1

= K(α−1)p+1 (t + K)−α
[
− (s + K)−(α−1)

∣∣∣∞
t

]p−1

= K(α−1)p+1 (t + K)−α−(α−1)(p−1)

= K(α−1)p+1 (t + K)−[(α−1)p+1], for t ≥ 0. (3.15)

Thus, by comparing (3.14) and (3.15), we see that the marginal interval distribution of
the superposition process is also a Pareto distribution, when α > 1, with parameters K
and α′ = (α − 1)p + 1. Thus, the intervals in the superposition have finite variance as
long as (α − 1)p + 1 > 2, or, equivalently, if p > 1/(α − 1). Thus, as α, the parameter for
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the component processes, approaches the value of one, an increasing number of inputs are
required if their superposition is to have intervals with finite variance. Furthermore, if the
intervals of the component processes have finite variance, i.e. α > 2, then the intervals in
their superposition do as well.

Even though the marginal interval distribution of the superposition of Pareto RPPs is
also Pareto, the superposition process is not an RPP when there are multiple component
processes. To show this, we can examine the hazard rate of the Pareto distribution. This
hazard rate is straightforward to calculate:

z(t) =
f(t)

1 − F (t)
=

αKα(t + K)−α−1

Kα(t + K)−α
=

α

t + K
.

Hence, the hazard rate of the Pareto distribution is a monotone decreasing function. More
precisely, its derivative is

d

dt
z(t) = − α

(t + K)2
,

which is negative for all values of t and all allowable (i.e. positive) values of the parameters
K and α. Therefore, according to the results of Enns (1970) discussed in Section 3.5.2,
adjacent intervals in the superposition of RPPs with Pareto-distributed intervals are
positively correlated.

The Pareto distribution only has finite variance if α > 2. Thus, according to Theo-
rem 3.4, the superposition of Pareto RPPs will be LRD if and only if α ≤ 2. For compo-
nent processes with intervals distributed according to a Pareto distribution and α > 2,
(3.10) implies that the asymptotic behavior of the variance function of the superposition
process is given by

VS(t) ∼
p

[
2K2

(α−1)(α−2)

]
t[

K
α−1)

]3 =
2p(α − 1)2t

K(α − 2)
as t → ∞.

Thus, as expected, the limit of VS(t)/t, as t → ∞, is a finite constant when α > 2. Also,
for the superposition of Pareto RPPs, with α > 2, the Fano factor approaches

lim
t→∞

FS(t) = lim
t→∞

VS(t)(
pt(α−1)

K

) =
2(α − 1)

α − 2
,

which, as in the case of positive Gaussian RPPs, is independent of the number of compo-
nent processes, p. However, in this case the limiting value of the Fano factor is dependent
on a parameter, α, of the distribution. However, for all α > 2, the limiting value of the
Fano factor is greater than one, which is in accordance with the fact that (at least) adja-
cent intervals in the superposition of Pareto RPPs are positively correlated. In fact, this
value is always greater than two for α > 2, with it approaching the value of two as α → ∞
and growing without bound as α → 2.
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3.5.3 Simulation Results for the IF Model with Renewal Point
Process Inputs

The analytical results of Section 3.5.2, by describing the superposition of the inputs,
provide some clues to the properties that should be expected of the output of the IF
model with RPP inputs. In addition, the arguments in Section 3.5.1 furnish additional
insight into characteristics that the output is likely to possess. However, a complete
analytical treatment of this model, save when the inputs are Poisson processes, is not
available. Therefore, in order to test the ability of IF models with renewal point process
inputs to produce realistic CVISI ’s and LRcD, we have run computer simulations of these
models.

For each model and set of parameters, we ran ten simulations, each with a duration of
100,000 seconds. Each simulation used 100 excitatory inputs and 100r inhibitory inputs,
where r was one parameter of the simulations that was varied. Thus, r represents the ratio
of the number of inhibitory inputs to the number of excitatory inputs. The IF mechanism
had a reset potential of zero and a threshold of unity, and each spike that occurred in
either an excitatory or inhibitory input caused the potential to instantaneously increase or
decrease, respectively, by 1/40 = 0.025. When the potential reached the threshold value,
an output spike was registered and the potential was reset. The value of the appropriate
parameter of the interval distribution of the inputs was chosen to yield a nominal output
rate of 2.5 spikes per second according to the following formula:

input rate =
output rate

(# of excitatory inputs)(postsynaptic potential)(1 − r)

=
2.5

100 · 0.025 · (1 − r)
, (3.16)

where postsynaptic potential is the amount by which input spikes increased or decreased
the potential in the IF mechanism. If possible the interval from time zero to the first spike
in each input process was chosen according to the distribution of the forward recurrence
time. This ensured that each input was stationary (or at equilibrium). If this was not
possible, then a pseudo-stationary state was created by generating a random interval
length from the interval distribution and choosing the origin to be a uniformly distributed
point within this interval.

We analyzed the output spike trains of these models using estimators of the CVISI ,
the FFC, and the IDC. The sample CVISI is the standard measure of variability that has
been used in prior studies to measure the variability in cortical neurons and to compare
the variability of these neurons with that of related models. It is equal to the sample
standard deviation (i.e. the square root of the sample variance) of the interspike intervals
divided by the sample mean of the interspike intervals. The IDC required calculation of
the sample variance of the length of, say, M adjacent intervals for many values of M. Since
the IDC was plotted on a double logarithmic graph, we began with a value of M = 1
and used ten values of M per decade, which were equally spaced in log coordinates. No
M -values greater than one-fifth of the total number of interspike intervals in the output of
the simulation were used. Similarly, the FFC required calculation of the sample variance
of the counts in windows of size T, say, for many values of T. The FFC was also plotted
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on a double logarithmic graph, so values of T were chosen that are equally spaced in log
coordinates. Again, we used ten values per decade, but the values of T began at 0.01
seconds. No T -values greater than one-fifth of the total simulation length were used.

Finally, the interspike intervals of the output spike train from each of the ten simu-
lations for a given model and set of parameters were randomly shuffled once to produce
a set of ten surrogate spike trains. The sample variances of the counts and aggregated
intervals were then calculated, in the same manner as before, for these new spike trains in
order to produce the surrogate-data FFCs and IDCs.

The IF Model with Poisson Process Inputs

For comparison, we ran simulations of the IF model with Poisson process inputs with the
same parameters as our other simulations. For the IF model with Poisson process inputs,
it is possible to derive, in closed form, the theoretical value of the CVISI of its output as a
function of the inhibition-excitation ratio, r. According to (2.5), the coefficient of variation
of the intervals in the output of this model is given by

CVISI =

√√√√ MEλE + MIλI

θ̂ (MEλE − MIλI)
, (3.17)

where ME and MI are the number of excitatory and inhibitory inputs, respectively, λE

and λI are the spike rates of the individual excitatory and inhibitory inputs, respectively,
and θ̂ is the number of excitatory inputs required to move the “membrane potential” from
the resting potential to threshold in the absence of inhibition. Thus, for our simulations,

CVISI(r) =

√√√√ 1 + r

θ̂ (1 − r)
, (3.18)

where

θ̂ =
1 − 0

1/40
= 40.

This function is plotted as a dashed line in each graph of Figure 3.3.
In Figure 3.3a, the values of CVISI estimated from ten simulations of the Poisson-

input model at each value of r are individually plotted. However, since the variability
of these estimates across simulations is so low, the ten symbols at each value of r fall
almost exactly on top of each other. It is apparent from this graph that the results of our
simulations agree well with the theoretical values of CVISI for this model.

The IF Model with Positive-Gaussian Renewal Inputs

For simulations of the IF model with positive-Gaussian RPP inputs, the sole parameter
of the interval distribution, the mean µ, was set to be the inverse of the nominal input
rate from the calculation in (3.16). Thus, the only parameter that we varied in these
simulations was the inhibition-excitation ratio r. For this model, we ran simulations with
r-values of 0.0, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.97, 0.98, and 0.99.
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Figure 3.3: The coefficient of variation of interpoint intervals as a function of the
inhibition-excitation ratio r for the output of an integrate-and-fire model with inputs
that are (a) Poisson point processes and (b) positive-Gaussian-distributed renewal point
processes. There were ten simulation runs at each value of r, and the calculated value of
the coefficient of variation for each of these runs is plotted with a symbol. The dashed line
in each graph is the theoretical curve for the model with Poisson process inputs, and the
solid line in (b) connects the means calculated at each value of r.

In Figure 3.3, the calculated value of CVISI for each simulation is plotted versus the
value of r. Again, at each location, there are actually ten symbols, but the low variability
of the estimates causes the symbols to fall almost exactly on top of each other at all but
the highest values of r. The solid line connects the means of the ten estimates of CVISI at
each value of r, and the dashed line is the theoretical curve for the Poisson-input model.
These results are in close agreement with those of Figure 2a of Feng and Brown (1998a).
As we expect, due to the negative correlation in the superpositions of the inputs, the
CVISI values for the positive Gaussian model are always less than that for the Poisson
model. However, the CVISI for the positive Gaussian model does increase, apparently
without bound, as r approaches one, in the same manner as that for the Poisson model. In
particular, (3.17) specifies that the CVISI function with respect to r for the Poisson-input
model is the square root of a rational function with a pole at one, and the increasing,
convex shape of the CVISI curve for the Gaussian-input model is well-approximated by
the same type of function. Thus, as observed by Feng and Brown (1998a), the positive
Gaussian model requires more balance than the Poisson model in order to achieve any
particular CVISI for its outputs. Only for values of r greater than about 0.9 is the CVISI

greater than 0.5, which is the minimal value needed to match physiological data.
Although the positive Gaussian model may be able to achieve any arbitrary value

of CVISI , albeit perhaps at the cost of a high degree of excitation-inhibition balance, its
success as a model of cortical neurons quickly diminishes when the possibility of LRD
is considered. Figure 3.4 contains examples of FFCs and IDCs for the output of the
IF model with positive Gaussian renewal inputs for several representative values of the
inhibition-excitation ratio r; the FFCs and IDCs for all of our simulations are shown in
Appendix B.1. The sub-Poissonian variability of the interspike intervals in the output
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caused by the integration mechanism and the negative correlation in the superpositions of
the inputs is clearly evident in the general downward trend of both the original-data and
surrogate-data FFCs and their asymptotic approach to a constant less than one for low
r-values. Furthermore, as r is increased, i.e. as the amount of inhibition is brought into
balance with the amount of excitation, the effect of the excitation-inhibition interaction is
apparent in the rising value of the asymptotes of the FFCs. At a value of about r = 0.97
(not shown in Figure 3.4), the excitation-inhibition interaction completely cancels the two
variance-decreasing effects, and the intervals of the output of the model have Poisson-like
variability. Thus, for larger values of r, the asymptotic values of the FFCs are greater than
one. Even at these large r-values, however, the FFCs are still below one for small counting
intervals. For instance, the FFCs for r = 0.99 do not exceed one until the counting interval
is about 0.1 seconds in length.

A small amount of negative correlation between the interspike intervals of the output
is also evident at low r-values in the differences between the original-data FFCs and
surrogate-data FFCs, as well as in the difference between the original-data IDCs and
surrogate-data FFCs. The fact that the original-data FFCs are lower than the surrogate-
data FFCs implies that the intervals in the original data must be negatively correlated,
since the intervals in the surrogate data are uncorrelated but have the same distribution as
the original-data intervals. This argument is supported by the original-data IDCs, which
are decreasing at low aggregation levels and are below the corresponding surrogate-data
IDCs. Since this negative correlation in the output intervals is apparent, and, in fact, its
effect largest, at r = 0, where there is no excitation-inhibition interaction, it must be
the result of the negative correlation between intervals in the superposition of the inputs.
These effects of the negative correlation, however, gradually disappear as r increases.
Thus, for r greater than about 0.9, the original-data curves and the surrogate-data curves
are nearly equivalent, implying that the output of the model is roughly a renewal process
for closely balanced amounts of excitation and inhibition.

Several additional characteristics of the FFCs and IDCs in Figure 3.4 are consistent
with theoretical predictions. First, the surrogate-data IDCs are all close to being horizon-
tal lines, and the mean surrogate-data IDC at each r-value is, for all practical purposes,
a horizontal line. This is to be expected since surrogate data forms a renewal process.
Next, the value of each FFC at the smallest counting intervals is nearly one, in agreement
with (3.4), and each FFC has the same asymptotic value as the corresponding IDC, as
predicted by (3.7). This also means that the vertical position of the IDCs increases with
increasing r.

From this analysis, it is apparent that the positive-Gaussian-input IF model is no
better at producing high interval variability and LRcD than the Poisson-input IF model.
Not only does this model require perfect excitation-inhibition balance in order to produce
LRcD, but, at any given level of balance, the Gaussian-input model is farther from being
LRcD than the Poisson-input model. Furthermore, if level of balance is high enough to
produce values of CVISI above 0.5 in the Gaussian-input model, then the output of this
model is nearly renewal, which is precisely the characteristic that was used to expose the
inadequacy of the Poisson-input model. In sum, the positive-Gaussian-input IF model
does not solve the high-variability problem while producing LRD and is, in fact, worse in
this regard than the more tractable Poisson-input model.
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Figure 3.4: FFCs and IDCs estimated from simulations of the IF model with positive-
Gaussian inputs. Each set of axes contains ten curves calculated from original data (black)
and ten curves calculated from the corresponding shuffled surrogate data (gray). For each
value of the inhibition-excitation ration r, each individual FFC in the left set of axes was
calculated from the same data as one of the IDCs in the right set of axes.
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The IF Model with Pareto Renewal Inputs

The IF model with Pareto RPP inputs has three parameters: the inhibition-excitation
ratio r, the “tail” parameter α, and the normalization constant K. For any given values
for r and α > 1, the value of K was determined by setting the mean of the Pareto
distribution equal to the inverse of the input rate determined by (3.16). Thus, we set
K = (α − 1)/input rate if α > 1. When 0 < α ≤ 1, the Pareto distribution does not have
a mean, and, hence, the previous calculations are not justified. α = 1 was the only value
in this range that we used, and in this case we set K = 0.1/input rate, where input rate
was still determined by (3.16), which is the same value that we would have calculated for
K when α = 1.1. We found empirically that this value yielded an output spike rate in the
vicinity of 2.5 spikes per second for our simulations.

Thus, for the Pareto-input model simulations, we varied two parameters: α and r.
For α we used values of 1.0, 1.25, 1.5, 1.75, 1.9, 2.0, 2.1, 2.5, and 3.0, while for r we used
values of 0.0, 0.5, 0.7, 0.8, 0.9, and 0.95. Ten simulations were run for each combination
of these parameter values. For comparison, Feng and his coworkers (Feng, 1997; Feng &
Brown, 1998b, 1998a; Feng et al., 1998) used only values of α = 1.0 and α = 2.1 in their
simulations. We felt that the choice of these two parameter values missed two important
ranges. To begin with, they did not use any values of α between 1.0 and 2.0, exclusive,
where the Pareto distribution has infinite variance, but still has a finite mean. Also, they
did not use any values that were significantly greater than two. Although at the value of
α = 2.1, the Pareto distribution does have finite mean and variance, this value is close
enough to 2.0 that the differences between finite and infinite variance are not going to be
very obvious.

Figure 3.5 shows the estimated values of CVISI from these simulations plotted versus
the inhibition-excitation ratio r. The graphs in each column contain the same data, only
at different scales. Column (a) contains graphs of the mean values of CVISI for each
combination of parameter values for r and α. Thus, each symbol represents the mean
calculated over ten simulations. Means calculated from simulations with the same value
of α are connected by solid lines, while the dashed line is the theoretical curve for the
Poisson-input model. The curves all have the same increasing, convex shape, which can be
well-fit by the square root of a rational function with a pole at r = 1. Also, as we expect
due to the positive correlations in the superpositions of the inputs, the CVISI values for
the Pareto model are always greater than those for the Poisson model. Thus, in accord
with the findings of Feng and Brown (1998a), the Pareto model requires less balance
than the Poisson model to achieve any particular CVISI of its output. Furthermore, as
α is decreased, a particular value of CVISI can be attained with less balance between
the excitation and inhibition. For example, at low values of α, the CVISI is actually
significantly larger than physiological measurements in the cortex at even moderate
degrees of balance.

Column (b) of Figure 3.5 shows, for a subset of the values of α, the CVISI estimates
for all simulation runs. The solid lines are identical to those in Column (b), connecting
the mean for each set of ten simulation runs. Although at low r values and high α values
the symbols are tightly grouped, like the CVISI estimates for the positive Gaussian model,
the variance of these estimates of CVISI increases significantly as r increases and as α



58

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
tio

n

Inhibition-Excitation Ratio, r

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
tio

n

Inhibition-Excitation Ratio, r

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
tio

n

Inhibition-Excitation Ratio, r

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
tio

n

Inhibition-Excitation Ratio, r

0

2 0

4 0

6 0

8 0

100

0.0 0.2 0.4 0.6 0.8 1.0

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
tio

n

Inhibition-Excitation Ratio, r

0

2 0

4 0

6 0

8 0

100

0.0 0.2 0.4 0.6 0.8 1.0

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
tio

n

Inhibition-Excitation Ratio, r

a b

Poisson

a  = 3.0

a  = 2.5

a  = 2.1

a  = 2.0

a  = 1.9

a  = 1.75

a  = 1.5

a  = 1.25

a  = 1.0

Figure 3.5: The coefficient of variation of interpoint intervals as a function of the
inhibition-excitation ratio r for the output of an integrate-and-fire model with inputs
that are Pareto-distributed renewal point processes. For each combination of the param-
eters, r and the “tail” parameter α of the Pareto distribution, ten separate simulation
runs were conducted. In column (a), the mean values of the estimates are plotted for each
combination of parameters. Each solid line connects the means for a single value of α,
and the dashed line is the theoretical curve for the model with Poisson process inputs. All
three sets of axes contain the same data, but each displays them on a different vertical
scale. In column (b), the estimates calculated from each individual simulation run are
plotted for a subset of the values of α. Solid and dashed lines are the same as in column
(a), and all three sets of axes contain the same data.
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decreases. The most dramatic effect is seen for medium-to-high values of r and low values
of α. These increases in estimator variance are almost certainly caused by the progressive
movement of the model towards a state of non-stationarity as r or α approach one. We
saw in Section 2.4 that, when r is equal to one, the mean of the intervals in the output of
the Poisson-input model is infinite, and no point process with infinite mean intervals can
be stationary. This is likely to be the case with the present model as well. On the other
hand, when α equals one, the input processes have infinite mean intervals, also forcing the
model to be non-stationary.

As mentioned above, Feng and Brown (1998a) used only two values of α: 2.1 and 1.
Comparing Figure 3.5 with their Figure 2a, we see that our results for α = 2.1 are in
good agreement with their corresponding results. In contrast, our CVISI values for α = 1
are substantially larger than those in their Figure 2b. For instance, at r = 0.9, the most
balanced condition that they used, they have CVISI ≈ 3, while, at the same value of r,
we have CVISI ≈ 80. Since Feng and Brown (1998a) do not give many details regarding
their simulations, it is difficult to explain this discrepancy. However, we did use the same
number of excitatory inputs and an equivalent combination of threshold and postsynaptic
potential parameters as they did. One obvious difference between our simulations and
theirs is in the parameter K. They did not use this parameter, but the form of their
Pareto distribution is equivalent to (3.13) with K set to one. Recall that, for α = 1, our
value of K was determined by

K =
0.1

input rate
=

100 · 0.025 · (1 − r) · 0.1
2.5

.

This means that in our simulations K decreased linearly from 0.1 at r = 0 to 0.005 at
r = 0.95, which is one-tenth to 1/200th of their value of K. Thus, their output (and
input) rates would have been much smaller than ours, yielding much larger interspike
interval lengths. Since the mean interval length when α = 1 does not exist theoretically,
it seems plausible that the larger intervals in their simulations, and thus larger sample
means, could result in reduced values for the sample CVISI , though it is difficult to infer
the accompanying changes in the sample standard deviation of the intervals. Furthermore,
Pareto RPPs with α = 2.1 and α = 1 are quite different; the first has intervals with finite
mean and variance, whereas both the mean and variance of the intervals for the second
are, in theory, infinite. Thus, we might expect a large difference between models with
these two values of α. However, the CVISI for their simulations at r = 0.9 only changes
from about 1.2 to 3, whereas ours changes from 1.4 to 44, the latter seeming to us to
be more likely. We did, nevertheless, rerun our simulations with α = 1 and K = 1 to
match those of Feng and his coworkers. For these simulations, the values of CVISI were
significantly reduced from those where we fixed the output spike rate. At r = 0.9, the
mean CVISI value for these simulations with K = 1 was approximately 8.3, much closer
to their value but still larger. Without further information, we cannot expect to determine
the cause of this difference, but it is not surprising given the nature of the model with
α = 1. At this value of α, the inputs cannot be stationary since their mean does not exist.
In our simulations, we attempted to produce stationary-like inputs, but it is likely that
they began all of their inputs with a point of the point process, whether actual or virtual,
at time zero. Given the odd statistical nature of the model at α = 1, it would not be
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astonishing if this difference in the starting conditions produced the discrepancy between
the two sets of results.

Figure 3.6 contains FFCs and IDCs calculated from simulated output of the IF model
with Pareto RPP inputs for several different representative combinations of values for the
parameters α and r. The curves for α = 2.5, α = 1.75, and α = 1.0 are shown in 3.6a,
3.6b, and 3.6c, respectively. For each of these values of α, FFC/IDC sets are shown for
each of four values of r ranging from zero to 0.90 or 0.95. The complete set of FFCs and
IDCs for all of our simulations are in Appendix B.2.

These graphs possess some common characteristics across all parameter values. First,
as should be the case in all situations, the FFCs approach the value of one at very small
counting interval lengths, and the mean surrogate-data IDCs are horizontal lines. Second,
like those of the positive Gaussian model, the FFCs have an initially negative slope as
a result of the relative unlikelihood of the occurrence of very short intervals, which is
caused by the integration mechanism. Third, unlike those of the positive Gaussian model,
the original-data IDCs generally have an initial positive slope and remain above the
corresponding surrogate-data IDCs. This is a result of the positive correlation between
intervals in the superposition of Pareto renewal processes, in contrast to the negative
correlation in the superposition of positive-Gaussian renewal processes. These positively
correlated intervals also produce positive slopes in the original-data FFCs subsequent
to their initial declination from one. This produces original-data FFCs that have an
asymptotic value larger than one, except when the value of α is large and the value of r is
small. In the latter case, the positive correlation in the superpositions, combined with the
variance producing effect of the excitation-inhibition interaction, is not strong enough to
overcome the effect of the integration process.

Like those for the positive-Gaussian model, the original-data and corresponding
surrogate-data curves for the Pareto model become progressively more similar as the
excitation and inhibition are brought into better balance, i.e. as r is increased. This
means that the surrogate-data FFCs change more quickly with increases in r than do the
original-data FFCs, and that the original-data IDCs better approximate horizontal lines
as r increases. In the current model, however, this is the result of a loss of positive, not
negative, correlation in the output intervals. Nevertheless, this loss of correlation implies
that the output of the model resembles a renewal point process at values of r close to one.

In Section 3.5, we discussed two possible ways of producing LRD in the IF model
with RPP inputs. First, LRD may be produced through the balance of excitation and
inhibition. In the Poisson-input model this could occur, but, since the output of the model
was a renewal process, the inhibition-excitation balance also created output intervals with
infinite variance. Our simulations suggest that the balance of excitation and inhibition
has a similar effect on the Pareto-input model, the output of which becomes more RPP-
like with increasing r, and the CVISI of which apparently increases without bound as
r increases. Thus, the balance of excitation and inhibition is also unable to produce
a realistic form of LRD in this model. The second way that LRD can be present in
the output of the RPP-input IF model is if the superpositions of the inputs are LRD.
According to Theorem 3.4, this will occur when, and only when, the intervals of the input
have infinite variance. For Pareto RPP inputs, this condition is met when α ≤ 2. From
our simulations, it is clear that in this case, although the output of the model is LRD, the
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Figure 3.6a: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 2.5. Each set of axes contains ten curves calculated from
original data (black) and ten curves calculated from the corresponding shuffled surrogate
data (gray). For each value of the inhibition-excitation ration r, each individual FFC in
the left set of axes was calculated from the same data as one of the IDCs in the right set
of axes.
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Figure 3.6b: Same as in 3.6a, except for α = 1.75.
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Figure 3.6c: Same as in 3.6a, except for α = 1.0. Note that the larger values of r differ
slightly from those in 3.6a and 3.6b.
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nature of the LRD is different than that produced by inhibition-excitation balance.
To begin with, we observed that the maximum slopes of the IDCs decrease as the

value of r increases. In contrast, as the variability of the inputs increases, i.e. as the value
of α decreases, the slopes of the IDCs increase. In fact, whereas tightly balanced excitation
and inhibition produces IDCs that are horizontal lines, high input variance produces
IDCs that are positively sloped lines in double logarithmic coordinates, i.e. power-laws
in linear coordinates. Thus, while more balance reduces the dependence between the
intervals of the output of the model, lowering the value of α strengthens the interval
dependence. Furthermore, the effect of the reduction of α on the variance of interval
aggregations is greater at larger aggregation levels. Hence, the range of the interspike
interval dependencies produced by the high variability is predominately long in nature,
and the IDCs suggest the presence of LRiD. This progression in the original-data IDCs
for decreasing values of α coincides with a similar change in the original-data FFCs.
As α decreases, the portion of the FFC to the right of the minimum also progressively
approximates a positively sloped line (on a double logarithmic plot). This is consistent
with Proposition 3.3, which states that LRcD and LRiD always coincide when the interval
variance is finite. On the other hand, as expected for a point process with finite-variance
intervals, the FFCs for shuffled surrogate data apparently always asymptote to a finite
constant, even when r is large and α is small. In addition to increasing as r increases,
the asymptotic value of the surrogate-data FFCs increase as α decreases. But, as a result
of LRiD, these FFCs still remain below their original-data counterparts. Moreover, the
difference between the original-data FFCs and the surrogate-data FFCs at longer counting
intervals actually tends to increase as α decreases. This trend may, however, break down
as α approaches one, where the mean interspike interval of the input processes becomes
infinite.

It is interesting that LRcD in the Pareto RPP inputs effected by infinite interval-
variance produces LRcD that is effected by LRiD in the output of the IF model. However,
the production of an LRD process by the combination of a number of infinite-variance
processes has been seen in other models as well. A common model for the traffic on data
networks, such as Ethernet Local Area Networks (LANs), is the sum of a large number
of ON/OFF sources. The trace in the center of Figure 3.7, if the lower value is zero,
would be an example of the value of a single ON/OFF source as a function of time. The
ON/OFF source model has independent ON- and OFF-times, and, typically, all of the
ON-times are identically distributed (positive) random variables and all of the OFF-
times are identically distributed (positive) random variables. The ON- and OFF-periods
are allowed to have different distributions. Thus, this model is also called an “(strictly-
)alternating renewal process”. Classically, the distributions of the ON- and OFF-periods
had finite variance. However, more recently, it has been shown, both through simulation
and analytically, that the sum of a large number of ON/OFF processes with long-tailed
(i.e. infinite-variance) distributions for the ON- and/or OFF-periods produces an LRD
process (Willinger, Taqqu, Sherman, & Wilson, 1997; Taqqu, Willinger, & Sherman, 1997).
Furthermore, in earlier theoretical work, the aggregation of “idealized” ON/OFF sources
with long-tailed ON-/OFF-periods was shown to exhibit this effect as well (Mandelbrot,
1969; Taqqu & Levy, 1986; Willinger, Taqqu, Sherman, & Wilson, 1995). In the standard
ON/OFF model described above each ON-period is followed by an OFF-period, and
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vice-versa. But in the “idealized” form of this model, an ON-period (or OFF-period) can
be followed by either an OFF- or an ON-period. For related work, see Lowen and Teich
(1993c, 1993d) and Heath, Resnick, and Samorodnitsky (1998).

To see the relevance of this work to our present situation, consider the points at
which the ON/OFF process in Figure 3.7 transitions between states. If the process is a
standard (strictly-alternating) ON/OFF process, then the black dots (both above and
below) represent these points. If it is an “idealized” ON/OFF process, then the gray dots
might also be transition points. Since the ON/OFF process enters the ON-state at the
points shown above the trace, the top sequence of points might be called the “excitatory”
point process. Conversely, the bottom sequence of points, which is composed of the points
at which the ON/OFF process enters the OFF-state, could be called the “inhibitory”
point process. In an analogous fashion, if an IF model had a single excitatory input
equivalent to the top point process (black dots only) in Figure 3.7 and a single inhibitory
input equivalent to the bottom point process (black dots only), then the (sub-threshold)
potential of the IF model would be equivalent to the center trace. Moreover, the sum of
a large number of ON/OFF processes would be similar to the potential in a IF model
with many excitatory and inhibitory inputs. Of course, the excitatory and inhibitory
RPP inputs in our IF model do not alternate pairwise, as the two point processes do
in Figure 3.7. But, when the IF model has a large number of inputs, whose effects are
summed, this difference is unlikely to result in significant differences in the long-term
statistical structure of the aggregation of ON/OFF processes and the potential of the IF
model.

In general, then, our simulations of the IF model with Pareto-RPP inputs show that,
with proper adjustment of the parameters r and α, this model can produce outputs that
simultaneously exhibit both LRD and high interspike interval variability like that found
in cortical neurons. More specifically, from the data that was plotted in Figure 3.5, we
see that the CVISI of the output of this model is between 0.5 and 1.5, a typical range of
CVISI estimated from recordings of cortical neurons, for the ranges of r shown in Table 3.2
for each value of α used in our simulations. Combining this information with comparisons
between the FFCs obtained from simulations of this model, examples of which are shown
in Figure 3.6, and the FFCs obtained from physiological recordings that are shown in
Teich et al. (1996), we can evaluate the ability of the Pareto-input model to match the
variability and LRD of in vivo cortical neurons.

For 2.0 < α ≤ 3.0, when the interval variance of the inputs is finite, a value of r
between about 0.7 and 0.9 is required to match physiological CVISI estimates. For r values
near 0.9, these FFCs resemble those of Cell 4 and Cell 7 in Teich et al. (1996), although
neither the simulation nor the physiological results suggest the presence of LRcD. These
r-values yield CVISI-values on the upper end of the physiological range, always being
larger than 1.0. For lower values of r, the surrogate-data FFCs, and some original-data
FFCs as well, tend to asymptote below 1.0. For r values above this range, not only are
the CVISI values too high, but the output of the model is too much like a renewal process,
with overlapping original-data and surrogate-data FFCs.

At α-values between 1.5 and 2.0, inclusive, the simulation FFCs with r at the high
end of their CVISI-matching range tend to resemble those of Cell 3 and Cell 19 of Teich
et al. (1996). Again, the output at these parameter values will have a CVISI value above
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Figure 3.7: An analogy between the effect of the point process inputs on an IF model and
a common model in both economics and the study of data network traffic. The center
trace is an example of the time plot of the value of what is called either an ON/OFF
process (if the lower value is “0”) or an alternating renewal process (whether the lower
value is “0” or “-1”). This continuous process has independent and identically distributed
ON- and OFF-periods. Each point, above or below, designates the time at which the
ON/OFF process switches states. If only the black points are included, then the center
trace represents a standard ON/OFF process, or a strictly-alternating renewal process,
where an ON-period is always followed by an OFF-period and vice-versa. If the gray dots
are also included, then the center trace represents an “idealized” ON/OFF process, where
an ON-period can be followed by either an OFF-period or another ON-period. Since the
ON/OFF process goes into the ON state when a point occurs in the upper sequence, this
point process is “excitatory”. Since it goes into the OFF state when a point occurs below,
the lower point process is “inhibitory”. Thus, this center trace is in some ways analogous
to the sub-threshold potential of an integrate-and-fire model with a single excitatory input
and a single inhibitory input. See the text for further explanation.

α Range of r

3.0 0.75 < r < 0.95
2.5 0.70 < r < 0.93
2.1 0.68 < r < 0.91
2.0 0.66 < r < 0.90
1.9 0.64 < r < 0.89
1.75 0.61 < r < 0.86
1.5 0.57 < r < 0.82
1.25 0.47 < r < 0.75
1.0 0.20 < r < 0.56

Table 3.2: The range of the inhibition-excitation ratio r, for each value of α, that leads to
values of CVISI between 0.5 and 1.5 for the integrate-and-fire model with Pareto renewal
process inputs. The ranges of r were approximated from plots of CVISI versus r (see
Figure 3.5) obtained from simulations of the model.
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1.0, but the FFCs do suggest the presence of LRcD. At lower values of r, LRcD still is
present, but the surrogate-data FFCs asymptote at or below 1.0, which may match results
from neurons with CVISI < 1.0 if those FFCs were available. At higher values of r, the
FFCs still retain a resemblance to Cell 3 and Cell 19 of Teich et al. (1996), but their
CVISI-values are too large. Of course, if r were made close enough to 1.0, the output of
the model would again be too renewal-like.

For values of α close to 1.0, the output of the model is still LRcD, but the surrogate-
data FFCs asymptote at or below 1.0 for r-values that lead to physiological values of
CVISI , as well as for even lower values of r. Slightly larger values of r lead to FFCs resem-
bling those of Cell 3 and Cell 19 of Teich et al. (1996), while even larger r-values produce
renewal-like outputs in the model. The latter effect is likely due to the compounding of
the extremely variable inputs (even their mean interval lengths are or are almost infinite)
with the effect of tightly balanced amounts of excitation and inhibition. Furthermore, as
α approaches one, the inputs are approaching conditions of non-stationarity, which result
in a significant increase in the variability our estimates of the Fano factor and the index
of dispersion of intervals. This can be seen in the increased “spread” of the curves for
α = 1.0 in Figure 3.6c.

Although the Pareto-input model is able to produce outputs which share common
statistical features with the spike trains in cortical neurons, the type of inputs required
are not justified physiologically. In order to produce LRD in the output of the model,
the inputs must have infinitely variable intervals, which is not the case for neurons that
might serve as inputs to cortical neurons: other cortical neurons or sub-cortical, especially
thalamic, neurons. This appears to be the fundamental weakness of the Pareto-input
model. In the following section, we will suggest another relatively simple model that
remedies this problem.

3.6 Integrate-and-Fire Models with Fractional-Gaussian-

Noise-Driven Poisson Process Inputs

In Section 3.5 we considered the IF model with RPP inputs. RPPs and their superposi-
tions are LRD if, and only if, their intervals have infinite variance. In this section, we con-
sider the IF model with inputs that are LRD without having infinitely variable intervals.
More specifically, we have chosen to use inputs that are fractional-Gaussian-noise-driven
Poisson processes.

3.6.1 The Fractional-Gaussian-Noise-Driven Poisson Process

The stationary, or homogeneous, Poisson process is the simplest stochastic point process.
The probability of occurrence of a point in this model is uniform throughout time,
parameterized by the rate of occurrence λ, and is completely independent of the past. In
addition, the occurrence of multiple points at any one time instant is virtually impossible.
Customarily, this is the first model that is used for situations that can be represented as
a series of events, due to its simplicity and analytical tractability, and the inputs of the
high variability IF models of cortical neurons are no exception. Nevertheless, with more
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study of the process to be modeled, one usually finds that more complicated models are
eventually required. The inputs of the models considered in Section 3.5 retained some
of the temporal independence of the Poisson process, but allowed modification of the
interval distribution. The Poisson process can, however, be generalized in such a way
that temporal dependence can be specified, but certain distributional properties are
retained. This generalization involves replacing the (constant) rate parameter with a
time-dependent function λ(t), resulting in a nonstationary, or nonhomogeneous, Poisson
process. However, to use this as a model, one must know of some deterministic trend in
the rate of occurrence of points, in order to define the function λ(t).

Often a more useful point process model is produced by replacing the rate parameter
with a stochastic process Λ(t), yielding what is called a doubly stochastic Poisson process
(DSPP)—or, sometimes, called a “Cox process” since it was proposed in a seminal paper
by Cox (1955). With the DSPP, we can again have a stationary point process if the
stochastic process Λ(t) is stationary, but now the point process can be dependent on its
past. In essence, the DSPP has a dependency structure equivalent to its stochastic rate
process. In particular, for our purposes, if its stochastic rate process is LRD, then so is the
DSPP.

Fractional Gaussian noise is an LRD stochastic process that was introduced by
Mandelbrot and coworkers (Mandelbrot, 1965; Mandelbrot & Wallis, 1968, 1969a, 1969c,
1969b; Mandelbrot & van Ness, 1968) in order to stochastically model the fluctuations
in water levels of the Nile River, which, Hurst (Hurst, 1951) had previously discovered,
possessed long memory. Fractional Gaussian noise (fGn) is the increment process of
fractional Brownian motion (fBm), which is the only Gaussian process that both is
self-similar and has stationary increments. fBm is parameterized by the self-similarity
index 0 < H < 1, where H = 0.5 corresponds to the ordinary Brownian motion with
independent increments. Thus, fGn can be parameterized by the self-similarity index of
the corresponding fBm, with H = 0.5 corresponding to the ordinary Gaussian (or “white”)
noise. When H < 0.5, fGn has negative dependence, and when H > 0.5, fGn is LRD.
Thus, we will only be interested in fGn with H in the range 0.5 ≤ H < 1.

The fractional-Gaussian-noise-driven Poisson process (fGnDP) is created by using a
modified form of fGn as the stochastic rate process of a DSPP. Modification of the fGn
is necessary for several reasons. First, the rate of a Poisson process cannot be negative,
whereas samples of fGn can certainly assume negative values. Second, fGn has mean
zero, so that simple truncation of the fGn at zero will significantly change its statistical
properties. Third, fGn, like ordinary (white) Gaussian noise, is inherently a discrete
process, while the rate process for a DSPP should be defined in continuous time. Let
{GH(k), k ∈ Z} denote standard fGn, i.e. with a mean of zero and a variance of one.
Then, in order to remedy the aforementioned incongruencies, we let the rate process of a
DSPP be3

Λ(t) = max
{
0, λ + σGH

(⌊
t

τ

⌋)}
, (3.19)

3This rate function is not actually a stationary stochastic process since time zero is always at the
beginning of a τ -length sampling interval. However, this “small” non-stationarity facilitated mathematical
analysis and did not affect our results in test simulations due to the length of the simulations and analysis
methods.
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where λ and σ are positive constants and �x� is the largest integer less than x. Assuming
that σ � λ, so that the probability that λ + σGH < 0 is negligible, the mean rate of the
fGnDP with the rate process in (3.19) is E{Λ(t)} ≈ λ. In addition, if N(t) is a DSPP with
the rate process in (3.19), then the variance of N(t) will be approximately λt plus a term
proportional to σ2.

Teich et al. (1990) suggested using “fractal-noise-driven” Poisson process models
for neural spike trains of the auditory nerve in order to account for the long-range
dependence, or “fractal behavior”, that had been previously discovered (Teich, 1989). In
subsequent papers, the theory and application of this model to the auditory nerve and
other peripheral sensory-system neurons was further developed (Teich, 1992; Teich &
Lowen, 1994; Lowen & Teich, 1993a, 1995, 1996a, 1997; Kumar & Johnson, 1993; Thurner
et al., 1997). The fractional-Gaussian-noise-driven Poisson process4 is, arguably, the
simplest of these models. Furthermore, since the theory of fractional Gaussian noise has
been well developed in many different contexts, and since the other “fractal” noises that
were suggested as the driving noise in these models converge to fractional Gaussian noise
under appropriate conditions, the fGnDP is a natural starting point for using “fractal-
noise-driven” Poisson process models.

The fGnDP was used as a model of the spike trains in the auditory nerve because
it is LRcD (for H > 0.5), but, unlike LRD renewal processes, it is also LRiD and the
variability of its inputs is finite and similar to a Poisson process. Thus, its FFCs and IDCs
resemble those in Figure 3.2b. These properties are shared by the auditory nerve, as well
as most sub-cortical neurons that have been studied with respect to such properties. Thus,
a further justification of the IF model with fGnDP inputs is the fact that those thalamic
neurons that have been studied with respect to LRD and that also project into the cortex
possess these properties as well.

3.6.2 The Superposition of Fractional-Gaussian-Noise-Driven
Poisson Processes

The only difference between the present model and the model of Section 3.5 is the form
of the input processes. Thus, much of the reasoning in that section regarding general
properties of the model apply here as well. In particular, we still expect the fGnDP-
input model to exhibit negative correlation on small time scales, due to the integration
mechanism, and this negative correlation will presumably manifest itself in a negatively
sloped FFC for small counting windows. Also, excitation-inhibition balance will, most
likely, still produce memory over longer ranges by producing high interval variability.
Finally, additional memory properties of the output, if present, should be evident in
the superposition of the inputs. Therefore, we will next consider the properties of the
superposition of fGnDPs.

The superposition of two independent DSPPs is also a DSPP, as proved in the
following theorem.

4In this literature, the fractional-Gaussian-noise-driven Poisson process is called the fractal-Gaussian-
noise-driven Poisson process. We have used the former in accordance with mainstream mathematical and
analytical literature on fractional Gaussian noise.
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Theorem 3.5. Let N1(t) and N2(t) be independent doubly stochastic Poisson processes
with (independent) rate processes Λ1(t) and Λ2(t), respectively. Then the superposition
N(t) = N1(t) + N2(t) is a doubly stochastic Poisson process with rate process Λ(t) =
Λ1(t) + Λ2(t).

Proof. The probability generating functional of a doubly stochastic Poisson process N(t)
with stochastic rate process Λ(t) is (e.g. Cox & Isham, 1980, p. 71; Daley & Vere-Jones,
1988, Proposition 8.5.I)

GN [ξ] = EΛ

{
exp

[∫ ∞

−∞
(ξ − 1)Λ(t) dt

]}
,

where EΛ denotes expectation with respect to Λ. Therefore, if N1(t) and N2(t) are inde-
pendent doubly stochastic Poisson processes with independent stochastic rate processes
Λ1(t) and Λ2(t), respectively, then the probability generating functional of their superpo-
sition N(t) = N1(t) + N2(t) is (e.g. Cox & Isham, 1980, p. 41; Daley & Vere-Jones, 1988,
Proposition 7.4.VII)

GN [ξ] = GN1 [ξ]GN2 [ξ]

= EΛ

{
exp

[∫ ∞

−∞
(ξ − 1)Λ1(t) dt

]}
· EΛ

{
exp

[∫ ∞

−∞
(ξ − 1)Λ2(t) dt

]}

= EΛ

{
exp

[∫ ∞

−∞
(ξ − 1)

(
Λ1(t) + Λ2(t)

)
dt

]}
.

Thus, N(t) is a doubly stochastic process with rate process Λ(t) = Λ1(t) + Λ2(t).

This result is easily extended to any finite sum of independent DSPPs by repetitive
application of the previous theorem, yielding the following corollary.

Corollary 3.6. Let N1(t), N2(t), . . . , Nm(t) be independent doubly stochastic Poisson
processes with (independent) rate processes Λ1(t), Λ2(t), . . . , Λm(t), for finite integer m.
Then the superposition N(t) =

∑m
i=1 Ni(t) is a doubly stochastic Poisson process with rate

process Λ(t) =
∑m

i=1 Λi(t).

Another theorem, concerning the sum of independent fractional Gaussian noises, is
therefore useful with regard to the fGnDP-input IF model.

Theorem 3.7. Let G1(k) and G2(k) be two independent standard (i.e. zero mean, unity
variance) fractional Gaussian noises, each with identical Hurst index H. Then, their
weighted sum G(k) = σ1G1(k) + σ2G2(k), σ1, σ2 > 0, is also a fractional Gaussian noise
with Hurst index H, mean zero, and variance σ2

1 + σ2
2.

Proof. Let Z = {Zj, j = . . . ,−1, 0, 1, . . . } be any stationary sequence. The sequence of
transforms {TN , N = 1, 2, 3, . . . } defined, for each N , as

TN : Z → TNZ = {(TNZ)i, i = . . . ,−1, 0, 1, . . . },

where

(TNZ)i =
1

NH

(i+1)N∑
j=iN+1

Zj, i = . . . ,−1, 0, 1, . . . ,
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is called the renormalization group with index H (Samorodnitsky & Taqqu, 1994, p.338f).
TN transforms the original sequence into a sequence composed of renormalized sums of N
adjacent components of the original sequence. According to Corollary 7.2.13 of Samorod-
nitsky and Taqqu (1994), fractional Gaussian noise is the only Gaussian fixed point of the
renormalization group, where Z is by definition a fixed point of the renormalization group

if TNZ
d
= Z for all N ≥ 1.

Now let G1 = {G1(k), k = . . . ,−1, 0, 1, . . . } and G2 = {G2(k), k = . . . ,−1, 0, 1, . . . } be
two standard fractional Gaussian noises, each with Hurst index H, and let

G = σ1G1 + σ2G2 = {σ1G1(k) + σ2G2(k), k = . . . ,−1, 0, 1, . . . },

for constants σ1 and σ2. Also let {TN , N = 1, 2, 3, . . . } be the renormalization group with
Hurst index H equal to the Hurst indices of G1 and G2.

Each TN is clearly a linear transformation, so, for each N ≥ 1,

TNG = TN(σ1G1 + σ2G2) = σ1(TNG1) + σ2(TNG2).

Since G1 and G2 are independent and are both fixed points of the renormalization group,

TNG
d
= σ1G1 + σ2G2 = G.

Thus, G is also a fixed point of the renormalization group. Furthermore, for each k =
. . . ,−1, 0, 1, . . . , σ1G1(k) has a Gaussian distribution with mean zero and variance σ2

1, and
σ2G2(k) has a Gaussian distribution with mean zero and variance σ2

2. Thus, G(k), for each
k, also has a Gaussian distribution with mean zero, and its variance is σ2

1 + σ2
2. Finally,

since G is Gaussian and a fixed point of the renormalization group, it must be fractional
Gaussian noise.

This theorem can also be extended to any finite sum by its repetitive application.

Corollary 3.8. Let Gi(k), i = 1, 2, . . . , m, be m independent standard fractional Gaussian
noises, each with identical Hurst index H. Then, their weighted sum G(k) =

∑m
i=1 σiGi(k),

where σi > 0 for i = 1, 2, . . . , m, is also a fractional Gaussian noise with Hurst index H,
mean zero, and variance

∑m
i=1 σ2

i .

Nevertheless, according to (3.19), the rate process of an fGnDP is not a linear function
of an fGn. In order to produce a valid rate process, the linear function of fGn

λ + σGH

(⌊
t

τ

⌋)

must be truncated below at zero. If this truncation were unnecessary, then, using Corollar-
ies 3.6 and 3.8, the sum of m independent fGnDPs with rate processes

Λi(t) = λ + σGH,i

(⌊
t

τ

⌋)
, i = 1, 2, . . . , m,

would be an fGnDP with rate process

Λ(t) =
m∑

i=1

Λi(t) = mλ +
√

m σGH

(⌊
t

τ

⌋)
. (3.20)
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Hence, the mean rate of this fGnDP would be mλ and the variance mσ2.
Statistically, however, it is desirable that the rate process of fGnDP be as much like

fGn as possible. The truncation process was only used since the rate of a Poisson process
cannot be negative. Thus, ideally, we could consider the superposition of m fGnDPs to be
an fGnDP with the rate process (3.20) truncated at zero. In other words, the rate process
of the superposition would be

Λ(t) = max
{
0, mλ +

√
m σGH

(⌊
t

τ

⌋)}
. (3.21)

In order to compare the difference between this “ideal” situation and the “real”
superposition of fGnDPs with rate processes of the form (3.19), consider the sum of two
independent fGnDPs. Suppose that the rate processes of these fGnDPs are

Λi(t) = max
{
0, λ + σGH,i

(⌊
t

τ

⌋)}
, i = 1, 2.

Then the rate process of their superposition is

Λ(t) = Λ1(t) + Λ2(t)

= max
{
0, λ + σGH,1

(⌊
t

τ

⌋)}
+ max

{
0, λ + σGH,2

(⌊
t

τ

⌋)}

= max
{
0, λ + σGH,1

(⌊
t

τ

⌋)
, λ + σGH,2

(⌊
t

τ

⌋)
, 2λ + σ(GH,1 + GH,2)

(⌊
t

τ

⌋)}
, (3.22)

while the “ideal” situation yields a rate process of

Λ(t) = 2λ +
√

2 σGH

(⌊
t

τ

⌋)
. (3.23)

Thus, since GH,1 + GH,2 is distributed like
√

2GH , the “ideal” case and the “real” case are
different when either σGH,1 < −λ or σGH,2 < −λ, but not when both are true. As we
assumed previously, these occurrences should be rare. In addition, when they do occur,
the differences that they produce should usually be small, since big differences would
necessitate that λ + σGH,i � 0 for the process i that has an untruncated negative rate.
Therefore, the superposition of m independent fGnDPs with rate processes of the form
(3.19) is well approximated by a single fGnDP with the rate process in (3.21).

3.6.3 Simulation Procedures for the IF Model with fGnDP
Inputs

For the IF model with fGnDP inputs, we ran simulations similar to those for the renewal-
input model. Again, the simulations were 100,000 seconds in duration, and ten indepen-
dent simulations were run for each set of parameter values. Each simulation used 100
excitatory inputs and 100r inhibitory inputs. The IF mechanism has a reset potential of
zero and a threshold of unity, and inputs caused instantaneous increases or decreases of
1/40 in the integration potential. The rate of each input was calculated via (3.16), yielding
a nominal output rate of 2.5 spikes per second.
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Each input of this model is specified by its stochastic rate process

Λi(t) = max
{
0, λ + σGH,i

(⌊
t

τ

⌋)}
,

under the assumption that they are all statistically identical. The parameter λ, the mean
rate of the fGnDP if the effect of truncation is neglected, was specified by the rate of the
inputs that produced a nominal output rate of 2.5 spikes per second. In previous studies
(unpublished), we found that the value of σ = 30 worked well for modeling neural spike
trains when the rate was λ = 100. Since the variance of the counts should be additive
with respect to the rate, this suggested that σ = 3

√
λ. Finally, the sample time τ , i.e. the

length of the intervals over which the rate of the Poisson processes remained constant, was
set to 0.1 seconds. This value was chosen by balancing the cost of simulation time with
the condition that this value not have a significant effect on the results.

Therefore, the fGnDP-input model had only two parameters that were left for us to
vary, the inhibition-excitation ratio r and the Hurst index H of the inputs. For r, we used
the same set of values that was used for the Pareto-input model: 0.0, 0.5, 0.7, 0.8, 0.9,
0.95. We desired to use a set of values for H that spanned the range 0.5 ≤ H < 1.0, which
include all values for which fGn is uncorrelated or LRD, but not degenerate. Thus, we
chose the values 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95.

For the simulations of the fGnDP-input model, we used the result from Section 3.6.2
that the superposition of independent fGnDPs may be approximated by a single fGnDP.
Thus, for each simulation run, we only needed to produce two fGnDPs, one for the
excitatory inputs and one for the inhibitory inputs. Both of these fGnDPs had Hurst
indices of H, and the rate processes were

ΛE(t) = max
{
0, 100λ + 3

√
100λ GH,E (�10t�)

}
for the excitatory process and

ΛI(t) = max
{
0, 100rλ + 3

√
100rλ GH,I (�10t�)

}
for the inhibitory process.

Simulating fGn is not a trivial undertaking, and many different methods have been
suggested, some approximate and some exact, beginning with the early suggestions of
Mandelbrot and Wallis (1969a) and Mandelbrot (1971). Some of the more common
methods include Cholesky decomposition, direct approximation of integral representations,
the Durbin-Levinson algorithm, algorithms involving fast Fourier transforms (FFTs),
and the random midpoint displacement method. In addition, recent research has also
been focused on the production of LRD processes, such as fGn, using wavelet transforms
(e.g. Abry, Flandrin, Taqqu, & Veitch, 2000). For a concise overview of these, and other,
methods with brief descriptions and discussion of the pros and cons of some of these
methods, and references, see Bardet, Lang, Oppenheim, Philippe, and Taqqu (2002).

The random midpoint displacement method (see, e.g., Lau, Erramilli, Wang, &
Willinger, 1995), although fast and popular, is quite inaccurate, and approximation of
integral representations of fBms can also be problematic. Although it is an obvious and
exact method, the Cholesky decomposition method (see, e.g., Beran, 1994) is exceedingly
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slow, with a computational complexity of O(N3) for a sample of length N . In the past,
we have typically used the Durbin-Levinson algorithm (Taqqu, Teverovsky, & Willinger,
1995; Brockwell & Davis, 1991), which is also an exact method, but only requires O(N2)
operations. Nevertheless, since each of the 1200 simulated fGns (60 sets of parameters
× 10 simulation runs per set × 2 fGns per run) requires 106 samples (105 seconds × 10
samples per second), we still found the computation time for this algorithm prohibitive.
FFT methods, however, only have an algorithmic complexity of O(N log2 N), which is
an immense improvement over O(N2) for very large N . Although most popular FFT
methods (e.g. Paxson, 1997; Ledesma & Derong, 2000) are approximate (and, often, quite
inexact), an exact FFT method has been developed (Davies & Harte, 1987; Beran, 1994;
Bardet et al., 2002). While the approximate FFT methods are attempts to match the
frequency spectrum of fGn, the obvious choice for a Fourier transform method, it turns
out that applying the FFT in an algorithm meant to match the covariance structure
of fGn produces an exact method. This exact method is based upon embedding the
covariance matrix in a circulant matrix, but the use of the FFT circumvents any matrix
computations. The main drawback FFT methods, however, is that they require large
amounts of memory for long samples. We were, however, able to meet these requirements
with 1.5 gigabytes of RAM, and thus used the exact FFT method to produce fGns in the
simulations of the fGnDP-input model.

After simulating the fGnDP-input IF model with all combinations of the values of the
two parameters r and α, we calculated estimates of the CVISI , the FFC, and the IDC for
each simulation run in the same manner as was done for the renewal-input model. This
included estimating the FFC and IDC of the surrogate data, produced by shuffling the
interspike intervals, for each simulation run.

3.6.4 Simulation Results for the IF Model with fGnDP Inputs

Figure 3.8 shows the estimated values of CVISI from all of our simulations of the fGnDP-
input model plotted versus the inhibition-excitation ratio r. Column (a) contains graphs of
the mean CVISI ’s calculated across the ten simulations at each combination of parameter
values for r and H. Means for the same value of H are connected by lines. Like the
Gaussian-input model and the Pareto-input model, the graph of CVISI as a function of
r for any particular value of H has an increasing, convex shape. More specifically, these
curves are well-approximated by the square root of a rational function with a pole at
r = 1. Furthermore, the values of CVISI all lie above the curve for the Poisson-input
model (dashed line), and they increase with H. Since, like the Pareto-input model, the
intervals in the superpositions of the inputs are positively correlated for this model,
the fact that CVISI is always greater (at least for 0.5 ≤ H < 1) than in the Poisson-
input model is to be expected. The positive correlation between CVISI and H is also
not surprising, given the results for the Pareto-input model. In the Pareto-input model,
decreasing the value of α strengthened the dependence between intervals in the output,
and, we suspect, the input-superpositions, of the model. This was also associated with
increases in the value of CVISI . In the present model, increasing the value of H will
certainly strengthen the dependency between intervals in the input-superpositions. Thus,
we should expect that such increases in H will lead to stronger dependence in the output
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as well, and that this be associated with increases in the value of CVISI . In the IDCs
below, we will see that increases in H do indeed strengthen the dependence between the
output intervals. These results thus indicate that for higher values of H the fGnDP-input
model requires less excitation-inhibition balance to achieve any particular value of CVISI .
As for the Pareto-input model, this means that, for high values of H, the CVISI of the
output of the fGnDP-input model is substantially larger than physiological estimates at
even moderate degrees of balance.

Column (b) of Figure 3.8 shows, for a subset of the values of H, the individual
estimates of CVISI for each simulation. The lines again connect the mean value of these
estimates. Thus, like Figures 3.3 and 3.5, there are ten symbols, one for each simulation
run, for each of the different combinations of the two parameters r and H. Here again
the symbols are tightly grouped for low values of r and weaker LRD, i.e. low values of H.
Also, in similarity to the other two sets of simulations, the variance of estimates of CVISI

increases as either r or H is increased. Again, this is a result of the fact that the model
approaches a non-stationary state as r or H approach the value of one.

Figure 3.9 shows the FFCs and IDCs for simulations of the IF model with fGnDP
inputs for several representative combinations of the values for the parameters H and r.
The curves for Hurst indices of H = 0.5, H = 0.7, and H = 0.9 are shown in 3.9a, 3.9b,
and 3.9c, respectively. For each of these values of the Hurst index, FFC/IDC sets are
shown for the inhibition-excitation balance ratios r = 0.0, r = 0.5, r = 0.8, and r = 0.95.
The entire set of FFCs and IDCs from all of our simulations are shown in Appendix B.3.

For these curves, as should always be the case, the FFCs approach a value of one at
very small counting interval lengths, and the mean surrogate-data IDCs are horizontal.
Due to the lack of very short intervals in the output of this model, caused by the integra-
tion mechanism, the initial trend of the FFCs is downward. These initial downward trends
are comparable to those seen in the FFCs of the Gaussian-input and Pareto-input models.
In contrast, the original-data IDCs for the fGnDP-input model, when H > 0.5, have
an initial, and indeed enduring, upward trend. In fact, these IDCs all closely resemble a
power-law function, being very linear on a double logarithmic plot. Like the Pareto-input
model, but in contradistinction to the Gaussian-input model, a superposition of the inputs
to the fGnDP model has positively correlated interspike intervals. Not only does this
positive correlation produce the positive slopes of the IDCs, but it also produces positive
slopes in the original-data FFCs for medium and large counting intervals. Thus, except
when H equals 0.5 or when H is close to 0.5 and r is small, the original-data FFCs have
an asymptotic value larger than one.

Theoretically, the output of the fGnDP-input model with H = 0.5 is a renewal process.
fGn is simply the common “white” Gaussian noise when H = 0.5. Thus, since this fGn
has no memory and Poisson processes have no memory, the fGnDPs used as inputs to the
IF model will have no memory when H = 0.5. Thus, in this sense, it is very similar to the
Poisson-input IF model, with the integration mechanism, which is reset at the occurrence
of each output spike, being the only component possessing memory. The results of our
simulations are in agreement with this prediction. As is evident in Figure 3.9a, the
original-data FFCs and IDCs are nearly identical to the surrogate-data ones. This is the
behavior that we expect from a renewal process. Due to the presence of the fGn, each
input to this model should, however, be more variable than a Poisson process, which
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Figure 3.8: The coefficient of variation of interpoint intervals as a function of the
inhibition-excitation ratio r for the output of an integrate-and-fire model with inputs
that are fractional-Gaussian-noise-driven Poisson processes. For each combination of the
parameters, r and the Hurst index H of the fractional Gaussian noise, ten separate simula-
tion runs were conducted. In column (a), the mean values of the estimates are plotted for
each combination of parameters. Each solid line connects the means for a single value of
H, and the dashed line is the theoretical curve for the model with Poisson process inputs.
All three sets of axes contain the same data, but each displays them on a different vertical
scale. In column (b), the estimates calculated from each individual simulation run are
plotted for a subset of the values of H. Solid and dashed lines are the same as in column
(a), and all three large sets of axes contain the same data. The inset on the bottom set of
axes contains only the data for H = 0.9, revealing two additional data points that are out
of range of the larger set of axes.
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Figure 3.9a: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs with Hurst index H = 0.5. Each set of axes contains ten curves calculated from
original data (black) and ten curves calculated from the corresponding shuffled surrogate
data (gray). For each value of the inhibition-excitation ration r, each individual FFC in
the left set of axes was calculated from the same data as one of the IDCs in the right set
of axes.
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Figure 3.9b: Same as in 3.9a, except for H = 0.7.
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Figure 3.9c: Same as in 3.9a, except for H = 0.9.
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should manifest itself in higher variability at the output of the model. Indeed, as we saw
in Figure 3.8, the variance of the output of the fGnDP-input model for H ≥ 0.5 is always
greater than that for the Poisson-input model having the same r-value.

When H > 0.5, the inputs of the fGnDP model, as well as the superpositions of the
inputs, are LRD. This was also true of the Pareto-input model when α ≤ 2.0. The LRD
in the Pareto inputs and superpositions, however, came in the form of LRcD with infinite
interval-variance and no LRiD, whereas in the fGnDP inputs and superpositions it is in
the form of LRcD with LRiD and finite interval-variance. But this distinction does not
seem to be important for the IF model, at least with regard to the statistical procedures
that we have used. This is demonstrated in the striking similarity between the results from
the Pareto model with α = 1.75 in Figure 3.6b and those from the fGnDP model with
H = 0.7 in Figure 3.9b. Thus, disregarding the effect of the interaction between excitation
and inhibition, in the fGnDP-input model the LRiD at the input propagates through
the model, while in the Pareto-input model the infinite interval-variance of the inputs is
converted into LRiD by the model. In either case, the result at the output seems to be
just about the same.

As we saw in Section 3.5.3, the potential in the Pareto-input IF model is in some
ways similar to the aggregation of ON/OFF source models. At a minimum, both of
these systems convert the infinite variance of intervals between “points” into LRD in a
semi-continuous time series. Since the aggregation of infinite-variance ON/OFF sources
asymptotically approaches fBm (Taqqu & Levy, 1986; Willinger et al., 1995, 1997; Taqqu
et al., 1997) , the “integral” of fGn, the correspondence between the Pareto-input model
and the fGnDP-input model is not unusual. In fact, Lowen and others have developed
a DSPP model that is driven by fractal binomial noise, which is the equivalent of the
aggregation of many infinite-variance ON/OFF sources, to model both neural activity
(Lowen & Teich, 1993a, 1995; Thurner et al., 1997) and network traffic (Ryu & Lowen,
1996, 1997; Ryu, 1997; Ryu & Lowen, 1998, 2000). Predictably, this fractal-binomial-noise-
driven Poisson process asymptotically approaches an fGnDP. In a neuron, the correlate
of the ON/OFF sources may be ion channels (Lowen & Teich, 1993b, 1993d, 1993c;
Lowen, Liebovitch, & White, 1999; DeFelice & Isaac, 1993), since it is suspected that the
durations of their opened and closed states are long-tailed (see, e.g., Liebovitch & Sullivan,
1987; Liebovitch & Toth, 1990a, 1990b; Liebovitch & Koniarek, 1992; Liebovitch, 1996;
Liebovitch & Todorov, 1996; Liebovitch, Scheurle, Rusek, & Zochowski, 2001).

The effect on the output of the fgnDP-input model of balancing the amounts of
excitation and inhibition is comparable to its effect on the other models that we have
considered. As r increases toward one, the effect of the correlation in the inputs is
gradually overwhelmed by the high variability of the excitation-inhibition interaction. The
output will continue to exhibit LRcD, but it will progressively become more a result of
high interval variability rather than of LRiD. However, the surrogate-data FFCs all, except
perhaps when H and r are both very close to one where the approach to non-stationarity
creates unusually large variance in our estimates, asymptote to a finite constant, consistent
with the intervals in the output having finite variance. The output interval-variance does
increase with r, causing the asymptotic constant of the surrogate-data FFCs to move
upwards, but this FFC always remains below its original-data counterpart because of the
presence of LRiD. Also, in a manner analogous to that in the Pareto-input model, the
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difference between the original-data FFCs and the surrogate-data FFCs at long counting
intervals increases as H increases. But, this trend again seems to break down, in this case
as H approaches one.

Pareto RPPs are non-LRD for any α greater than two, but fGnDPs are only non-LRD
when H = 0.5. In addition, the Pareto RPPs will produce positive correlation between
the intervals of the output for any α, including α > 2, while intervals in the output
of the fGnDP model with H = 0.5 are independent. Thus, these two models behave
quite differently in their non-LRD state. The Pareto model is more flexible, allowing a
range of different FFC shapes and differences between the original-data curves and the
surrogate-data curves. On the other hand, only the asymptotic value of the FFCs can
be adjusted, by changing the value of r, for the fGnDP model, and original-data and
surrogate-data FFCs are always identical. Therefore, the fGnDP with H = 0.5 is not
even an improvement over the Poisson-input model, even for non-LRD data. The fGnDP
model is, however, more flexible than the Pareto model in producing weaker short-term
dependence when LRD is present in the output. Due to the positive correlation that
is present in the non-LRD Pareto model, the original-data FFCs and IDCs are already
significantly different than their surrogate-data counterparts on shorter time scales when
α = 2.0, the first value at which it is LRD. In contrast, the original-data curves for the
fGnDP gradually differentiate themselves, at all time scales, from the surrogate-data
curves as LRD is introduced into the output. Thus, although these two models can
produce outputs with similar statistical features, the statistical characteristics of their
outputs are adjustable in different ways.

In short, then, our simulations show that, with proper adjustment of the parameters r
and H, the fGnDP-input model can produce outputs that are like cortical spike trains in
that they possess both LRD and intervals with finite variance. The typical range of values
for CVISI estimates in cortical spike trains is 0.5 to 1.5. Table 3.3 shows the approximate
range of the inhibition-excitation ratio r, for each value of H in our simulations, that
produces values for the CVISI in this range. Using this data and comparisons of the FFCs
from our simulations, some of which are shown in Figure 3.9, with those shown in Teich
et al. (1996), the ability of the fGnDP-input IF model to match statistical properties of
cortical spike trains can be more directly evaluated.

For low values of H, the value of CVISI for the fGnDP model is within the physio-
logical range for r between about 0.6 and 0.9. This is very similar to the Pareto model at
α-values below, but close to, 2.0. For r values near 0.9, the FFCs for H ≈ 0.6 resemble
those of Cell 4 and Cell 7 in Teich et al. (1996). For the Pareto model, however, such
FFCs were created when α was greater than 2.0. The critical difference, however, is that
the H ≈ 0.6 fGnDP model is LRD, while the α > 2.0 Pareto model is not. However, since
the slope of the FFCs is so shallow for the H ≈ 0.6 fGnDP model, the LRD in the output
is difficult to distinguish using an FFC calculated from any reasonable length sample of
the process.

For H in the neighborhood of 0.65 to 0.85, the upper limit of r-values needed to
produce physiological CVISI ’s is 0.8 − 0.9. For this combination of parameters, the FFCs
of the fGnDP model resemble those of Cell 3 and Cell 19 of Teich et al. (1996). These
FFCs suggest the presence of LRcD, but the surrogate-data FFCs asymptote to a finite
value above one. If r is reduced, then this asymptotic value drops below one, which does
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H Range of r

0.5 0.69 < r < 0.96
0.55 0.66 < r < 0.95
0.6 0.63 < r < 0.94
0.65 0.59 < r < 0.92
0.7 0.55 < r < 0.90
0.75 0.50 < r < 0.87
0.8 0.45 < r < 0.81
0.85 0.32 < r < 0.77
0.9 0.25 < r < 0.64
0.95 0.06 < r < 0.28

Table 3.3: The range of the inhibition-excitation ratio r, for each value of H, that leads to
values of CVISI between 0.5 and 1.5 for the integrate-and-fire model with fGnDP inputs.
The ranges of r were approximated from plots of CVISI versus r (see Figure 3.8) obtained
from simulations of the model.

not match the results in Teich et al. (1996), although the LRcD is still present. This case
may, however, match the FFCs of neurons with CVISI < 1.0 if they were available. Similar
to those of the Pareto model, as r is increased, the FFCs still resemble the physiologically
measured FFCs, but the values of CVISI become too large.

As H increases to about 0.9 and above, the FFCs and CVISI ’s can no longer be
matched to those measured physiologically. When these models have physiological values
of CVISI , they are still LRcD, but the surrogate-data FFCs asymptote at too low of a
value. Like the Pareto model with α ≈ 1.0, moderately large values of r tend to result in
FFCs that suggest that the output of the model is renewal-like. Here, again, this is most
likely due to the models approach to non-stationarity, which occurs at H = 1, with the
effect of tightly balanced excitation and inhibition. Also, much greater variability in the
estimates of the Fano factor and the index of dispersion of intervals are evident in this
parameter range.

Therefore, like the Pareto-input model, the fGnDP-input model can produce outputs
that share common statistical features with the spike trains in cortical neurons. However,
whereas the inputs to the Pareto model do not seem to be justified physiologically, the
inputs to the fGnDP are known to be statistically similar to the spike trains of neurons
that project into cortex.

3.7 Conclusion

In Chapter 2, we were able to show that a very large class of models meant to explain
the high variability of cortical spike trains was incapable of also producing LRD, another
statistical feature of cortical spike trains. Here we have considered another group of highly
variable cortical models, as well as suggesting a new type of model, and have studied them
through the use of simulations using many different combinations of parameter values.
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The first group of models consists of an integrate-and-fire mechanism with inputs that
are renewal point processes. This model is capable of producing correlation between the
intervals of the superpositions of inputs that then causes the intervals in the output of the
model to be similarly correlated. If the intervals of the inputs are distributed according
to a positive-Gaussian distribution, this correlation is negative. We expect this result
to be true of any interval distribution that possesses a shorter tail than the exponential
distribution, the interval distribution of a Poisson process. Although the Gaussian-input
model can produce any value of CVISI if the inhibition-excitation ratio r is properly
adjusted, the negative correlation created by these inputs hinder the production of LRD.
Thus, in some sense, the Gaussian-input model is inferior to the standard Poisson-input
model.

If the intervals of the RPP inputs are distributed according to a Pareto distribution,
then positive correlation is produced in the IF model. We expect this to also be true
of any interval distribution with a tail that is longer than the exponential distribution.
Furthermore, if the tail of the distribution is long enough that the variance is infinite, then
both the inputs and the output of the model are LRD. However, the input RPPs will be
LRcD, but not LRiD, while the output will be both LRcD and LRiD. This “conversion”,
so to speak, is produced by the integration process in the model, and has precedent in
other models that aggregate processes with infinite variance. We found that by proper
adjustment of α, a parameter of the Pareto distribution that affects the length of its tail,
and the inhibition-excitation ratio r, we could produce spike trains with the Pareto-input
IF model that had interval variance and LRD similar to spike trains recorded from cortical
neurons. The main drawback to this model was that its inputs do not seem physiologically
justified, since they have intervals that have infinite variance but are not correlated.

We therefore suggested a model with inputs that are LRD, but are statistically
similar to actual neurons. The fractional-Gaussian-noise-driven Poisson process has
elsewhere been used as a model for sensory neurons in the periphery, such as primary
auditory neurons, to model the LRD present in their spike trains. The same statistical
characteristics present in these neurons are known to exist in many sub-cortical sensory
pathways, including certain neurons that project into the cortex. Thus, this process seems
to be a reasonable choice for the inputs to the IF model of cortical neurons. We found
that, as for the Pareto RPP inputs, the fGnDP inputs did indeed produce LRD in the
output of the IF model. However, in the fGnDP both the inputs and the outputs had
LRcD and LRiD, and neither had intervals with infinite variance. By proper adjustment
of the Hurst index H, a parameter that modulates the strength of the LRD present in an
fGnDP, and the inhibition-excitation ratio r, we were able to produce output spike trains
with the fGnDP-input IF model that approximated the LRD and variability of cortical
spike trains. Although the output of this model is not necessarily more similar to that
of cortical neurons than the Pareto-input IF model, the physiological justification of its
fGnDP inputs is reason enough to favor it over the Pareto model.

The one class of models of high variability in cortical neurons that is not covered by
the work in this chapter and Chapter 2 is the group of models that produces variability
through network dynamics. These models consist of large networks of interconnected
integrate-and-fire neurons. Usher and his colleagues (Usher et al., 1994, 1995) demon-
strated that the spike trains in individual units of their version of this model have power
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spectrums that approximate a power-law at low frequencies, a characteristic that is es-
sentially equivalent to having LRD. (See Section 2.3 for further details regarding the
relationship between the power spectrum and long-range dependence.) However, although
they can find LRcD, their analyses are not capable of distinguishing between LRcD
produced by high interval-variance and LRcD produced by LRiD. Thus, in future work,
we would like to apply the analysis methods used in this chapter to simulations of their
model.
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Chapter 4

Estimating the Moments of Long-Range Dependent

Spike Trains

ABSTRACT Sample statistics for spike counts are commonly used to
characterize neurons or to assess their ability to carry information about the
stimulus. However, use of these statistics is rarely associated with an evaluation
of the expected quality of the estimates obtained from them. Relatively recently,
long-range dependence has been observed in many neurons. In other types of
stochastic processes, long-range dependence is known to have adverse effects
upon such sample statistics. Therefore, in this chapter, we attempt to gauge
the reduction in quality, caused by long-range dependence, of three common
statistical estimators: the sample mean, the sample variance, and the sample
standard deviation. In particular, we examine their expected value and variability
for the fractional-Gaussian-noise-driven Poisson process. Other experimental
studies have demonstrated that this process is a good model of long-range
dependence in the spike trains of many neurons. We conclude that the variability
of the sample mean is likely to be much larger in the presence of long-range
dependence than would be expected otherwise. Furthermore, in the presence of
long-range dependence, the sample variance and the sample standard deviation
underestimate the actual variance and standard deviation of spike counts. We
discuss the implications of these findings for common experimental methods and
results.

4.1 Introduction

The nervous system is able to quickly encode and process a remarkable amount of
information about external stimuli. At present, no semblance of a general theory that
explains how this is accomplished exists. In particular, although significant progress has
been made in the study of some specialized neural systems, the meaning of the activity
in sensory neurons, as understood by other neurons, is largely a mystery. From another
perspective, this means that the properties of this neural activity that convey information
to other neurons have not been fully identified.
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The output activity of most neurons consists of a temporal sequence of discrete events
that are more or less identical. Each of these events is called an action potential, or,
colloquially, a spike, and is essentially pulsatile in nature. The theory or assumption that
neural information is encoded in the rate of occurrence of action potentials, or the “firing
rate”, is by far the most pervasive explanation of neural coding and processing. One of
the underlying implications of the theory of rate coding is that the trial to trial variability
that is observed in neural responses to presumably identical experimental conditions is
considered by the system to be noise. Thus, this “noise” places limits on the ability of the
nervous system to detect and categorize external stimuli. Some of the noise may, of course,
be removed by averaging, but even that which can be averaged out is taxing the system
by requiring the use of some of its resources. Therefore, the form of this noise and its
statistical properties have significant implications for the structure of information content
within neural activity and the capabilities and limits of neural processing.

In estimating and representing the stochastic nature of neural activity within the
context of rate-coding theory, researchers are wont to estimate the mean and variance
of the firing rate, or, equivalently, of the count in a fixed-length interval of time. How-
ever, although so common as to usually not incur scrutiny, these seemingly innocuous
measurements can be quite misleading if their underlying assumptions are violated. For
each estimator that is used to measure a moment of the underlying process, its reliability
requires that the following be true: (i) the value of the estimator is on average equal to the
value of the moment that it is estimating; (ii) as the number of observations increases, the
value of the estimator converges (in a sense that will be made explicit later) to the value
of the actual moment; (iii) and this convergence occurs fast enough that the value of the
estimator calculated from a limited set of observations is a reasonably good approximation
to the value of the actual moment. Of course, these somewhat informal prescriptions
have formal mathematical complements that, in turn, place restrictions on the underlying
process that is producing the observations used in the calculation of an estimate. For
the standard estimators used for the mean and variance, the validity of the estimators is
predicated on the following: (i) the mean and variance of the underlying process exist and
are finite; (ii) the observations are taken from a stationary process and are thus identically
distributed; (iii) and the observations are statistically independent. Furthermore, determi-
nation of the rate of convergence of these estimators is commonly established on the basis
of the supposition that the observations have a Gaussian (normal) distribution.

Rarely, in practice, are the requirements of these presuppositions met. Often, however,
deviations from these ideals are small, in the sense that they have limited effects on the
results. But this is not always the case. In this paper we will investigate the validity
of these assumptions in relation to estimating the mean and variance of neural spike
counts and firing rates. In particular, we will consider them in relation to the long-range
autocorrelations that seem to often be present in neural spike trains. In this context,
the property of possessing long-range autocorrelations has been referred to as “fractal
behavior” or as possessing “fractal patterns”, but it is more generally (and formally)
known as having long memory or long-range dependence. Since examples where the
presence of long-range dependence frustrates moment estimation and related statistical
procedures in standard stochastic processes, such as stochastic time series, are plentiful
(see, for example, Beran, 1994), the questions that we shall raise have significant bearing
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on the validity of moment estimation for neural firing rates and the adequacy of the theory
of rate coding.

4.2 Long-Range Dependence: Theory and its

Relevance to Neural Activity

4.2.1 Short-Range and Long-Range Dependence

Classical statistical methodologies have primarily been developed and validated for short-
range dependent processes. A stationary stochastic process {Xi : i ∈ Z} is said to have
short-range dependence if it possesses the following essentially equivalent properties (Cox,
1984):

(i) lim
n→∞

n∑
j=0

Cov{X0, Xj} = C1;

(ii) SX(0) = C2, where SX(ω) is the spectral density (or power spectrum) of {Xi};

(iii)
V ar

{∑n
j=1 Xj

}
n

∼ C3 as n → ∞.

where the Ck’s are some finite constants. Processes that have no dependence also fall into
this class since, for example, C1 = 0 for such a process. The critical notion denoted by
the term “short-range dependence” is that the correlations at least decay quickly as the
separation between the random variables increases, not that these correlations necessarily
exist.

According to the properties above, a short-range dependent process has (i) quickly
decaying autocorrelations and (ii) a spectral density that is finite-valued at zero frequency.
Also, according to (iii), asymptotically, the variance of its sample mean decays as one over
the number of sample values or faster.

The negations of the three properties for short-range dependent processes above yield
a description of long-range dependent processes. Thus, for a stationary stochastic process
{Xi : i ∈ Z} that is long-range dependent (Cox, 1984),

(i’) lim
n→∞

n∑
j=0

Cov{X0, Xj} = ∞;

(ii’) lim
ω→0

SX(ω) = ∞;

(iii’) lim
n→∞

V ar
{∑n

j=1 Xj

}
n

= ∞.

Hence, (i’) its autocorrelations decay slowly with separation of the random variables, and
(ii’) its spectral density has a pole at zero frequency. Furthermore, (iii’) the variance of its
sample mean decays more slowly than one over the number of sample values.
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The concept of long-range dependence is important because, over the last half-century,
its presence has been detected in many natural and physical processes. Hence, a growing
number of models for long-range dependence have been developed over that time as
well. And, since it can have significant and adverse consequences on statistics developed
for short-range dependent processes (see, e.g., Beran, 1994; Cox, 1984), the presence of
long-range dependence is important to identify in data.

Any of the three previous properties can be applied as a definition of long-range
dependence. Property (i’) seems to be the obvious choice, since it refers directly to
the typical measure of dependence: covariance. Yet, in practice direct estimates of the
covariance tend to be noisy. This is especially problematic when the covariances are small,
which, perhaps contrary to intuition, can be the case for long-range dependent processes.
Long-range dependence is an asymptotic property that is the result of the cumulative
effect of many correlations, not the result of a single or small set of large correlations.

The variance of property (iii’) can usually be measured more reliably than covariances.
The reason for this, as well as the connection between property (iii’) and property (i’), is
easily seen in the basic identity

V ar




n∑
j=1

Xj


 =

n∑
j=1

V ar {Xj} + 2
∑
i<j

Cov {Xi, Xj} . (4.1)

Thus, this variance is associated with the sum of covariances, rendering its estimates more
stable than those of individual covariances. Finally, property (iii’) is to be preferred over
property (ii’) due to the greater ease with which it is estimated and understood.

Thus, we will use the following definition for long-range dependence in general
stationary stochastic processes.

Definition 4.1. A stationary stochastic process {Xi : i ∈ Z}, for which Xi has finite
variance for all i, exhibits long-range dependence (LRD) when

lim sup
n→∞

V ar
{∑n

i=1 Xi

}
n

= ∞.

For this definition to be valid, the stochastic process must have finite variance so that
the second-order properties upon which long-range dependence is based are well-defined.
Although infinite variance often occurs in conjunction with long-range dependence, as will
become apparent in following sections, this situation is not relevant in the context of the
point processes that we will be considering.

4.2.2 Long-range Dependence in Point Processes

In order to define long-range dependence in point processes, we must relate Definition 4.1
to properties that are particular to point processes. We will only be considering one-
dimensional stochastic point processes on the real line, which will represent time. These
point processes can be characterized by either their interpoint distances or the numbers of
points in any arbitrary set of intervals on the real line. Thus, there are actually two types
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of long-range dependence that can occur in point processes, one associated with interpoint
intervals and one associated with counts.

Since the interpoint intervals of a point process form a stochastic process, long-range
dependence in these intervals is easily defined in a way analogous to Definition 4.1.

Definition 4.2. (Daley & Vesilo, 1997) 1 A stationary point process N(·) on the real line
exhibits long-range interval dependence (LRiD) when the stationary sequence of interpoint
intervals {Yi}, with finite variances, is LRD in the sense that

lim sup
n→∞

V ar
{∑n

i=1 Yi

}
n

= ∞.

In order to apply Definition 4.1 to the counts of a stochastic point process, we might
consider the stochastic process formed by the counts in a sequence of T -length intervals for
some fixed 0 < T < ∞, e.g. the sequence with elements

Ni(T ) = N
(
(i − 1)T, iT

]
,

for i = 1, 2, . . .. Thus, the definition might look something like

lim sup
n→∞

V ar {∑n
i=1 Ni(T ) }
n

= ∞,

which begs the question of how to choose the value of T . However,

n∑
i=1

Ni(T ) =
n∑

i=1

N
(
(i − 1)T, iT

]
= N(0, nT ].

Thus, using this relation, substituting t = nT , and recognizing that the multiplication or
division of an expression by a finite, positive constant does not change whether or not its
limit is infinite, a definition without arbitrary variables such as T is obtained.

Definition 4.3. (Daley & Vesilo, 1997) A second-order stationary point process N(·) on
the real line exhibits long-range count dependence (LRcD) when

lim sup
t→∞

V ar
{

N(0, t]
}

t
= ∞.

The discussion in Section 3.3 suggests that LRcD is the “general” LRD property of
point processes, and that the statistical origin of LRcD in any particular point process
may reside in either LRiD or the infinite variance of interpoint intervals or in both of
these.

1The original definition of Daley and Vesilo (1997) does not contain the phrase “with finite variances”,
though the finiteness of the variances of the intervals is necessary and may have been implied.
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4.2.3 Long-Range Dependence in Neural Spike Trains

As summarized in Section 2.3, LRD has been observed in the spike trains of many
different neural systems. In these studies the spike trains are often said to exhibit other
properties, such as fractalness, self-similarity, or 1/f fluctuations, but these properties
imply the presence of LRD. LRD has been investigated primarily in the sub-cortical and
cortical sensory systems of mammals, although it has also been found in the visual system
of certain insects (Turcott et al., 1995). But, in practically all instances where analysis of
the spike trains was sensitive to LRD-like properties, it provided evidence of the existence
of LRD. The one exception is the peripheral vestibular system (Teich, 1989), which has
very different statistical properties than most sensory systems. This suggests that LRD
may be a common property of neural spike trains.

The sub-cortical locations where LRD has been identified include the primary auditory
nerve (Teich, 1989; Teich & Lowen, 1994; Lowen & Teich, 1996b), the lateral superior olive
(Teich et al., 1990; Turcott et al., 1994), the retina and lateral geniculate nucleus (Teich,
1996; Teich et al., 1997; Lowen et al., 2001), and the ventrobasal neurons of the thalamus
(Kodama et al., 1989). In all, but the last, the analysis of the spike trains revealed that
the LRcD in the spike trains was due to correlations in the sequence of interspike intervals
and that the variance of these intervals was lower than that expected of a Poisson process.
The study of Kodama et al. (1989) neither supports nor refutes this conclusion.

In the cortex, LRD has been found in primary visual cortex (Teich et al., 1996),
somatosensory cortex (Wise, 1981), the mesencephalic reticular formation (Yamamoto
et al., 1986; Gruneis et al., 1989, 1990, 1993), and the hippocampus (Mushiake et al.,
1988; Kodama et al., 1989). The study in the primary visual cortex revealed that the
LRcD present in its neural spike trains was also due to LRiD, but that the variance of
the interspike intervals was greater than that of a Poisson process, though still finite.
The remaining cortical studies did not produce any results relevant to the question of the
statistical origin of the LRcD.

4.3 Statistical Theory

4.3.1 The Distinction between Population Moments and Sample
Moments

Often, in applied settings, statistics become conflated with the population moments
that they estimate. To draw the distinction, consider the “random machine” shown
in Figure 4.1. A stochastic system is composed of a particle floating freely in a pool.
All possible states of the system form a set, called the sample space Ω. The precise
state of the system at any time, ω ∈ Ω, is sent by “magical” sensors in the pool to the
function machine X, which calculates a particular value from the state of the system. The
“function machine” is analogous to a random variable, which is a function on a sample
space. For example, the output would be X1 = X(ω1) when the stochastic system is in the
state ω1, X2 = X(ω2) when the system is in the state ω2, and so on. The function machine
then outputs these values, and although it could possibly output its values continuously,
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Figure 4.1: A hypothetical “random machine”. A floating particle moves freely in the pool
at the left. This constitutes a stochastic system. “Magical” sensors in the pool send all
information (ω) about the state of the system to the function machine (X). The function
machine determines a specified value, e.g. the distance of the particle from the edge of the
pool, from the state of the system and outputs this value every second, say. An observer
only has access to the output values of the function machine and wishes to study the
floating particle system. In (a), the observer looks at each of the individual output values
of the function machine. In (b), the observer has decided to use an averaging machine
(X̄), another type of “function machine”, that collects the output values of X at its input
and outputs the average values X̄k =

∑k
i=1 Xi. See text for further explanation.

for ease of exposition, let us suppose that it outputs one every second, say. Also, suppose
that these values at the output of the function machine are the only data that an observer
has available for studying the system. This situation is shown in Figure 4.1a.

The population moments, in this case, are directly determined by those properties,
intrinsic to the stochastic system, that influence the behavior of the parameters of the
system that affect the value of the random variable output. They convey information
about the expected behavior of the sequence of output values but are not directly available
to our hypothetical observer. If this observer is interested in the value of a particular
population moment, then, at best, he can infer its value from a set of output values,
the random variables. To do this, he uses a statistic, a function of a set of random
variables, that is a good estimator of the relevant population moment. For instance, let’s
say that the observer interested in the mean. Then he might, as shown in Figure 4.1b,
place an “averaging machine” so that it collects the output values from the “function
machine”, averages them, and emits these average values. Hopefully, then, these averages
approximate the population mean well.

The sample moments are a particular set of statistics, and these statistics, or statistics
based upon them, are usually good estimators of the population moments. For example,
suppose that we have a sample of n values, X1, X2, . . . , Xn, from the output of a stochastic
process, and, furthermore, suppose that it is reasonable to think that the values in this
sample are statistically independent. Then, the sample mean, which is the same as the
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first-order sample moment

X̄ =
1

n

n∑
i=1

Xn,

is a good estimator of the population mean. When estimating the population variance,
however, the best estimator is not the second-order (central) moment

m2 =
1

n

n∑
i=1

(Xn − X̄)2,

since its expected value is not equal to the population variance. But the best estimator,
s2, is a function of the second-order (central) moment:

s2 =
1

n − 1

n∑
i=1

(Xn − X̄)2 =
(

n

n − 1

)
m2.

This is what is ordinarily called the sample variance.
In general, how well a particular statistic estimates the population moment is deter-

mined by the unobservable system. Thus, in choosing a statistic to estimate a particular
population moment, one is implicitly, if not explicitly, relying on a model of the unobserv-
able system. Especially for lower order moments, e.g. the mean and variance, the class
of models for which certain estimators are, in some sense, optimal may be very large.
However, the behavior of such estimators may vary considerably across this class. The
most familiar behavioral characteristics of common moment estimators have usually been
derived under the assumption that the observations within a sample are independent.
Examples are that the variance of the sample mean is equal to the population variance
divided by the size of the sample and that the expected value of sample variance is equal
to the population variance. But if the independence assumption is violated, these need not
be true.

4.3.2 The Quality of Statistical Estimators

The quality of a statistic used to estimate a parameter of a stochastic process can be
assessed by considering its bias, consistency, and variability. In the previous section,
we hinted at the concept of the bias of an estimator, which is based upon the intuition
that a statistic should on average be equal to the parameter that it is estimating. If θ̂
is an estimator of the parameter θ, then the bias of θ̂ is E{θ̂} − θ. Thus, it is desirable
that the bias be zero, or that the statistic be unbiased. If the bias is positive, then the
statistic tends to overestimate the parameter, and if it is negative, then the statistic
tends to underestimate the parameter. Furthermore, even if a statistic is biased, it may
be be asymptotically unbiased, which means that its bias will go to zero as the sample
size increases. Although such a statistic may not be ideal, it may be the best when other
competing factors, such as its variability, are considered.

Not only is it desirable that a statistic be equal to the value of the estimated param-
eter, but the probability that it is close to the parameter value should increase as the
sample size increases. This notion is made mathematically rigorous with the concept of
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consistency. A statistic is said to be consistent if it converges in probability to the value
of the estimated parameter. Loosely, consistency means that as the sample size increases
the distribution of the statistic better approximates a Dirac delta function with its mass
located at the value of the parameter. In other words, the probability accumulates at the
parameter value. In addition to knowing that a statistic is consistent, it is helpful to know
how fast it converges to the parameter value. In order to have a precise gauge of this, we
would need to know the full distribution of the statistic, which is usually not available
or obtainable. Thus, to assess the speed of convergence, we can consider the variance of
the estimator. Clearly, if a statistic is consistent, then its variance will asymptotically
approach zero.

Thus, to assess the quality of a statistic, or estimator, we should look at its bias
and its variance. That these are the two critical properties that should be considered is
supported by the fact that the mean squared error of an estimator is equal to the sum of
its variance and the square of its bias. Assuming again that the statistic θ̂ is an estimator
of the parameter θ, the mean squared error (MSE) of this estimator is

MSE ≡ E
{
(θ̂ − θ)2

}
= E

{
θ̂2 − 2θ̂θ + θ2

}
= E

{
θ̂2 − 2

(
E{θ̂}

)2
+

(
E{θ̂}

)2
+

(
E{θ̂}

)2 − 2θ̂θ + θ2
}

= E
{
θ̂2 − 2θ̂E{θ̂} +

(
E{θ̂}

)2}
+

(
E{θ̂}

)2 − 2E{θ̂}θ + θ2

= E
{
(θ̂ − E{θ̂})2

}
+

(
E{θ̂} − θ

)2

= V ariance + Bias2

4.4 Models of Long-Range Dependent Spike Trains

4.4.1 The Fractional-Gaussian-Noise-Driven Poisson Process

In order to develop a theory of the performance of estimators for firing rates in neurons,
we must have a model of the statistical characteristics of spike trains. In particular, for
our purposes, the model must include the long-range dependence observed in spike trains.
We will use the fractional-Gaussian-noise-driven Poisson process (fGnDP), which was
introduced in Section 3.6.1, as our model. The fGnDP was one of the models developed
for the spike trains in auditory nerve and other sub-cortical sensory neurons once long-
range dependence was observed empirically Teich (1989), Teich et al. (1990), Teich
(1992), Teich and Lowen (1994), Lowen and Teich (1993a, 1995, 1996a, 1997), Kumar and
Johnson (1993), Thurner et al. (1997). Thus, it should be relevant to most sub-cortical
sensory neurons. Furthermore, since it is long-range interval dependent but has finite-
variance interpoint intervals, as we saw was the case for cortical neurons, the general
results obtained from this model should be applicable to these neurons as well.

Unless stated otherwise, our model will be a doubly stochastic Poisson process with
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the stochastic rate process

Λ(t) = max
{
0, λ + σGH

(⌊
t0 + t

τ

⌋)}
, (4.2)

where {GH(k), k ∈ Z} is standard fractional Gaussian noise, λ and σ are positive
constants, t0 is a random variable uniformly distributed on the interval [0, τ) that is fixed
for each sample function, and �x� is the largest integer less than x. The random variable
t0 is necessary in order for the process to be stationary, but has no effect otherwise.

In the following section, we will give some results for this model. In the derivation of
those results, we have assumed that σ � λ, so that the probability that λ + σGH < 0
is negligible. Thus, any results derived will necessarily, by virtue of this assumption, be
approximate. However, in order to obtain other results, it was necessary to make a further
approximation. The autocovariance function of the standard fGn process GH(k) is (e.g.
Beran, 1994, p. 52; Samorodnitsky & Taqqu, 1994, p. 333)

γ
G
(k) = E

{
GH(0)GH(k)

}
=

1

2

{
(k + 1)2H − 2k2H + |k − 1|2H

}
, k = 0, 1, 2, . . . . (4.3)

Thus, with the only approximating assumption being that the truncation effect of the
“max” function is negligible, the autocovariance of the rate process in (4.2) is

γ
Λ
(t) = E

{(
Λ(t0) − λ

)(
Λ(t0 + t) − λ

)}
= E

{(
σGH

(⌊
t0
τ

⌋)) (
σGH

(⌊
t0 + t

τ

⌋))}

= σ2E
{
GH

(⌊
t0
τ

⌋)
GH

(⌊
t0 + t

τ

⌋)}

= σ2Et0

{
γ

G

(⌊
t0 + t

τ

⌋
−

⌊
t0
τ

⌋)}
, for t ≥ 0, (4.4)

where Et0 is the expectation with respect to the random variable t0. However, the
conversion from the discrete samples of fGn to the stochastic rate process in continuous
time creates difficulties for some analytical derivations. Thus, in these instances, we will
use the following continuous approximation to (4.3):

γ̃
G
(s) =

1

2

{(
s

τ
+ 1

)2H

− 2
(

s

τ

)2H

+
∣∣∣∣sτ − 1

∣∣∣∣2H
}

=
1

2τ 2H

{
(s + τ)2H − 2s2H + |s − τ |2H

}
, for s ≥ 0.

(4.5)

Thus, γ̃
G
(kτ) = γ

G
(k) for k = 0, 1, 2, . . .. The corresponding approximation to the

autocovariance of the rate process is

γ̃
Λ
(t) =

σ2

2τ 2H

{
(s + τ)2H − 2s2H + |s − τ |2H

}
, for t ≥ 0. (4.6)
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4.4.2 Moments and Moments of Statistics for the Fractional-
Gaussian-Noise-Driven Poisson Process

In this section, we will, for the most part, only give results, since most of the derivations
or proofs are cumbersome but not conceptually helpful in subsequent results nor in the
following sections. Those proofs that are not contained in this section can, however, be
found in Appendix C.

The mean and variance must exist (i.e. be finite) if they are to be estimated, and we
must know their values in order to compare them to values of their estimators. In the
following theorems, we derive approximate formulae for the mean and variance of the
count in an interval of length T for an fGnDP.

Theorem 4.1. Let N(·) be an fGnDP with rate process

Λ(t) = max
{
0, λ + σGH

(⌊
t

τ

⌋)}
, (4.7)

where GH(k) is standard fractional Gaussian noise with Hurst index H. Assuming that the
right term is negative with a probability of nearly zero, the mean count in an interval of
length T is

E{N(T )} ≈ λT,

and the variance of the count in the same interval is given by the following:

(i) If 0 < T < τ , then

V ar {N(T )} ≈ λT + σ2T 2

(
1 +

22H−1 − 2

3
· T

τ

)
; (4.8a)

(ii) If T ≥ τ and n =
⌊

T
τ

⌋
, then

V ar {N(T )} ≈ λT +
σ2τ 2

6

{(
T

τ
− n

)3

(n + 2)2H

−
[
3

(
T

τ
− n

)2 (
T

τ
− n − 1

)
−

(
3

(
T

τ
− n

)
+ 1

)]
(n + 1)2H

+

[
3

(
T

τ
− n

)2 (
T

τ
− n − 2

)
+ 4

]
n2H −

(
T

τ
− n − 1

)3

(n − 1)2H − 2

}
. (4.8b)

Corollary 4.2. Let N(·) be the fGnDP in Theorem 4.1. If T is an integer multiple of τ ,
then the variance of the counting measure is

V ar {N(T )} ≈ λT +
σ2τ 2

6

{(
T

τ
+ 1

)2H

+ 4
(

T

τ

)2H

+
(

T

τ
− 1

)2H

− 2

}
.

Proof. Substitute T
τ

for n in (4.8b).



96

1 0-2

1 00

1 02

1 04

1 06

1 0-3 1 0-2 1 0-1 1 00 1 01 1 02

Theory: Single Approximation
Theory: Both Approximations
Estimates from Simulations

C
ou

nt
 V

ar
ia

nc
e

Counting Interval, T (sec)

Figure 4.2: Comparison between different approximations to the variance of the counts for
an fGnDP. The black, solid line is the curve for (4.8), which was obtained assuming only
that negative values of the non-truncated rate process were negligible. The gray, dotted
line is the curve for (4.9), which, in addition, included the autocovariance approximation
of (4.6). The open circles are estimates from 10,000 independent simulations. The
parameter values used in all cases were H = 0.9, λ = 100 spikes/s, σ = 30 spikes/s, and
τ = 0.1 s.

Theorem 4.3. Let N(·) be the fGnDP in Theorem 4.1. Using the approximation (4.6)
to the autocovariance function of its rate process, the count variance of N can be approxi-
mated by

V ar {N(T )} ≈ λT +
σ2τ 2

2(H + 1)(2H + 1)

×
{(

T

τ
+ 1

)2(H+1)

− 2
(

T

τ

)2(H+1)

+
∣∣∣∣Tτ − 1

∣∣∣∣
2(H+1)

− 2

}
. (4.9)

Figure 4.2 contains a comparison between the approximations of (4.8), (4.9), and
estimates, using the sample variance, from independent simulations of an fGnDP. The
two analytical approximations are practically identical, and the results from simulations
are consistent with these theoretical results. This comparison provides evidence that the
approximation (4.6) produces relatively little additional error into our approximation of
the variance, which supports the use of (4.6) when (4.4) is too unwieldy.

The following describes the paradigm that we will consider as the typical method of
estimating counts and rates in neural spike trains, and defines the necessary parameters
and statistics. A diagram of this paradigm is shown in Figure 4.3. The variable names
specified in this definition will be used in a consistent manner throughout the remainder of
this paper.

Definition 4.4. Let N(·) be a stationary, orderly point process in time. Fix the values
S > 0, the length of the repetition interval, and 0 < T ≤ S, the length of the counting
interval. Define the sequence of counts in T -length intervals starting every S units as

Ni(T ) = N
(
(i − 1)S + T

)
− N

(
(i − 1)S

)
, i = 1, 2, 3, . . . .
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Figure 4.3: Diagram of the standard method for estimating statistics of spike counts or
rates from a spike train, as described in Definition 4.4. Time is represented by horizontal
distance, and each vertical line represents the occurrence of a single spike. Gray areas des-
ignate the intervals on which the spikes are counted, and the number of spikes occurring in
a single gray box is one sample count.

Let mr(T ) be the sample mean of r ∈ N consecutive counts in this sequence, i.e.

mr(T ) =
1

r

r∑
i=1

Ni(T ),

and let s2
r(T ) be their sample variance, i.e.

s2
r(T ) =

1

r − 1

r∑
i=1

(
Ni(T ) − mr(T )

)2
.

In the following two theorems we find the expected value and variance of the sample
mean, the statistic used to estimate the population mean of the counts.

Theorem 4.4. Let N(·) be an fGnDP as in Theorem 4.1, and define the sample mean
of the counts as in Definition 4.4. Then the expected value of the sample mean, assuming
only that truncation of the rate process is negligible, is

E{mr(T )} = E{N(T )} ≈ λT.

Thus, the sample mean is an unbiased estimator of the mean count.

Theorem 4.5. Let N(·) be an fGnDP as in Theorem 4.1, and define the sample mean of
the counts as in Definition 4.4. Assume that S ≥ τ . Then, using the approximation (4.6)
to the autocovariance function of the rate process of N , the variance of the sample mean
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count is approximately

V ar{mr(T )} ≈ λT

r
+

σ2

2rτ 2H(2H + 1)(H + 1)

×



[
(T + τ)2(H+1) − 2

(
T 2(H+1) + τ 2(H+1)

)
+ |T − τ |2(H+1)

]

+
1

r

r−1∑
k=1

(r − k)

[
(kS + T + τ)2(H+1) − 2(kS + T )2(H+1) + |kS + T − τ |2(H+1)

− 2
[
(kS + τ)2(H+1) − 2(kS)2(H+1) + |kS − τ |2(H+1)

]

+ (kS − T + τ)2(H+1) − 2(kS − T )2(H+1) + |kS − T − τ |2(H+1)

]
. (4.10)

Finally, the following theorem gives the expected value of the sample variance, the
statistic used to estimate the population variance of the counts. We do not, however, have
an analytical formula for the variance of this estimator.

Theorem 4.6. Let N(·) be an fGnDP as in Theorem 4.1, and define the sample mean and
sample variance of the counts as in Definition 4.4. Assume that S ≥ τ . Then, using the
approximation (4.6) to the autocovariance function of the rate process of N , the expected
value of the sample variance is approximately

E
{
s2

r(T )
}
≈ V ar{N(T )} −

(
1

r(r − 1)

)
·
(

σ2

2τ 2H(2H + 1)(H + 1)

)

×
r−1∑
k=1

(r − k)

{
(kS + T + τ)2(H+1) − 2(kS + T )2(H+1) + |kS + T − τ |2(H+1)

− 2
[
(kS + τ)2(H+1) − 2(kS)2(H+1) + |kS − τ |2(H+1)

]

+ (kS − T + τ)2(H+1) − 2(kS − T )2(H+1) + |kS − T − τ |2(H+1)

}
(4.11)

Corollary 4.7. Under the conditions of Theorem 4.6, the sample variance s2
r(T ) of

the counts is a negatively biased estimator of the count variance if the fGnDP is long-
range dependent, i.e. if H > 0.5. In other words, the sample variance, on average,
underestimates the true variance of the counts of the point process.

The standard deviation of spike counts is often more useful than the variance since
it is in the same units as the mean. The sample standard deviation, used to estimate the
true standard deviation of the process, is just the square root of the sample variance,
sr(T ). However, as the following lemma shows, even when the sample variance is unbiased,
the sample standard deviation is negatively biased.

Lemma 4.8. Let s2 be an unbiased estimator of the variance σ2 of a stochastic process or
random variable that is nonconstant with positive probability. Then s is a negatively biased
estimator of the standard deviation σ.
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Proof. The variance of a random variable is always nonnegative and is equal to zero only if
the random variable is constant with probability one. Thus, for the statistic s of the given
stochastic process or random variable,

V ar{s} > 0.

Now, also,

V ar{s} = E
{
(s − E{s})2

}
= E{s2} −

(
E{s}

)2
= σ2 −

(
E{s}

)2
,

since s2 is an unbiased estimator of σ2. Thus,

σ2 −
(
E{s}

)2
> 0,

or (
E{s}

)2
< σ2.

Taking the square root of both sides, we get

E{s} < σ,

which means that s underestimates the standard deviation.

Furthermore, the following corollary shows that the square root of the expected value of
the sample variance can be used to place an upper bound on the expected value of the
sample standard deviation, if the former is negatively biased. Thus, in some sense, the
situation in Corollary 4.7 becomes worse when an estimate of the standard deviation is
needed.

Corollary 4.9. Let s2 be a negatively biased estimator of the variance σ2 of a stochastic
process or random variable that is nonconstant with positive probability. Then, s is a
negatively biased estimator of the standard deviation σ, and (the magnitude of) its bias is

larger than σ −
√

E{s2}.

Proof. In this case, we have

V ar{s} = E
{
(s − E{s})2

}
= E{s2} −

(
E{s}

)2
> 0.

So,

E{s2} −
(
E{s}

)2
> 0(

E{s}
)2

< E{s2} < σ2

E{s} <
√

E{s2} < σ,

which means that σ − E{s} > σ −
√

E{s2} > 0.
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4.4.3 Refractory-Modified Fractional-Gaussian-Noise-Driven
Poisson Process

The most obvious difference between the output of an fGnDP and real neural spike trains
is the absence of very short interspike intervals in the latter. In neurophysiology, this
absence is usually attributed to refractoriness in the neural spiking mechanism. The
refractory period of a neuron can be divided into two parts. Immediately following a spike,
there is a relatively short period (e.g. approximately 0.7 milliseconds in primary auditory
neurons) when another spike cannot occur. This is referred to as the absolute refractory
period. Following the absolute refractory period is a much longer period called the relative
refractory period. During this period the probability of a spike occurring is less than if the
previous spike had not occurred, but is not zero.

No general theory of refractoriness exists for neurons, but Young and Barta (1986)
have suggested a simple model to approximate the effect of refractoriness on spike trains.
Their model produces relative-refractoriness-like behavior in a Poisson process by intro-
ducing independent and exponentially distributed absolute refractory periods after each
event, or “spike”, that is produced by the Poisson process. Thus, since the “absolute
refractory period” can be arbitrarily small, the model does not have an absolute refractory
period in the stationary sense. However, since the absolute refractory period of neurons
is so short, their model produces an effect that is still very similar to the entire refractory
period of neurons. In their paper, Young and Barta (1986) show that an exponentially dis-
tributed absolute refractory period (or “deadtime”) with a mean of 4 ms produces results
that are a good approximation to the refractoriness seen in primary auditory neurons.

Since the effect of the refractory period of a neuron on its statistical attributes may
be significant, we will also test our results on an fGnDP with the refractory model of
Young and Barta (1986). Simulations of this refractory-modified fGnDP (RM-fGnDP)
are produced in the following manner. First, a spike train is produced by the fGnDP
model. Then the length of an absolute refractory period is drawn from an exponentially
distributed random variable with a mean of 4 ms. Any spike that occurs within this length
of time after the first spike in the spike train is discarded. Once this absolute refractory
period ends, the first spike to occur remains in the spike train. A second refractory period
length is then chosen, and this (absolute) refractory period is applied immediately after
this spike. This process is repeated until the end of the spike train is reached. The end
result is a spike train consisting of all of the spikes that were not discarded.

4.5 Effect of Long-Range Dependence on Sample

Statistics

We have shown analytically that the sample mean is an unbiased estimator of the popu-
lation mean of the counts for an fGnDP, so long-range dependence does not change the
bias of the sample mean. Results from simulations of an fGnDP (not shown) support
this theoretical result. The variability of this statistic, however, is affected by long-range
dependence. For r independent and identically distributed observations, the standard
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Figure 4.4: The variability of the sample mean count as a function of the number of
counting intervals for an fGnDP without (a) and with (b) refractoriness. The solid line in
(a) is the theoretical standard deviation of the sample mean calculated from r independent
counting intervals. The equation for this curve is given in (4.12). The circles, in both
(a) and (b), are estimates of this standard deviation calculated from 10,000 independent
sets of spike trains, with each set consisting of r independent simulations of an fGnDP.
The dashed line in (a) is the theoretical standard deviation of the sample mean count
calculated according to Definition 4.4. The ×’s, in both (a) and (b), are estimates of
this standard deviation calculated from 10,000 independent simulations of an fGnDP.
The parameter values for the fGnDP, theoretical and simulated, were H = 0.9, λ = 100
spikes/s, σ = 30 spikes/s, and τ = 0.1 s. The counting interval length, T , was 0.1 s,
and the repetition interval length, S, was 1 s. The refractory period was exponential
distributed with a mean of 4 ms. The average spike rate for the RM-fGnDP simulations
was approximately 71 spikes/s.

deviation of the sample mean is √
V ar{X̄} =

σ√
r
, (4.12)

where σ is the standard deviation of the common distribution. In Figure 4.4(a) this result
(solid line) is compared to the standard deviation of the sample mean count calculated
according to Definition 4.4 for an fGnDP (dashed line) with Hurst index2 H = 0.9. The
latter curve is the square root of the theoretical result for the variance of the sample mean
count given in Theorem 4.5. The symbols are the estimates of the standard deviation of
the sample mean, where each value of the sample mean is calculated from r independent
simulations of an fGnDP (circles) or from a single, longer simulation of an fGnDP (×’s).
Thus, our simulations agree very well with the theoretical results.

2Estimates of the Hurst index, which is equal to (D + 1)/2, where D is the “fractal dimension”, for
neural spike trains predominately fall in the interval from about 0.75 to 0.95 with a tendency toward
the upper portion of this interval (Teich, 1989; Teich et al., 1990; Teich, 1992; Kelly, Johnson, Delgutte,
& Cariani, 1996; Lowen & Teich, 1996b; Teich et al., 1997; Lowen et al., 2001). Therefore, since such
estimates are also usually negatively biased (e.g. Lowen & Teich, 1993a), we have chosen a value, 0.9, in
the upper portion of this range.
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As expected, the positive dependence in the fGnDP reduces the rate of decay of the
variability of the sample mean with the number of observations, or counting intervals.
Thus, if the observations are independent, then using 100 observations instead of just
one reduces the standard deviation by a factor of ten. For observations from an fGnDP,
however, this only reduces the standard deviation by a factor of about 2.75. In this case,
the standard deviation of this estimator is over three times larger when calculated from
100 counting intervals in the same spike train than when calculated from 100 independent
counting intervals. Furthermore, since the slope of the curve for the dependent counting
intervals is noticeably shallower near r = 100 than that for the independent counting
intervals, this ratio will increase dramatically as even more observations are included.

Although analytical results are not available for the refractory-modified fGnDP,
simulation results for this model are shown in Figure 4.4(b). The meaning of the symbols
in this figure are identical to the meaning of those in Figure 4.4(a), only now the estimates
are derived from simulations of an RM-fGnDP. Due to the exclusion of some spikes, the
average rate of the RM-fGnDP was about 71 spikes per second, instead of 100 spikes per
second like the original fGnDP. Comparing these two figures, it appears that the standard
deviations of the sample means for an RM-fGnDP are about 60% of those for an fGnDP.
Thus, much, but perhaps not all, of the reduction in variability of this estimator may be
due to the reduction in spike rate. The relationship between the variability for dependent
intervals and the variability for independent intervals, however, is very similar to the
results for an fGnDP. Again, the standard deviation of the sample mean for 100 dependent
intervals is over three times larger than that for 100 independent intervals. Furthermore,
the slope of the dependent-interval curve is also much shallower than the slope of the
independent-interval curve at r = 100. Thus, refractoriness does not appear to alter the
effect of the dependence in fGnDPs on the variability of the sample mean.

In contrast to the sample mean, we found analytically that the sample variance and
the sample standard deviation of the counts of an fGnDP, calculated from a single spike
train, are biased estimators of the population variance and the population standard
deviation, respectively. Both of these estimators are negatively biased, meaning that
they tend to underestimate the population values, and the sample standard deviation is,
in some sense, more biased than the sample variance. Figure 4.5(a) corroborates these
results.

The solid line in Figure 4.5(a) is the theoretical value of the population standard
deviation as determined by the square root of (4.8). This line denotes the value that one
would like to obtain from the sample standard deviation, or the square root of the sample
variance, and that, obviously, does not depend on the parameters of the estimator, such
as r. In other words, if the estimators were unbiased, this would be the expected value of
the sample standard deviation and the square root of the expected value of the sample
variance for all values of r. Since the sample variance is unbiased if the observations are
independent, the values of the square root of the sample variance (squares) calculated
from independent intervals of simulations do indeed lie close to this line at all values of
r. However, since the sample standard deviation is negatively biased when the sample
variance is unbiased (see Lemma 4.8), the values of the sample standard deviation (circles)
always lie below this line. The difference between the sample standard deviation and
the actual standard deviation is quite large at low values of r, but decreases quickly as r



103

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

0 2 0 4 0 6 0 8 0 100

Theory: Actual Standard Deviation
Theory: Sample Variance (LRD)
Simulation: Sample Std. Dev. (Indep.)
Simulation: Sample Variance (Indep.)
Simulation: Sample Std. Dev. (LRD)
Simulation: Sample Variance (LRD)

S
pi

ke
 C

ou
nt

 U
ni

ts

Number of Repeated Intervals, r

(a) fGnDP without Refractoriness

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

0 2 0 4 0 6 0 8 0 100

Simulation: Sample Std. Dev. (Indep.)
Simulation: Sample Variance (Indep.)
Simulation: Sample Std. Dev. (LRD)
Simulation: Sample Variance (LRD)

S
pi

ke
 C

ou
nt

 U
ni

ts

Number of Repeated Intervals, r
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Figure 4.5: The variability and estimates of the variability of the counts for an fGnDP
without (a) and with (b) refractoriness as a function of the number of counting intervals.
The solid line in (a) is a constant curve at the theoretical value of the standard deviation
of the counts, which was calculated by taking the square root of (4.8). The dashed
line in (a) is the square root of the theoretical expected value of the sample variance in
Definition 4.4, which was calculated by taking the square root of (4.11). The circles, in
both (a) and (b), are the average values of the sample standard deviation calculated from
10,000 independent sets of simulated spike trains, each set consisting of r independent
spike trains. The squares are the square roots of the average values of the sample variance
calculated from the same simulations. The ×’s are the average values of the sample
standard deviation calculated according to Definition 4.4 from 10,000 independent
simulated spike trains, and the triangles are the square roots of the average values of
the sample variance from the same simulations. All parameter values are the same as
Figure 4.4.

increases.
The dashed line is the square root of the theoretical expected value of the sample

variance of an fGnDP, calculated according to Definition 4.4, which is given in (4.11).
Estimates of this value (triangles), calculated from simulations of an fGnDP, agree with
the theoretical curve very well. Both of these results confirm that the sample variance
calculated from a single spike train output of the fGnDP model is indeed negatively
biased. While the actual value of the standard deviation, i.e. the square root of the
variance, for these parameters is about 4.27, the square root of the expected value of
the sample variance ranges from slightly below 3.8 for two intervals up to 4.0 for 100
intervals. These are underestimates by over 11% and by 6.3%, respectively. Although this
graph suggests that the sample variance is asymptotically unbiased, the bias decays quite
slowly due to the long-range correlations in the process. The ×’s are estimates, obtained
from simulations, of the expected value of the sample standard deviation for dependent
counting intervals from the fGnDP. They reveal, as expected from Corollary 4.9, that the
sample standard deviation is even more biased than the sample variance when their biases
are compared in the same units. The additional bias of the sample standard deviation is
quite large for small numbers of observations, but quickly decays as more observations are
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used. In fact, the amount and rate of decay of this additional bias is comparable to the
bias of the sample standard deviation for independent observation intervals.

Figure 4.5(b) displays the corresponding results from simulations of an RM-fGnDP.
The symbols in this figure represent the same quantities as in Figure 4.4(a), the only
difference being the spike-train-producing process itself. As for variability of the sample
mean, the relationships in Figure 4.5(b) are very similar to those in Figure 4.4(a) for the
fGnDP without refractoriness. Furthermore, just like we found for the variability of the
sample mean, the values for the RM-fGnDP are about 60% of the values for the fGnDP.
Again, much of this reduction may be simply due to the reduction in spike rate. Thus,
the general effect of the dependence in the output of an fGnDP on the expected values
of the sample standard deviation and the sample variance does not seem to be altered by
refractoriness.

Finally, in Figure 4.6, we consider the variability of the sample standard deviation
and the sample variance. We have no theoretical results in this case, so our conclusions
will have to be based on estimates from simulations of an fGnDP. According to these
results, in contrast to the standard deviation of the sample mean, the standard deviation
of the sample standard deviation is practically the same for r ≤ 100 whether the counting
intervals are independent (circles) or long-range dependent (×’s) for both the fGnDP
(Figure 4.6(a)) and the RM-fGnDP (Figure 4.6(b)). However, the standard deviation
of the sample standard deviation does decay with increasing r in a manner similar to
the decay of the standard deviation of the sample mean. Furthermore, although not
conclusive, the present results suggest that the standard deviation of the sample standard
deviation might actually decay more slowly for LRD intervals than for independent
intervals. The evidence for this can be seen in Figure 4.6(a), where the values for the LRD
intervals are lower than those for the independent intervals for r < 20, nearly equal to
those for the independent intervals in the middle of the graph, and slightly higher than
those for the independent intervals when r > 80. If this is the case, then the variability
of the sample standard deviation will be noticeably larger for LRD intervals than for
independent intervals for large numbers of observations. Although this is likely to be the
case, the differences in our results up to r = 100 are too small to support a definitive
judgement.

As for the sample standard deviation, Figures 4.6(a) and 4.6(b) suggest that the
variability of the sample variance seems to be nearly the same for r ≤ 100 whether the
counting intervals are independent (squares) or long-range dependent (+’s) and whether
the model is an fGnDP or an RM-fGnDP. In these figures, this is observed in the values
of the square root of the standard deviation of the sample variance. Also, the decay of
the variability of the sample variance is quite similar to the decay of the variability of the
sample standard deviation. Furthermore, the rate of this decay at large values of r seems
to be slower for LRD intervals than for independent intervals as well. The most striking
aspect of these graphs, however, is that the square root of the standard deviation of the
sample variance is significantly larger than the standard deviation of the sample standard
deviation. But it is unclear whether any meaningful conclusion can be derived from this
observation. One might be tempted to conclude that the sample variance is more variable
than the sample standard deviation, but in this context it is difficult to make the phrase
“more variable” have any precise meaning beyond the observable relationship.
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Figure 4.6: The variability of the sample variance and sample standard deviation of
counts as a function of the number of counting intervals for an fGnDP without (a) and
with refractoriness (b). The circles, in both (a) and (b), are the values of the standard
deviation of the sample standard deviation calculated from 10,000 independent sets of
simulated spike trains, each set consisting of r independent spike trains. The squares are
the square roots of the values of the standard deviation of the sample variance calculated
from the same simulations. The ×’s are the values of the standard deviation of the
sample standard deviation calculated according to Definition 4.4 from 10,000 independent
simulated spike trains, and the triangles are the square roots of the values of the standard
deviation of the sample variance from the same simulations. All parameter values are the
same as Figure 4.4.

4.6 Implications for Statistical Analysis of Neuro-

physiological Spike Trains

4.6.1 Estimation of the Spike Rate from a Single Counting
Interval

The spontaneous firing rate, i.e. the spike rate in the absence of stimulation, is a basic
attribute of neurons that is often estimated from the spike count in a long counting
interval. The spontaneous rate of neurons can be used as an indicator by which to group
neurons that have other characteristics in common as well. For example, the spontaneous
rates of primary auditory neurons are correlated with their thresholds to sound (Liberman,
1978; Geisler, Deng, & Greenberg, 1985), the shapes of their response functions for tonal
stimuli (Sachs & Abbas, 1974; Palmer & Evans, 1980; Sachs, Winslow, & Sokolowski,
1989), certain of their morphological characteristics (Liberman, 1982; Leake, Snyder, &
Hradek, 1993; Kawase & Liberman, 1992), and the patterns of their projections into the
cochlear nucleus (Ryugo & Rouiller, 1988; Ryugo & May, 1993; Leake & Snyder, 1989;
Leake, Snyder, & Merzenich, 1992; Liberman, 1991, 1993). Furthermore, although rare,
long counting intervals are sometimes used to measure the response of neurons to stimuli
that are stationary (in some sense). For instance, in Geisler et al. (1985), the average
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spike rate of auditory neurons was measured using a single, long counting interval at
each intensity of a tonal stimulus. By making these measurements at many different
stimulus intensities, they produced rate-intensity functions for each neuron, which describe
the relationship between average spike rate and the intensity of the tonal stimulus that
produced it. The much more common method for measuring rate-intensity functions will
be described in Section 4.6.2.

What effect does the presence of LRD in spike trains have upon the types of measure-
ments mentioned above? Since these measurements are based on the sample mean, our
previous results indicate that they should not be biased. However, the variability of these
measurements should be larger than one would expect if the spike trains had little or no
temporal correlation. In order to gauge this increase in variability, we can compare the
variability of the sample mean for an LRD fGnDP model with that from non-LRD point
process models.

In Figure 4.7, the standard deviations of spike rate estimates are compared for fGnDPs
with Hurst index H = 0.9, fGnDPs with H = 0.5, and Poisson processes for nominal spike
rates of 5 spikes per second and 100 spikes per second. The theoretical standard deviations
for the fGnDPs were calculated by dividing the square root of (4.8), the variance of the
count in an interval of length T , by the length T . The variance of the count in an interval
for a Poisson process is equal to the mean count, so for the Poisson processes the standard
deviation of the spike rate estimate from a counting interval of length T is

√
V ar{N(T )}

T
=

√
E{N(T )}

T
=

√
λT

T
=

√
λ

T
, (4.13)

where λ is spike rate of the process.
These plots show that LRD has a substantial effect on the variability of estimates of

the spike rate, regardless of the length of the counting interval. For both these nominal
rates, the standard deviation of the rate estimate for a one second counting interval
when H = 0.9 (LRD) is twice that when H = 0.5 (no LRD), and this ratio increases to
eleven for a counting interval of 100 seconds. If the LRD case is compared to a Poisson
process, this ratio increases to about 2.6 at one second and about 15 at 100 seconds. The
estimates for the non-LRD fGnDP are more variable than for the Poisson process due to
the additional variability produced by the fGn.

An intuition for the practical effect of this excess variability can be gained from
Table 4.1, where we have given examples of 95% confidence intervals for spike rate
estimates based on counting intervals of different lengths for the fGnDP. These confidence
intervals are based upon the assumption of a Gaussian distribution for the spike counts,
which is a common assumption and has been justified in other studies (Young & Barta,
1986; Delgutte, 1987; Viemeister, 1988, e.g.). This is probably a good approximation for
a nominal rate of 100 spikes per second and for a nominal rate of 5 spikes per second if
the counting interval is long; otherwise, the lower limit of zero spikes will cause significant
deviation from Gaussianity. We calculated each of these confidence intervals by finding
the values at which the Gaussian distribution with mean λT , where λ is the nominal spike
rate, and variance given by (4.8) is equal to 0.025 and 0.975 and dividing these values by
T . The bounds on a 95% confidence interval are approximately two standard deviations
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Figure 4.7: The standard deviation of rate estimates calculated from single, long counting
intervals for fGnDPs and Poisson processes with nominal rates λ = 5 spikes/s (a) and
λ = 100 spikes/s (b), as a function of the counting interval length. Solid lines are data
for fGnDPs with Hurst index H = 0.9; medium-dashed lines are data for fGnDPs with
H = 0.5; and small-dashed lines are data for Poisson processes. The curves for the fGnDPs
were calculated by dividing the square root of (4.8) by the counting interval length T .
The parameter values for the fGnDPs were τ = 0.1 s, either H = 0.5 or H = 0.9, and
σ =

√
45 ≈ 6.71 spikes/s (a) or σ = 30 spikes/s (b). The curves for the Poisson processes

were calculated from (4.13).

above and below the mean. When the spike rate is 5 spikes per second, the lower bounds
of the confidence intervals for shorter counting intervals are negative; in these cases, the
lower bounds are not given in the table since the spike rate must be nonnegative.

Both the size and the relatively slow reduction in this size with increasing counting
interval length are troublesome. Even with a counting interval of 20 seconds, the length of
these confidence intervals are about 13 spikes/s when the average spike rate is 5 spikes/s
and 70 spikes/s when the average spike rate is 100 spikes/s. Furthermore, increasing the
counting interval to 3600 seconds (one hour!) decreases the size of the confidence interval
by less than half, to about 9 spikes/s and 40 spikes/s, respectively.

This variability in spike rate intervals may, in large part, explain the broad range
of spontaneous rates observed within groups of primary auditory neurons that seem to
be distinct based upon other characteristics. Based upon anatomical differences and an
apparent multimodal distribution of spontaneous rates (SRs), Liberman (1982) suggested
that auditory neurons can be divided into three classes: low SR neurons (SR < 0.5
spikes/s), medium SR neurons (0.5 < SR < 18 spikes/s), and high SR neurons (SR > 18
spikes/s). Our present results suggest that these classes may be much more distinct with
respect to the underlying properties contributing to SR than our measurements of SR lead
us to believe. In fact, it is possible that if we could measure the “true SR”, we might only
obtain one or a few values within each group.



108

95% Confidence 95% Confidence
Counting Interval Interval
Interval at 5 spikes/sec at 100 spikes/sec References

5 sec. SR < 14.1 59.3 < SR < 140.7 Winter et al. (1990)
Ohlemiller et al. (1991)
Geisler et al. (1985)

10 sec. SR < 13.4 62.4 < SR < 137.6
15 sec. SR < 13.0 64.0 < SR < 136.0 Liberman (1982, 1991, 1993)
20 sec. SR < 12.8 65.1 < SR < 135.0 Relkin . . . (1987, 1988, 1991)

Jackson and Relkin (1998)
30 sec. SR < 12.5 66.6 < SR < 133.4 Ryugo . . . (1988, 1993)
50 sec. SR < 12.0 68.3 < SR < 131.7 Wang and Sachs (1993)*
60 sec. SR < 12.0 68.9 < SR < 131.1 Kiang et al. (1965)*

100 sec. SR < 11.6 70.5 < SR < 129.5
900 sec. SR < 10.3 76.3 < SR < 123.7

1800 sec. 0.1 < SR < 9.9 77.9 < SR < 122.0
3600 sec. 0.4 < SR < 9.6 79.4 < SR < 120.6

Table 4.1: Confidence intervals, based on the fGnDP model, of spontaneous spike rate
(SR) estimates from different length counting intervals. Some representative studies of
the auditory nerve that used certain length counting intervals to estimate (spontaneous)
rate are listed in the rightmost column. The counting interval listed for a study marked
by an asterisk is the minimum length that was used, but no further information on the
distribution of the counting intervals is given. The parameters used were H = 0.9,
τ = 0.1s, σ =

√
45 for a spike rate of 5 spikes/s, and σ = 30 for a spike rate of 100

spikes/s. See the text for further explanation.

4.6.2 Estimation of Spike Rate from Multiple Repeated Count-
ing Intervals

Rate-intensity functions and isointensity contours (or response areas), for tonal stimuli,
are two other common measurements from auditory neurons. Both of these types of curves
require many individual measurements of the mean spike rate of a neuron in response to
a pure-tone stimulus of a particular frequency and a particular intensity. The difference
between them lies in how the parameters of the stimulus are varied to obtain a single
curve. For a single rate-intensity function, the intensity of the stimulus is varied while the
frequency remains fixed, whereas for a single isointensity contour, the frequency of the
stimulus is varied while the intensity remains fixed.

In either case, the typical experimental paradigm for estimating the mean spike
rate for a single frequency-intensity combination is as described in Definition 4.4 and
depicted in Figure 4.3. When estimating these spike rates, the tonal stimuli are on
during the counting intervals (gray areas in Figure 4.3) and off at other times.3 This

3Actually, the start of the counting interval is often delayed by a small amount with respect to the
beginning of the stimulus in order to ignore the transitory response to the onset of the stimulus. The
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Stimulus Repetition Number of
Duration Interval Repetitions References

500 ms 1.0 s 4–8 Geisler et al. (1974)
400 ms 1.5 s ∼4 Sachs and Abbas (1974)
200 ms 1.0 s ∼7† Winslow and Sachs (1988)
100 ms 400 ms ∼10 Winter et al. (1990)
100 ms 150-981 ms 3,5,10 Ohlemiller et al. (1991)
100 ms 400 ms 5–20 Cooper and Yates (1994)
100 ms 1.0 s 10 Jackson and Relkin (1998)
50 ms 100 ms 10 Liberman (1978)
50 ms 200 ms 10–20 Winter and Palmer (1991)

Table 4.2: Parameters for some representative studies of rate-intensity functions or
isointensity contours (for tonal stimuli) of primary auditory neurons. (†Actually only
one counting interval was used at each intensity, but the rate-intensity functions were
smoothed with a triangular weighting function that incorporated the spike counts for
seven adjacent intensities.)

intermittent pattern is used in order to minimize the effects of adaptation of the neuron to
the stimulus. The estimate of the mean spike rate is then given by mr(T )/T .

In Table 4.2 the parameters used to measure either rate-intensity functions or isointen-
sity contours in several representative studies are given. Stimulus duration (or counting
interval), repetition interval, and number of repetitions in this table correspond, respec-
tively, to the parameters T , S, and r in Definition 4.4 and Figure 4.3.

Table 4.3 contains 95% confidence intervals for the spike rate estimated by repeated
intervals for fGnDPs with a nominal spike rates of 5 spikes per second and 100 spikes per
second. It contains confidence intervals for ranges of counting interval lengths, repetition
interval lengths, and numbers of repetitions that are representative of the ranges found in
the studies listed in Table 4.2. In addition, we included data for 100 repetitions, which is
significantly larger than the number of repetitions used in any of the studies mentioned in
Table 4.2 but is still within the realm of practical possibility. We calculated each of the
confidence intervals in this table by finding the values at which the Gaussian distribution
with mean λT , where λ is the nominal spike rate, and variance (for the sample mean)
given by (4.5) is equal to 0.025 and 0.975 and dividing these values by T . When the spike
rate is 5 spikes per second, the lower bounds of the confidence intervals for all of the
examples in this table are negative and are, therefore, not given.

The lengths of these confidence intervals are in the general neighborhood of those
for the sample mean when only one long counting interval is used. Furthermore, their
reduction with increasing counting interval, increasing repetition interval, or increasing
number of repetitions is equally slow. Generally, for the parameters used in the studies
shown in Table 4.2, 95% of spike rate estimates will cover an interval from zero up to 14

counting intervals are then shortened accordingly. This delay, however, which is only a few milliseconds at
most, is very short relative to the length of the entire counting interval. Since it should, therefore, have
very little effect on our results, we will not incorporate it into our calculations.
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95% Confidence 95% Confidence
Counting Repetition Number of Interval Interval
Interval Interval Repetitions at 5 spikes/sec at 100 spikes/sec

100 ms 150 ms 5 R < 17.4 44.5 < R < 155.5
100 ms 150 ms 10 R < 16.0 51.0 < R < 149.0
100 ms 150 ms 20 R < 14.9 55.9 < R < 144.0
100 ms 150 ms 100 R < 13.1 63.8 < R < 136.2

100 ms 400 ms 5 R < 16.8 47.4 < R < 152.6
100 ms 400 ms 10 R < 15.2 54.3 < R < 145.7
100 ms 400 ms 20 R < 14.1 59.3 < R < 140.7
100 ms 400 ms 100 R < 12.4 67.0 < R < 133.0

100 ms 1.0 s 5 R < 16.3 49.6 < R < 150.4
100 ms 1.0 s 10 R < 14.6 56.9 < R < 143.1
100 ms 1.0 s 20 R < 13.5 62.1 < R < 137.9
100 ms 1.0 s 100 R < 11.8 69.7 < R < 130.3

100 ms 1.5 s 5 R < 16.1 50.5 < R < 149.5
100 ms 1.5 s 10 R < 14.4 58.0 < R < 142.0
100 ms 1.5 s 20 R < 13.2 63.2 < R < 136.8
100 ms 1.5 s 100 R < 11.5 70.8 < R < 129.2

500 ms 1.0 s 5 R < 14.4 57.8 < R < 142.2
500 ms 1.0 s 10 R < 13.6 61.6 < R < 138.4
500 ms 1.0 s 20 R < 12.9 64.7 < R < 135.3
500 ms 1.0 s 100 R < 11.6 70.4 < R < 129.6

500 ms 1.5 s 5 R < 14.2 58.9 < R < 141.1
500 ms 1.5 s 10 R < 13.3 62.8 < R < 137.2
500 ms 1.5 s 20 R < 12.6 65.9 < R < 134.0
500 ms 1.5 s 100 R < 11.4 71.5 < R < 128.5

Table 4.3: Confidence intervals, based on the fGnDP model, of spike rate (R) estimates for
repeated counting intervals. The parameters listed in the table are the counting interval T ,
the repetition interval S, and the number of repetitions r. The other parameters used were
H = 0.9, τ = 0.1s, σ =

√
45 for a spike rate of 5 spikes/s, and σ = 30 for a spike rate of

100 spikes/s. See the text for further explanation.
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Stimulus Repetition Number of
Duration Interval Repetitions References

250 ms 250 ms 20 Geisler et al. (1985)
200 ms 1.0 s 40–100† Young and Barta (1986)
51.2 ms 51.2 ms 1000 Teich and Khanna (1985)
204.8 ms 204.8 ms 250 Teich and Khanna (1985)

50 ms 120 ms‡ 25 Delgutte (1987)
50 ms 200 ms 10–20 Winter and Palmer (1991)

Table 4.4: Parameters for some representative studies that attempted to estimate the
variability of spike counts (or spike rates) of primary auditory neurons. (†Actually 80–100
stimulus repetitions were used, but data in “regions of noticeable background rate trends
or fluctuations” were eliminated from calculations./ ‡The repetition interval was not
specified in this study. However, in two other approximately contemporaneous studies by
the author (Delgutte, 1990a, 1990b), individual stimuli were repeated every 120 ms.)

to 16 spikes per second when the actual spike rate is 5 spikes per second. If there were
no temporal dependence, these estimates would cover an interval about half this size or
less. When the actual spike rate of the fGnDP model is 100 spikes per second, the 95%
confidence interval extends from 50 to 60 spikes per second at the low end to 140 to 150
spikes per second at the high end for the parameters used in typical experimental studies.
In this case, as well, if the LRD were not present, the confidence intervals would be half
this size or less.

4.6.3 Estimation of the Variability of Spike Counts for Repeti-
tions of a Stimulus

In order to assess how well the nervous system could, if it were (in some sense) optimal,
distinguish stimuli based upon only the average spike rate of afferent neurons, it is not
sufficient to have only a description of the relationship between average spike rate and
the relevant stimulus parameters. The variability of the spike rate, or, more precisely,
the variability of the spike count for a pertinent counting interval length, must also be
known. The typical experimental paradigm for estimating this variability is identical to
the repeated-stimulus paradigm described in Section 4.6.2, only the sample variance (see
Definition 4.4) is used instead of the sample mean. The parameters used in several studies
of primary auditory neurons to estimate the variance, or standard deviation, of spike
counts are given in Table 4.4.

The results of Figure 4.6 suggest that LRD has little or no effect on the variability
of these estimates for the numbers of repetition intervals used in these studies. However,
we did see that LRD produces a marked negative bias in the sample variance and the
sample standard deviation. Figure 4.8 indicates the expected extent of this bias, based on
the fGnDP model, for the studies listed in Table 4.4. These graphs show the relationship
between the variability of the spike count, actual or estimated, and the mean spike count
for the fGnDP model. The graph for each study contains a curve for the actual standard
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(1991)

Figure 4.8: The bias of estimates of the spike count variance for the fGnDP model using
parameters from the studies listed in Table 4.4. Each curve for the actual standard
deviation of the count was calculated by taking the square root of (4.8) and is displayed as
a solid line. Each curve for the square root of the expected value of the sample variance of
the count was calculated by taking the square root of (4.11) and is displayed as a dashed
line. The parameter values for the fGnDP were H = 0.9, τ = 0.1 s, and σ =

√
9λ spikes/s,

where λ is the average spike rate. The counting interval length T , the repetition interval
length S, and the number of repetitions r differ for each graph and are given in Table 4.4.

deviation of the spike count (solid line) and one or two curves for the expected values
of the sample variance (dashed lines), transformed into units of “spikes” by taking the
square root. The actual standard deviation was calculated as the square root of (4.8) for
the length of counting interval, T , used in the given study. The curve associated with the
expected value of the sample variance was calculated by taking the square root of (4.11).

In all of these graphs, the sample variance is noticeably biased. Although not insignif-
icant, relative to the absolute values, the bias does not seem to completely undermine the
utility of this estimator. Since it is constant with respect to the mean count, the ratio of
the square root of the expected sample variance to the actual standard deviation can be
used to make meaningful quantitative comparisons between the bias under the different
conditions represented in Figure 4.8. The ratios for these graphs are 0.81 for Figure 4.8(a),
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0.91 and 0.89 for Figure 4.8(b), 0.95 for Figure 4.8(c), 0.89 for Figure 4.8(d), 0.92 for
Figure 4.8(e), and 0.93 and 0.92 for Figure 4.8(f). Thus, we would expect the most bias
(by percentage) to be present in the measurements of Geisler et al. (1985). But, since they
did not show any of these measurements, we can neither confirm nor disprove that their
values for the spike count variance are significantly lower than would be expected based
on the estimates from the other studies. The expected bias, in units of counts, for the
remainder of the studies is between 5% and 11%.

We should note, however, that although we are measuring bias in “spikes” these
numbers are descriptive of the bias in the sample variance. But, for the most part, the
sample standard deviation is actually being used in the aforementioned studies in the
calculations from which the results or conclusions are drawn. As we saw in Section 4.5, the
sample standard deviation is more biased than the sample variance. Hence, our predictions
of the bias in these studies will be smaller than the actual bias.

Two of the previously mentioned papers (Young & Barta, 1986; Winter & Palmer,
1991) contain scatter plots of their measurements of the sample standard deviation versus
the mean spike count per counting interval (their Figures 6a and 5, respectively). In
addition, a third paper (Delgutte, 1987) contains a plot of the average sample variance
versus the mean spike count (Figure 6B). As we would expect, since our theoretical results
do not incorporate any refractoriness, the magnitudes in Figure 4.8 are noticeably larger
than those in these references. However, using the relative amount of bias in these graphs,
we can speculate on the actual standard deviation or variance of the spike counts that
they were attempting to estimate. Our analysis of the fGnDP model suggests that there
was at least a 9% to 11% bias in the sample standard deviation in Young and Barta
(1986). At their largest mean spike counts, approximately 25 to 30 spikes per interval,
the average value of their sample standard deviation measurements was about 3.8, well
below the values of 5 to 5.5 expected from a Poisson process. This suggests that the actual
(average) standard deviation was at least 3.8/0.9 = 4.2. This value is still below that
expected of a Poisson process, but if their cloud of data were shifted accordingly, as if
their measurements were being “unbiased”, the upper data points would lie on or perhaps
above the curve for the Poisson process. Since they used a much shorter counting interval,
Winter and Palmer (1991) obtained standard deviation estimates that were well below
those expected of a Poisson process. The spread of their estimates, however, was larger,
in a relative sense, than that of Young and Barta (1986), and, thus, the largest of their
estimates were equal to or above theoretical values for the Poisson process. Our analysis
suggests that their bias was less than that of Young and Barta (1986), but it was still
probably at least 7% or 8%. Nevertheless, such a bias for measurements in the range of
one to three is quite small compared to the spread of their measurements. The bias in the
measurements of Delgutte (1987), according to our estimates, was probably approximately
the same as that of Winter and Palmer (1991), who used the same counting interval
length, a longer repetition interval, but fewer repetitions. A rough comparison between
the data from these two papers, which must be converted into the same units by squaring
one or taking the square root of the other, reveals that the averages of their statistical
measurements are probably very similar. Since Delgutte (1987) did not show raw data,
but only averages, we can not make a comparison of the spreads of their data.
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4.7 Discussion

Measuring the sample mean and sample variance of natural processes is so commonplace
that they are often confounded with the actual “population” mean and variance. However,
the ability of these statistics to produce good approximations to the quantities that they
are estimating is substantially affected by certain properties of the process itself. For
temporally dynamic processes, one of these properties is the dependence of their future
states on their states in the present and the past. In the last half-century or so, a growing
number of natural processes have been found to possess dependence on the past that
decays particularly slowly (see Beran, 1994, for a good collection of examples). This
property is usually called “long-range dependence” or “long-term memory” and can have
significant detrimental effects on the behavior of sample statistics.

As in many other areas of experimental science, the sample mean and sample variance
statistics are generally utilized to evaluate neurophysiological action-potential sequences
(spike trains) without discussion of the expected quality of the calculated estimates.
However, in the past ten to fifteen years, it has become apparent that the spike trains
of many, if not most, neurons are long-range dependent (LRD) (see Section 4.2.3 for
references). Although long-range dependence in neural spike trains has been investigated
in a number of different studies, its repercussions on estimates of the mean and variance of
spike counts has not been investigated. This, therefore, is what we have attempted to do
in this study. In particular, we examined the effect of long-range dependence on the bias
and variability of both the sample mean and the sample variance.

This necessitated the use of a model of neural spike trains. We chose to use the
fractional-Gaussian-noise-driven Poisson process, which is long-range dependent and is a
good model of neural spike trains, at least in sub-cortical systems (see Section 4.4.1 for
references). In addition to the mean and variance of the counts in intervals of arbitrary
length, we obtained approximate analytical expressions for the expected value and vari-
ability of the sample mean and for the expected value of the sample variance. Expressions
for the variability of the sample variance and for the behavior of the sample standard
deviation, however, are not available. These were investigated via simulations of the
model.

The sample mean statistic is unbiased even in the presence of LRD. Furthermore,
from our simulations, it also appears that LRD does not have much of a detrimental effect
on the variability of the sample variance, at least for the range of parameters typical
of neurophysiological recordings. Trends in this data suggest, however, that in other
parameter ranges, for instance when a very large number of repeated counting intervals are
employed, the variability of the sample variance statistic may be significantly amplified by
the presence of LRD.

The variability of the sample mean statistic and the bias of the sample variance and
sample standard deviation statistics are, nevertheless, negatively influenced by LRD. Both
theory and simulations support the conclusion that the decay of the variability of the
sample mean, as more data is included, is much slower in the presence of LRD than in its
absence. This effect is such that, even based upon relatively moderate amounts of data,
the standard deviation of the sample mean can be two to three times larger when LRD
is present than in the absence of dependence. With the inclusion of more data, the ratio
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between the standard deviation of the sample mean with and without LRD becomes even
larger.

LRD also causes the sample variance and the sample standard deviation to underesti-
mate the actual variance and standard deviation of spike counts. This bias was noticeable,
but not exceedingly large in a relative sense. For typical parameters that are used in
practice, the bias for the sample variance is usually between 5% and 11% when calculated
in units of “spikes”. From theoretical considerations, we know that the bias of estimates of
the standard deviation will be even larger than this. Furthermore, simulations imply that
the bias of the sample standard deviation will be about twice as large as this for small
quantities of measurements, but that its additional bias will decrease rapidly as more data
is incorporated into the statistical calculation.

The fact that the sample mean is so variable in the presence of LRD may suggest
that the broad distribution of spontaneous rate measurements across auditory neurons is
not due to a broad distribution in their properties, but is instead simply indicative of an
inherent uncertainty in our measurements. In this case, it is possible that, in harmony
with characterizations based on other measurable properties, there are only a few (possibly
three) different “types” of auditory neurons, each with a distinct long-term spontaneous
rate. The variability of this statistic also warrants caution in interpreting rate-intensity
functions and isointensity contours on an absolute scale, since the position of the entire
curve will be quite variable. In particular, this has implications for certain methods of
measuring detection thresholds that are based upon such measurements.

The biases of the sample variance and the sample standard deviation do not seem
to be as troublesome. However, one should be mindful of their presence when coming to
conclusions based on these measurements. In addition, in combination with other forms
of biasing, they may produce significant errors in calculations. One such form of biasing
is the removal of “non-stationary” segments of spike trains (e.g. Young & Barta, 1986;
Lansky & Radil, 1987; Kelly et al., 1996). LRD is known to produce apparent trends in
stochastic processes that are actually stationary (see Beran, 1994, for a good discussion
of this effect). Thus, it is not only possible, but probable, that a stationary LRD spike
train will contain segments that appear to contain trends. Removal of these supposedly
non-stationary segments might then further reduce estimates of the variability of counts
from this spike train.
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Chapter 5

Summary and Discussion

It has been approximately fourteen years since the discovery of long-range dependence
in neural systems, albeit under different names, has been widely published (Gruneis
et al., 1989; Teich, 1989).1 During this time a relatively small number of studies have
investigated this property of neural spike trains. However, for the most part, these
investigations have been focused on revealing its existence, attempting to measure its
strength, developing models, and fitting models to the basic trends of the statistics used
to reveal LRD in neural recordings. A few studies have also suggested possible sources for
this long-range dependence. But, the import of long-range dependence to both the way
in which the nervous system operates and the way in which one investigates it is largely
unknown. This gap was noted, with regard to physiological models of psychophysical
results in the auditory system, in the review chapter of Delgutte (1996): “renewal process
models might suffice for modeling most psychophysical tasks, at least until the significance
of fractal effects [(i.e. long-range dependence)] is better elucidated.” Unfortunately, since
that time, little has been done to narrow this gap.

While entire books have been written on the subject of long-range dependence in
stochastic time series (e.g. Beran, 1994; Doukhan, Oppenheim, & Taqqu, 2003), work
on long-range dependence, or similar properties, of point processes seems relatively
disjointed, to the extent that even the nomenclature associated with properties equivalent
to long-range dependence varies significantly among different groups of researchers. Daley
and his coworkers have more recently begun to form a mathematically sound theory of
long-range dependence in point processes, but, being modest in size and published in an
abstract mathematical context, this work is likely to be either unknown or inaccessible to
a majority of neuroscientists.

In this thesis, we aimed to accomplish two general goals. First, we have attempted
to form a more cohesive theory and understanding of long-range dependence in point
processes, that is both well-connected with relevant mathematical literature and the larger
literature on long-range dependence in stochastic time series. Second, we have applied this
theory to some significant statistics-related questions in neuroscience. This work, we hope,
is suggestive of areas within neuroscience where long-range dependence should be taken

1An earlier, but much more obscure, study (Wise, 1981), noted long-range-dependent-like properties in
neurons as well.
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into account and how this may be done.

5.1 Cortical Processing

The significance of Softky and Koch’s (1992, 1993) challenge to the well-established and
ubiquitous integrate-and-fire model is apparent in the long string of studies conducted
in response to it. The strong reaction to their study is also indicative of a wide-spread
and firmly established belief that the nervous system transmits and processes information
based on a rate code. This is strikingly apparent in Shadlen and Newsome (1994). In
this paper, the authors fervently argue for the theory that information is transmitted by
neurons via their spike rate and that neural processing, in general, consists in integrating a
large number of inputs, each with small influence on the integrating neuron. In countering
the assertions of Softky and Koch to the contrary, Shadlen and Newsome proposed an
answer to the dilemma that Softky and Koch raised that has since become a common
assumption in cortical neurophysiology: that the amount of inhibitory input to a cell is
tightly balanced with the amount of excitatory input.

Yet the assertions of both Softky and Koch (1992, 1993) and Shadlen and Newsome
(1994) are based on the simplified integrate-and-fire model with Poisson process inputs
and on the assumption that the coefficient of variation is an adequate measure of the
variability of spike trains. Use of the simple model is understandable, since it facilitates
analysis. However, conclusions based upon it would be more convincing if the analysis
provided additional evidence that this model incorporates all of the critical dynamics of
the modeled system that are relevant to the question being addressed. The coefficient of
variation of interspike intervals alone does not do this.

In Chapter 2, we suggested this type of additional analysis. We proposed that the
high-variability cortical neurons, originally only evaluated based on their interspike-
interval coefficient of variation, be tested as well for the presence of long-range depen-
dence, a property that, as we have shown in this thesis, is related statistically to the
variability of a spike train. We then showed that a large portion of these models share
a single shortcoming that undermines their ability to meet both the interspike-interval
coefficient of variation and long-range dependence requirements. All of these models pro-
duce outputs that are renewal point processes, which must have infinite interspike-interval
variability in order to possess long-range dependence. But this is inconsistent with the
variability measured from actual cortical neurons.

In Chapter 3, we considered two other types of models that do not produce renewal-
process outputs. Both of these models differed from the models considered in Chapter 2 in
that their inputs were no longer Poisson processes. The first type of model had renewal-
point-process inputs. We found that, with properly distributed interspike intervals at
the input, this model could meet both the interspike interval variability and long-range
dependence requirements. However, this success required that the inputs have infinite
interspike-interval variability, which contradicts known properties of the inputs to cortical
neurons. This, therefore, makes the renewal-process-input model fairly unconvincing as a
model of cortical processing.

Hence, we suggested another model. In this model, the inputs were fractional-
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Gaussian-noise-driven Poisson processes, which have many statistical properties in
common with the inputs to cortex and, albeit to a lesser degree, cortical neurons them-
selves. This model was also able to produce interspike-interval variability and long-range
dependence of a nature comparable to that found in cortical neurons. However, since the
statistical character of its inputs better match those of real neurons, this model seems
preferable to the renewal-process-input model.

These two models are possible solutions to the paradox raised by Softky and Koch
(1992, 1993) and make the tight balance between excitation and inhibition suggested by
Shadlen and Newsome (1994) unnecessary. Moreover, unlike the excitation-inhibition
balance model, they possess long-range dependence like that found in cortical neurons.
This suggests that the explanation of high cortical variability that these two models
supply is in some ways superior to the balance model, and, therefore, that the assumption
of a tight balance between excitation and inhibition is less credible than commonly
thought.

The models of Chapter 3 were not suitable for complete mathematical analysis,
and, hence, were analyzed on the basis of simulations. Thus, it was necessary to develop
methods to discern different types of long-range dependence in point-process-like data.
These methods, and the theoretical foundation developed around them, should be useful
in future studies of long-range dependence in neural spike trains. Moreover, as we have
shown the significance of long-range dependence to the study of cortical spike trains,
particularly with regard to their variability, it is hoped that more such studies would be
carried out.

5.2 Statistics of Spike Counts

While moments of spike counts are usually measured and used without hesitation, the
analysis of Chapter 4 suggests that, in light of the long-range dependence present in many,
or perhaps, most neurons, these statistics should be employed with a bit more caution.
In particular, we considered the quality of the estimates obtained from the sample mean,
sample variance, and sample standard deviation. We found that the sample mean is quite
variable when long-range dependence is present and that this variability decays very slowly
as more data is incorporated into the calculation. Furthermore, we showed that the sample
variance and sample standard deviation underestimate, on average, the actual variance
and standard deviation.

Through the use of the fractional-Gaussian-noise-driven Poisson process model, we
were able to estimate the variability present in some representative spike rate measure-
ments from the auditory nerve. These estimates suggest that such measurements should
be interpreted with much caution. In particular, with regard to measurements of spon-
taneous rate, we provided evidence that the wide distribution of spontaneous rates could
possibly be an artifact of the variability of the sample mean. If this is the case, then
the “real” spontaneous rates of auditory neurons may be even more consonant with the
distinct classification of neurons that is possible from other properties, such as response
functions, morphology, and anatomical projections, than has been previously thought.

The negative bias of the sample variance and the sample standard deviation is, in
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some ways, more disconcerting than the variability of the sample mean. At least for the
sample mean, although the probability that it will differ from the true value is high, it
will on average be correct. For the sample variance and and sample standard deviation,
we expect, in the presence of long-range dependence, that the estimates will on average
be incorrect. Fortunately, although not insignificant, the bias of these statistics is likely
to be relatively small, in general, being on the order of ten percent (in units of spikes).
Unfortunately, we do not have an analytical bound on the bias of the standard deviation,
which is, whether explicitly stated or not, often the statistic that is used in studies
involving the variability of spike counts, since it is in the same unit of measure as the
mean. Thus, when studying the variability of spike counts, we suggest that one consider
the effect that adding about ten or twenty percent to the standard deviation might have
on conclusions drawn from the sample standard deviation (i.e. the square root of the
sample variance).

5.3 The Theory of Rate Coding

One of the underlying motivations to the studies in this thesis was to provide evidence
against the assertion that information is transmitted and processed through the spike
rates of neurons. Though the nervous system may use spike rate for some more global
background information, this method of transmitting information seems far too slow
and inefficient to transmit and process the immense amount of information that it must
handle in a rapid manner. As an example, Thorpe and his coworkers (Thorpe, Fize, &
Marlot, 1996; Thorpe & Gautrais, 1997; Gautrais & Thorpe, 1998; Thorpe, Delorme,
& Van Rullen, 2001; Van Rullen & Thorpe, 2001) have provided evidence of this in the
visual system. They concluded, based on event-related potentials in humans performing
a categorization task, that the visual system is able to process complex visual stimuli in
under 150 milliseconds. They argue that, given the number of synapses through which
the information must pass, that the nervous system would require either “excessively long
observation periods incompatible with the speed of sensory processing or excessively large
numbers of redundant neurones, incompatible with the anatomical constraints imposed by
sensory pathways” (Gautrais & Thorpe, 1998) to make use of a rate code. The constraints
can be met in a physiologically realistic way, however, by certain “temporal codes” (e.g.
Thorpe et al., 2001; Van Rullen & Thorpe, 2001).

On the whole, our results have not convincingly refuted the theory of rate coding. The
integration mechanism in the integrate-and-fire neuron model is representative of the types
of mechanisms that would be necessary to process rate-encoded information. Although in
Chapter 2 we found that many of these models were incompatible with the combination
of high variability and long-range dependence found in cortical neurons, in Chapter 3
we presented examples of such models that are successful in producing these two effects.
The results of Chapter 4 suggest that averaging over long intervals is very inefficient in
the presence of long-range dependence. However, to the extent that the nervous system
can combine the output of many neurons on a short time scale, it may be capable of
transmitting information by means of average spike rates.
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Appendix A

The Derivative of the Hazard Rate for the Positive

Gaussian Distribution

We wish to prove that the hazard function for the positive Gaussian distribution is
monotone increasing. Recall that the positive Gaussian probability density function is

f(t) =
2

π µ
e
− t2

π µ2 ,

where µ > 0 is the expected value. Thus, the (cumulative) distribution function is

F (t) =
∫ t

0
f(s) ds = erf

(
t

µ
√

π

)
.

We will also require, below, the derivative of the probability density function

f ′(t) = − 4 t

π2 µ3
e
− t2

π µ2 .

The hazard function of any distribution F (t) is given by

z(t) =
f(t)

1 − F (t)
.

Thus, its derivative is

d

dt
z(t) =

f 2(t) + f ′(t)
(
1 − F (t)

)
[
1 − F (t)

]2 .

Thus, in order to determine the sign of the derivative of the hazard function, we can
restrict ourselves to the finding the sign of the numerator in this expression, as long as
F (t) < 1 for all t. For the positive Gaussian distribution, we have

f 2(t) + f ′(t)
[
1 − F (t)

]
=

4

π2 µ2
e
− t2

π µ2

[
e
− t2

π µ2 − t

µ
erfc

(
t

µ
√

π

)]
.
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Thus, the sign of the derivative of the hazard function is the same as the sign of the
expression

e
− t2

π µ2 − t

µ
erfc

(
t

µ
√

π

)
.

In order to prove that the hazard function is monotone increasing or decreasing, we
must show that this expression is either positive for all t > 0 or negative for all t > 0.
By substituting y = t/µ, we find that this problem is equivalent to showing that the
expression

e−
y2

π − y erfc

(
y√
π

)
. (A.1)

is always positive or always negative for y > 0.
We begin with the inequality

− d

dx

1

x
e−

x2

π = −
[
− 1

x2
e−

x2

π +
1

x
e−

x2

π

(
− 2

π
x

)]

=
1

x2
e−

x2

π +
2

π
e−

x2

π

>
2

π
e−

x2

π .

Integrating both sides of this inequality from y to ∞, we get

∫ ∞

y

2

π
e−

x2

π dx =
2√
π

∫ ∞

y√
π

e−t2 dt = erfc

(
y√
π

)

and ∫ ∞

y
− d

dx

1

x
e−

x2

π dx =
1

y
e−

y2

π .

Thus, we have that
1

y
e−

y2

π > erfc

(
y√
π

)
,

or, equivalently, that

e−
y2

π > y erfc

(
y√
π

)
,

for all y > 0. Thus, expression (A.1) is always positive (when y > 0), and, hence, the
hazard rate of the positive Gaussian distribution is monotone increasing.



122

Appendix B

FFCs and IDCs from Integrate-and-Fire Model

Simulations

B.1 Integrate-and-Fire Model with Positive-Gaussian-

Distributed Inputs
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Figure B.1: FFCs and IDCs estimated from simulations of the IF model with positive-
Gaussian inputs. Each set of axes contains ten curves calculated from original data (black)
and ten curves calculated from the corresponding shuffled surrogate data (gray). For each
value of the inhibition-excitation ratio r, each inidividual FFC in the left set of axes was
calculated from the same data as one of the IDCs in the right set of axes.
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Figure B.1: FFCs and IDCs estimated from simulations of the IF model with positive-
Gaussian inputs (cont.)
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Figure B.1: FFCs and IDCs estimated from simulations of the IF model with positive-
Gaussian inputs (cont.)
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B.2 Integrate-and-Fire Model with Pareto-Distributed

Inputs
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Figure B.2: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 3.0. Each set of axes contains ten curves calculated from
original data (black) and ten curves calculated from the corresponding shuffled surrogate
data (gray). For each value of the inhibition-excitation ratio r, each inidividual FFC in the
left set of axes was calculated from the same data as one of the IDCs in the right set of
axes.
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Figure B.3: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 2.5. Same format as Figure B.2.
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Figure B.4: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 2.1. Same format as Figure B.2.
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Figure B.5: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 2.0. Same format as Figure B.2.



131

α = 1.9

r = 0.00

1 0-2

1 0-1

1 00

1 01

1 02

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 02

1 03

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.50

1 0-2

1 0-1

1 00

1 01

1 02

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 02

1 03

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.70

1 0-2

1 0-1

1 00

1 01

1 02

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 02

1 03

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.80

1 0-2

1 0-1

1 00

1 01

1 02

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 02

1 03

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.90

1 0-2

1 0-1

1 00

1 01

1 02

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 02

1 03

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.95

1 0-2

1 0-1

1 00

1 01

1 02

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 02

1 03

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

Figure B.6: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 1.9. Same format as Figure B.2.
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Figure B.7: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 1.75. Same format as Figure B.2.
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Figure B.8: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 1.5. Same format as Figure B.2.
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Figure B.9: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 1.25. Same format as Figure B.2.
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Figure B.10: FFCs and IDCs estimated from simulations of the IF model with Pareto
inputs and parameter α = 1.0. Same format as Figure B.2.



136

B.3 Integrate-and-Fire Model with fGnDP-Distributed

Inputs
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Figure B.11: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.50. Each set of axes contains ten curves calculated from
original data (black) and ten curves calculated from the corresponding shuffled surrogate
data (gray). For each value of the inhibition-excitation ratio r, each inidividual FFC in the
left set of axes was calculated from the same data as one of the IDCs in the right set of
axes.



138

H = 0.55

r = 0.00

1 0-2

1 0-1

1 00

1 01

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.50

1 0-2

1 0-1

1 00

1 01

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.70

1 0-2

1 0-1

1 00

1 01

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.80

1 0-2

1 0-1

1 00

1 01

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.90

1 0-2

1 0-1

1 00

1 01

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

r = 0.95

1 0-2

1 0-1

1 00

1 01

1 0-2 1 0-1 1 00 1 01 1 02 1 03 1 04 1 05

F
an

o 
F

ac
to

r

Counting Interval (sec)

1 0-2

1 0-1

1 00

1 01

1 00 1 01 1 02 1 03 1 04 1 05In
de

x 
of

 D
is

pe
rs

io
n 

of
 I

nt
er

va
ls

Number of Aggregated Intervals

Figure B.12: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.55. Same format as Figure B.11.
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Figure B.13: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.60. Same format as Figure B.11.
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Figure B.14: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.65. Same format as Figure B.11.
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Figure B.15: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.70. Same format as Figure B.11.
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Figure B.16: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.75. Same format as Figure B.11.
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Figure B.17: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.80. Same format as Figure B.11.
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Figure B.18: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.85. Same format as Figure B.11.
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Figure B.19: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.90. Same format as Figure B.11.
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Figure B.20: FFCs and IDCs estimated from simulations of the IF model with fGnDP
inputs and parameter H = 0.95. Same format as Figure B.11.
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Appendix C

Derivations of Moments and Moments of Statistics for

fGnDP Counts

In Section 4.4.2, we listed a number of results for the fractional-Gaussian-noise-driven
Poisson process without proof. In this appendix, we restate these results along with their
proofs.

For the proof of the first theorem, we require the following two lemmas.

Lemma C.1. For any integer M ≥ 1,

M−1∑
n=1

γ(n) =
1

2

(
M2H − (M − 1)2H − 1

)
, (C.1)

where

γ(k) =
1

2

{
(k + 1)2H − 2k2H + |k − 1|2H

}
, for k ∈ N.

Proof. If M = 1, then both sides of (C.1) are equal to zero. If M = 2, then the left-hand
side of (C.1) is

1∑
n=1

γ(n) = γ(1) =
1

2

{
22H − 2 + 0

}
=

1

2

{
22H − 12H − 1

}
,

which is equal to the right-hand side.
Now, assume that for some k ≥ 2,

k−1∑
n=1

γX(n) =
1

2

(
k2H − (k − 1)2H − 1

)
.
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Then,

(k+1)−1∑
n=1

γ(n) =
k−1∑
n=1

γ(n) + γ(k)

=
1

2

(
k2H − (k − 1)2H − 1

)
+

1

2

(
(k + 1)2H − 2k2H + (k − 1)2H

)

=
1

2

(
k2H − (k − 1)2H − 1 + (k + 1)2H − 2k2H + (k − 1)2H

)

=
1

2

(
(k + 1)2H − k2H − 1

)

Thus, by induction, (C.1) is true for all integers M ≥ 1.

Lemma C.2. For any integer M ≥ 1,

M−1∑
n=1

nγ(n) =
M(M − 1)

2

(
M2H−1 − (M − 1)2H−1

)
, (C.2)

where

γ(k) =
1

2

{
(k + 1)2H − 2k2H + |k − 1|2H

}
, for k ∈ N.

Proof. If M = 1, then both sides of (C.2) are equal to zero. If M = 2, then the left-hand
side of (C.2) is

1∑
n=1

nγ(n) = γ(1) =
1

2

{
22H − 2 + 0

}
= 22H−1 − 1 =

2(1)

2

(
22H−1 − 12H−1

)
,

which is equal to the right-hand side.
Now, assume that for some k ≥ 2,

k−1∑
n=1

nγ(n) =
k(k − 1)

2

(
k2H−1 − (k − 1)2H−1

)
.

Then,

(k+1)−1∑
n=1

nγ(n) =
k−1∑
n=1

nγ(n) + kγ(k)

=
k(k − 1)

2

(
k2H−1 − (k − 1)2H−1

)
+

k

2

(
(k + 1)2H − 2k2H + (k − 1)2H

)

=
(k + 1)k

2

(
k − 1

k + 1
k2H−1 − 1

k + 1
(k − 1)2H + (k + 1)2H−1

− 2

k + 1
k2H +

1

k + 1
(k − 1)2H

)

=
(k + 1)k

2

(
(k + 1)2H−1 − k2H−1

[
2k

k + 1
− k − 1

k + 1

])

=
(k + 1)k

2

(
(k + 1)2H−1 − k2H−1

)
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Thus, by induction, (C.2) is true for all integers M ≥ 1.

Theorem C.3 (4.1). Let N(·) be an fGnDP with rate process

Λ(t) = max
{
0, λ + σGH

(⌊
t0 + t

τ

⌋)}
, (C.3)

where GH(k) is standard fractional Gaussian noise with Hurst index H. Assuming that the
right term is negative with a probability of nearly zero, the mean count in an interval of
length T is

E{N(T )} ≈ λT,

and the variance of the count in the same interval is given by the following:

(i) If 0 < T < τ , then

V ar {N(T )} ≈ λT + σ2T 2

(
1 +

22H−1 − 2

3
· T

τ

)
; (C.4a)

(ii) If T ≥ τ and n =
⌊

T
τ

⌋
, then

V ar {N(T )} ≈ λT +
σ2τ 2

6

{(
T

τ
− n

)3

(n + 2)2H

−
[
3

(
T

τ
− n

)2 (
T

τ
− n − 1

)
−

(
3

(
T

τ
− n

)
+ 1

)]
(n + 1)2H

+

[
3

(
T

τ
− n

)2 (
T

τ
− n − 2

)
+ 4

]
n2H

−
(

T

τ
− n − 1

)3

(n − 1)2H − 2

}
. (C.4b)

Proof. Under the assumption that the probability of

λ + σGH

(⌊
t0 + t

τ

⌋)
< 0

is negligible, the mean and variance of the the rate process Λ are easily computed:

E {Λ} ≈ E {λ + σGH} = λ + σE{GH} = λ

and

V ar {Λ} ≈ V ar {λ + σGH}

= σ2V ar{GH} = σ2
(
E

{
G2

H

}
−

(
E{GH}

)2
)

= σ2
(
γ

G
(0) − 0

)
= σ2.

This allows computation of the mean of the fGnDP counting process:

E {N(T )} = E {Λ} · T ≈ λT.
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But for the variance of the counting process we need the autocovariance function of the
rate process.

According to (4.4) the autocovariance function of the rate process Λ of the fGnDP is

γ
Λ
(t) ≈ σ2Et0

{
γ

G

(⌊
t0 + t

τ

⌋
−

⌊
t0
τ

⌋)}
, for t ≥ 0,

where Et0 is expectation with respect to the random variable t0, which is uniformly
distributed on [0, τ). Calculating this expectation simply involves integration over [0, τ)
and division by τ . Thus, we get

γ
Λ
(t) =

σ2

τ

∫ τ

0
γ

G

(⌊
t0 + t

τ

⌋
−

⌊
t0
τ

⌋)
dt0.

Now, let n =
⌊

t
τ

⌋
. Then, nτ ≤ t < (n + 1)τ , where n ∈ {0} ∪ N, and we have

γΛ(t) =
σ2

τ

{∫ τ−(t−nτ)

0
γ

G

(⌊
t0 + t

τ

⌋
−

⌊
t0
τ

⌋)
dt0

+
∫ τ

τ−(t−nτ)
γ

G

(⌊
t0 + t

τ

⌋
−

⌊
t0
τ

⌋)
dt0

}

=
σ2

τ

{∫ (n+1)τ−t

0
γ

G

(⌊
t0 + t

τ

⌋
−

⌊
t0
τ

⌋)
dt0

+
∫ τ

(n+1)τ−t
γ

G

(⌊
t0 + t

τ

⌋
−

⌊
t0
τ

⌋)
dt0

}

=
σ2

τ

{∫ (n+1)τ−t

0
γ

G

(
n − 0

)
dt0 +

∫ τ

(n+1)τ−t
γ

G

(
(n + 1) − 0

)
dt0

}

=
σ2

τ

{∫ (n+1)τ−t

0
γ

G
(n) dt0 +

∫ τ

(n+1)τ−t
γ

G
(n + 1) dt0

}

=
σ2

τ

{
γ

G
(n)

[
(n + 1)τ − t

]
+ γ

G
(n + 1)

[
τ −

(
(n + 1)τ − t

)]}

=
σ2

τ

{
γ

G
(n)

[
(n + 1)τ − t

]
+ γ

G
(n + 1)

[
t − nτ

]}

= σ2
{
γ

G
(n)

[
(n + 1) − t

τ

]
+ γ

G
(n + 1)

[
t

τ
− n

]}
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Therefore, the variance of the counting process is

V ar {N(T )} = E {Λ} · T + 2
∫ T

0
(T − u) γ

Λ
(u) du

≈ λT + 2
∫ T

0
(T − u) σ2

{
γ

G

(⌊
u

τ

⌋) (⌊
u

τ

⌋
+ 1 − u

τ

)

+γ
G

(⌊
u

τ

⌋
+ 1

) (
u

τ
−

⌊
u

τ

⌋)}
du

= λT + 2σ2
∫ T

0
(T − u)

{
γ

G

(⌊
u

τ

⌋) (⌊
u

τ

⌋
+ 1 − u

τ

)

+γ
G

(⌊
u

τ

⌋
+ 1

) (
u

τ
−

⌊
u

τ

⌋)}
du

For 0 < T < τ , the variance becomes

V ar {N(T )} ≈ λT + 2σ2
∫ T

0
(T − u)

{
γ

G
(0)

(
0 + 1 − u

τ

)
+ γ

G
(0 + 1)

(
u

τ
− 0

)}
du

= λT + 2σ2
∫ T

0
(T − u)

{(
1 − u

τ

)
+

(
22H−1 − 1

) (
u

τ

)}
du

= λT + 2σ2
∫ T

0
(T − u)

{
1 +

(
22H−1 − 2

) (
u

τ

)}
du

= λT + 2σ2


T 2

[
3τ +

(
22H−1 − 2

)
T

]
6τ




= λT + σ2T 2

(
1 +

22H−1 − 2

3
· T

τ

)

For T ≥ τ , the variance becomes

V ar {N(T )} ≈ λT + 2σ2



�T

τ �−1∑
n=0

∫ (n+1)τ

nτ
(T − u)

{
γ

G
(n)

(
n + 1 − u

τ

)

+γ
G
(n + 1)

(
u

τ
− n

)}
du

+
∫ T

�T
τ �τ

(T − u)
{
γ

G

(⌊
T

τ

⌋) (⌊
T

τ

⌋
+ 1 − u

τ

)

+γ
G

(⌊
T

τ

⌋
+ 1

) (
u

τ
−

⌊
T

τ

⌋)}
du
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Computing the first sum-integral combination, we get

�T
τ �−1∑
n=0

∫ (n+1)τ

nτ
(T − u)

{
γ

G
(n)

(
n + 1 − u

τ

)
+ γ

G
(n + 1)

(
u

τ
− n

)}
du

=

�T
τ �−1∑
n=0

{
γ

G
(n)

∫ (n+1)τ

nτ
(T − u)

(
n + 1 − u

τ

)
du

+γ
G
(n + 1)

∫ (n+1)τ

nτ
(T − u)

(
u

τ
− n

)
du

}

=

�T
τ �−1∑
n=0

{
−1

6
τ γ

G
(n) (3nτ + τ − 3T ) + −1

6
τ γ

G
(n + 1) (3nτ + 2τ − 3T )

}

= −τ

6

�T
τ �−1∑
n=0

{
γ

G
(n) (3nτ + τ − 3T ) + γ

G
(n + 1) (3nτ + 2τ − 3T )

}

= −τ

6


γ

G
(0) (τ − 3T )

+

�T
τ �−1∑
n=1

{
γ

G
(n) (3nτ − τ − 3T ) + γ

G
(n) (3nτ + τ − 3T )

}

+ γ
G

(⌊
T

τ

⌋) (
3τ

⌊
T

τ

⌋
− τ − 3T

)
 if T ≥ τ , else 0

= −τ

6


γ

G
(0) (τ − 3T ) + 6

�T
τ �−1∑
n=1

{
γ

G
(n) (nτ − T )

}

+ γ
G

(⌊
T

τ

⌋) (
3τ

⌊
T

τ

⌋
− τ − 3T

)


= −τ

6


(τ − 3T ) + 6

�T
τ �−1∑
n=1

{
γ

G
(n) (nτ − T )

}

+ γ
G

(⌊
T

τ

⌋) (
3τ

⌊
T

τ

⌋
− τ − 3T

)
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Using Lemmas C.1 and C.2, and letting n =
⌊

T
τ

⌋
, we have

�T
τ �−1∑
n=0

∫ (n+1)τ

nτ
(T − u)

{
γ

G
(n)

(
n + 1 − u

τ

)
+ γ

G
(n + 1)

(
u

τ
− n

)}
du

= −τ

6

{
(τ − 3T )

+ 6

(
n(n − 1)

2

(
n2H−1 − (n − 1)2H−1

)
τ − 1

2

(
n2H − (n − 1)2H − 1

)
T

)

+
1

2

(
(n + 1)2H − 2n2H + (n − 1)2H

)
(3τn − τ − 3T )

}

= − τ

12

{[
(3n − 1)(n + 1)2H − 4n2H − (3n + 1)(n − 1)2H + 2

]
τ

−3
[
(n + 1)2H − (n − 1)2H

]
T

}

= − τ

12

{
(3nτ − τ − 3T )(n + 1)2H − 4τn2H − (3nτ + τ − 3T )(n − 1)2H + 2τ

}
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Letting n =
⌊

T
τ

⌋
, and computing the second integral, we get

∫ T

�T
τ �τ

(T − u)
{
γ

G

(⌊
T

τ

⌋) (⌊
T

τ

⌋
+ 1 − u

τ

)
+ γ

G

(⌊
T

τ

⌋
+ 1

) (
u

τ
−

⌊
T

τ

⌋)}
du

=
∫ T

nτ
(T − u)

{
γ

G
(n)

(
n + 1 − u

τ

)
+ γ

G
(n + 1)

(
u

τ
− n

)}
du

=
∫ T

nτ
(T − u)

{[
(n + 1)γ

G
(n) − nγ

G
(n + 1)

]
+

[
γ

G
(n + 1) − γ

G
(n)

]
u

τ

}
du

=
1

2
(nτ − T )2

[
(n + 1)γ

G
(n) − nγ

G
(n + 1)

]

+
1

6τ
(nτ − T )2(2nτ + T )

[
γ

G
(n + 1) − γ

G
(n)

]

=
(nτ − T )2

6τ

{
3τ

[
(n + 1)γ

G
(n) − nγ

G
(n + 1)

]
+ (2nτ + T )

[
γ

G
(n + 1) − γ

G
(n)

]}

=
(nτ − T )2

6τ

{
(3τ + nτ − T )γ

G
(n) − (nτ − T )γ

G
(n + 1)

}

=
(nτ − T )2

12τ

{
(3τ + nτ − T )

(
(n + 1)2H − 2n2H + (n − 1)2H

)

−(nτ − T )
(
(n + 2)2H − 2(n + 1)2H + n2H

)}

=
(nτ − T )2

12τ

{
−(nτ − T )(n + 2)2H + (3τ + nτ − T + 2nτ − 2T )(n + 1)2H

−(6τ + 2nτ − 2T + nτ − T )n2H + (3τ + nτ − T )(n − 1)2H
}

=
(nτ − T )2

12τ

{
−(nτ − T )(n + 2)2H + 3(τ + nτ − T )(n + 1)2H

−3(2τ + nτ − T )n2H + (3τ + nτ − T )(n − 1)2H
}

Thus, for T ≥ τ and n =
⌊

T
τ

⌋
, we have

V ar {N(T )} ≈ λT +
σ2

6τ

{
(T − nτ)3(n + 2)2H

+
[
3(T − nτ)2

(
(n + 1)τ − T

)
+ τ 2

(
3(T − nτ) + τ

)]
(n + 1)2H

−
[
3(T − nτ)2

(
(n + 2)τ − T

)
− 4τ 3

]
n2H +

(
(n + 1)τ − T

)3
(n − 1)2H − 2τ 3

}

Theorem C.4 (4.3). Let N(·) be the fGnDP in Theorem C.3. Using the approximation
(4.6) to the autocovariance function of its rate process, the count variance of N can be
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approximated by

V ar {N(T )} ≈ λT +
σ2τ 2

2(H + 1)(2H + 1)

×
{(

T

τ
+ 1

)2(H+1)

− 2
(

T

τ

)2(H+1)

+
∣∣∣∣Tτ − 1

∣∣∣∣
2(H+1)

− 2

}
(C.5)

Proof. This approximation does not affect the mean and variance of the rate process,
nor the mean of the counting process, since they do not depend on the autocovariance
function. But the variance of the counting process is now

V ar {N(T )} = E {Λ} · T + 2
∫ T

0
(T − u) γ

Λ
(u) du

≈ λT + 2
∫ T

0
(T − u) σ2γ

G
(u) du

≈ λT + 2
∫ T

0
(T − u) σ2

(
1

2τ 2H

) {
(u + τ)2H − 2u2H + |u − τ |2H

}
du

= λT +
σ2

τ 2H

∫ T

0
(T − u)

{
(u + τ)2H − 2u2H + |u − τ |2H

}
du.

For 0 < T ≤ τ , the variance is

V ar [N(T )] = λT +
σ2

τ 2H

∫ T

0
(T − u)

{
(u + τ)2H − 2u2H + (τ − u)2H

}
du

= λT +
σ2

τ 2H

{∫ T

0
T (u + τ)2H du

−
∫ T

0
u (u + τ)2H du − 2

∫ T

0
(T − u) u2H du

+
∫ T

0
T (τ − u)2H du −

∫ T

0
u (τ − u)2H du

}
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Each of the integrals within the braces may be computed separately:

•
∫ T

0
T (u + τ)2H du =

T (u + τ)2H+1

2H + 1

∣∣∣∣∣
T

0

=
T

[
(T + τ)2H+1 − τ 2H+1

]
2H + 1

•
∫ T

0
u (u + τ)2H du =

(2u2H + 2τHu − τ 2 + u2) (u + τ)2H

2(H + 1)(2H + 1)

∣∣∣∣∣
T

0

=
(2T 2H + 2τTH − τ 2 + T 2) (T + τ)2H + τ 2(H+1)

2(H + 1)(2H + 1)

•
∫ T

0
(T − u) u2H du =

∫ T

0
Tu2H − u2H+1 du

=
[

T

2H + 1
u2H+1 − 1

2H + 2
u2H+2

]∣∣∣∣
T

0

=
T 2H+2

2H + 1
− T 2H+2

2H + 2
− 0

=
2H + 2 − 2H − 1

(2H + 1)(2H + 2)
T 2H+2

=
T 2(H+1)

2(H + 1)(2H + 1)

•
∫ T

0
T (τ − u)2H du =

−T (τ − u)2H+1

2H + 1

∣∣∣∣∣
T

0

=
−T

[
(τ − T )2H+1 − τ 2H+1

]
2H + 1

•
∫ T

0
u (τ − u)2H du =

(2u2H − 2τHu − τ 2 + u2) (τ − u)2H

2(H + 1)(2H + 1)

∣∣∣∣∣
T

0

=
(2T 2H − 2τTH − τ 2 + T 2) (τ − T )2H + τ 2(H+1)

2(H + 1)(2H + 1)

Thus, the variance for 0 < T ≤ τ is

V ar {N(T )}

= λT +
σ2

τ 2H

{
T

2H + 1

[
(T + τ)2H+1 − (τ − T )2H+1

]
− T 2(H+1) + τ 2(H+1)

(H + 1)(2H + 1)

−
(2T 2H − 2τTH − τ 2 + T 2)

[
(T + τ)2H + (τ − T )2H

]
2(H + 1)(2H + 1)




= λT +
σ2

τ 2H
·
(T + τ)2(H+1) − 2

(
T 2(H+1) + τ 2(H+1)

)
+ (τ − T )2(H+1)

2(H + 1)(2H + 1)

= λT +
σ2τ 2

[(
T
τ

+ 1
)2(H+1) − 2

((
T
τ

)2(H+1)
+ 1

)
+

(
1 − T

τ

)2(H+1)
]

2(H + 1)(2H + 1)
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For T > τ , the variance is

V ar [N(T )] = λT +
σ2

τ 2H

{∫ T

0
T (u + τ)2H du

−
∫ T

0
u (u + τ)2H du − 2

∫ T

0
(T − u) u2H du

+
∫ τ

0
T (τ − u)2H du +

∫ T

τ
T (u − τ)2H du

−
∫ τ

0
u (τ − u)2H du −

∫ T

τ
u (u − τ)2H du

}

The first three integrals within the braces have already been calculated above. The final
four integrals are:

•
∫ τ

0
T (τ − u)2H du =

−T (τ − u)2H+1

2H + 1

∣∣∣∣∣
τ

0

=
Tτ 2H+1

2H + 1

•
∫ T

τ
T (u − τ)2H du =

T (u − τ)2H+1

2H + 1

∣∣∣∣∣
T

τ

=
T (T − τ)2H+1

2H + 1

•
∫ τ

0
u (τ − u)2H du =

(2u2H − 2τHu − τ 2 + u2) (τ − u)2H

2(H + 1)(2H + 1)

∣∣∣∣∣
τ

0

=
τ 2(H+1)

2(H + 1)(2H + 1)

•
∫ T

τ
u (u − τ)2H du =

(2u2H − 2τHu − τ 2 + u2) (u − τ)2H

2(H + 1)(2H + 1)

∣∣∣∣∣
T

τ

=
[2T 2H − 2TτH − τ 2 + T 2] (T − τ)2H

2(H + 1)(2H + 1)

=

[
2TH(T − τ) + (T − τ)(T + τ)

]
(T − τ)2H

2(H + 1)(2H + 1)

=

[
(2H + 1)T + τ

]
(T − τ)2H+1

2(H + 1)(2H + 1)



158

Thus, the variance for T > τ is

V ar {N(T )}

= λT +
σ2

τ 2H

{
T

2H + 1

[
(T + τ)2H+1 + (T − τ)2H+1

]
− T 2(H+1) + τ 2(H+1)

(H + 1)(2H + 1)

−
[
(2H + 1)T − τ

]
(T + τ)2H+1 +

[
(2H + 1)T + τ

]
(T − τ)2H+1

2(H + 1)(2H + 1)




= λT +
σ2

τ 2H
·
(T + τ)2(H+1) − 2

(
T 2(H+1) + τ 2(H+1)

)
+ (T − τ)2(H+1)

2(H + 1)(2H + 1)

= λT +
σ2τ 2

[(
T
τ

+ 1
)2(H+1) − 2

((
T
τ

)2(H+1)
+ 1

)
+

(
T
τ
− 1

)2(H+1)
]

2(H + 1)(2H + 1)

This differs from the expression for 0 < T ≤ τ only in the last term in the numerator,

which is
(

T
τ
− 1

)2(H+1)
for T > τ and

(
1 − T

τ

)2(H+1)
for T ≤ τ . Thus, for any T > 0, the

variance is

V ar {N(T )} = λT +
σ2τ 2

[(
T
τ

+ 1
)2(H+1) − 2

((
T
τ

)2(H+1)
+ 1

)
+

∣∣∣T
τ
− 1

∣∣∣2(H+1)
]

2(H + 1)(2H + 1)

Theorem C.5 (4.4). Let N(·) be an fGnDP as in Theorem C.3, and define the sample
mean of the counts as in Definition 4.4. Then the expected value of the sample mean,
assuming only that truncation of the rate process is negligible, is

E{mr(T )} = E{N(T )} ≈ λT.

Thus, the sample mean is an unbiased estimator of the mean count.

Proof.

E{mr(T )} = E

{
1

r

r∑
i=1

Ni(T )

}
=

1

r

r∑
i=1

E{Ni(T )} =
1

r

r∑
i=1

E{N(T )} = E{N(T )}.

Theorem C.6 (4.5). Let N(·) be an fGnDP as in Theorem C.3, and define the sample
mean of the counts as in Definition 4.4. Assume that S ≥ τ . Then, using the approxi-
mation (4.6) to the autocovariance function of the rate process of N , the variance of the
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sample mean count is approximately

V ar
{
mr(T )

}
≈ λT

r
+

σ2

2rτ 2H(2H + 1)(H + 1)

×



[
(T + τ)2(H+1) − 2

(
T 2(H+1) + τ 2(H+1)

)
+ |T − τ |2(H+1)

]

+
1

r

r−1∑
k=1

(r − k)

[
(kS + T + τ)2(H+1) − 2(kS + T )2(H+1) + |kS + T − τ |2(H+1)

− 2
[
(kS + τ)2(H+1) − 2(kS)2(H+1) + |kS − τ |2(H+1)

]

+ (kS − T + τ)2(H+1) − 2(kS − T )2(H+1) + |kS − T − τ |2(H+1)

]
.

Proof. The variance of mr(T ) is

V ar
{
mr(T )

}
=

1

r2
V ar

{
r∑

i=1

Ni(T )

}

=
1

r2


 r∑

i=1

V ar
{
Ni(T )

}
+ 2

∑
i<j

Cov
{
Ni(T ), Nj(T )

}


=
1

r
V ar

{
N(T )

}
+

2

r2

∑
i<j

Cov
{
Ni(T ), Nj(T )

}

=
1

r
V ar

{
N(T )

}
+

2

r2

r−1∑
k=1

k∑
i=1

Cov
{
Ni(T ), Ni+r−k(T )

}

=
1

r
V ar

{
N(T )

}
+

2

r2

r−1∑
k=1

k∑
i=1

Cov
{
N1(T ), N1+r−k(T )

}

=
1

r
V ar

{
N(T )

}
+

2

r2

r−1∑
k=1

k Cov
{
N1(T ), N1+r−k(T )

}

An approximate expression for V ar {N(T )} is given in (C.5). Since the sample counting
intervals do not overlap (recall that T ≤ S), the covariance of the counts in any two
distinct intervals is (Cox & Isham, 1980, p. 34)

Cov
{
N1(T ), Nj(T )

}
= E{Λ}

∫ T

0

∫ (j−1)S+T

(j−1)S
h(u − z) du dz −

(
E{Λ}

)2
T 2, j > 1,

where h is the conditional intensity function. The conditional intensity function for a
doubly stochastic Poisson process is (Cox & Isham, 1980, p. 72)

h(t) = E{Λ} + γ
Λ
(t)/E{Λ},

where γ
Λ

is the covariance function of Λ.
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Thus, we have that

Cov
{
N1(T ), Nj(T )

}

= E{Λ}
∫ T

0

∫ (j−1)S+T

(j−1)S
E{Λ} du dz

+ E{Λ}
∫ T

0

∫ (j−1)S+T

(j−1)S

(
γ

Λ
(u − z)/E{Λ}

)
du dz −

(
E{Λ}

)2
T 2

=
∫ T

0

∫ (j−1)S+T

(j−1)S
γ

Λ
(u − z) du dz

=
σ2

2τ 2H

∫ T

0

∫ (j−1)S+T

(j−1)S

{
(u − z + τ)2H − 2(u − z)2H + |u − z − τ |2H

}
du dz

=
σ2

2τ 2H

{∫ T

0

∫ (j−1)S+T

(j−1)S

[
(u − z + τ)2H − 2(u − z)2H

]
du dz

+
∫ T

0

∫ (j−1)S+T

(j−1)S
|u − z − τ |2H du dz

}
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Computing the first double integral, we get

∫ T

0

∫ (j−1)S+T

(j−1)S

[
(u − z + τ)2H − 2(u − z)2H

]
du dz

=
∫ T

0

∫ (j−1)S+T

(j−1)S

{
(u − z + τ)2H − 2(u − z)2H

}
du dz

=
1

2H + 1

∫ T

0

{
(u − z + τ)2H+1 − 2(u − z)2H+1

}∣∣∣∣∣
u=(j−1)S+T

u=(j−1)S

dz

=
−1

(2H + 1)(2H + 2)

{
(u − z + τ)2H+2 − 2(u − z)2H+2

}∣∣∣∣∣
u=(j−1)S+T

u=(j−1)S

∣∣∣∣∣∣
z=T

z=0

=
−1

2(2H + 1)(H + 1)

{
(u − T + τ)2(H+1) − 2(u − T )2(H+1)

−(u + τ)2(H+1) + 2u2(H+1)

}∣∣∣∣∣
u=(j−1)S+T

u=(j−1)S

=
−1

2(2H + 1)(H + 1)

{
2

[(
(j − 1)S + τ

)2(H+1) − 2
(
(j − 1)S

)2(H+1)
]

−
(
(j − 1)S + T + τ

)2(H+1)
+ 2

(
(j − 1)S + T

)2(H+1)

−
(
(j − 1)S − T + τ

)2(H+1)
+ 2

(
(j − 1)S − T

)2(H+1)
}

=
1

2(2H + 1)(H + 1)

×
{(

(j − 1)S + T + τ
)2(H+1) − 2

(
(j − 1)S + T

)2(H+1)

+
(
(j − 1)S − T + τ

)2(H+1) − 2
(
(j − 1)S − T

)2(H+1)

−2
[(

(j − 1)S + τ
)2(H+1) − 2

(
(j − 1)S

)2(H+1)
]}

In order to compute the second double integral, we note that

∫ ∫
|u − z − τ |2H du dz =

−1

(2H + 1)(2H + 2)
|u − z − τ |2H+2.

This is due to symmetry between the two integration variables: their coefficients are plus
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one and minus one. Thus, the second double integral is

∫ T

0

∫ (j−1)S+T

(j−1)S
|u − z − τ |2H du dz

=
−1

(2H + 1)(2H + 2)
|u − z − τ |2H+2

∣∣∣u=(j−1)S+T

u=(j−1)S

∣∣∣∣z=T

z=0

=
−1

2(2H + 1)(H + 1)

{
|u − T − τ |2(H+1) − |u − τ |2(H+1)

}∣∣∣∣∣
u=(j−1)S+T

u=(j−1)S

=
−1

2(2H + 1)(H + 1)

{
2
∣∣∣(j − 1)S − τ

∣∣∣2(H+1)

−
∣∣∣(j − 1)S + T − τ

∣∣∣2(H+1) −
∣∣∣(j − 1)S − T − τ

∣∣∣2(H+1)
}

=
1

2(2H + 1)(H + 1)

{∣∣∣(j − 1)S + T − τ
∣∣∣2(H+1)

+
∣∣∣(j − 1)S − T − τ

∣∣∣2(H+1) − 2
∣∣∣(j − 1)S − τ

∣∣∣2(H+1)
}



163

Hence, the covariance is

Cov
{
N1(T ), Nj(T )

}

=
a2

2τ 2H

{∫ T

0

∫ (j−1)S+T

(j−1)S

[
(u − z + τ)2H − 2(u − z)2H

]
du dz

+
∫ T

0

∫ (j−1)S+T

(j−1)S
|u − z − τ |2H du dz

}

=
a2

4τ 2H(2H + 1)(H + 1)

×
{(

(j − 1)S + T + τ
)2(H+1) − 2

(
(j − 1)S + T

)2(H+1)

+
(
(j − 1)S − T + τ

)2(H+1) − 2
(
(j − 1)S − T

)2(H+1)

− 2
[(

(j − 1)S + τ
)2(H+1) − 2

(
(j − 1)S

)2(H+1)
]

+
∣∣∣(j − 1)S + T − τ

∣∣∣2(H+1)
+

∣∣∣(j − 1)S − T − τ
∣∣∣2(H+1)

− 2
∣∣∣(j − 1)S − τ

∣∣∣2(H+1)
}

=
a2

4τ 2H(2H + 1)(H + 1)

×
{(

(j − 1)S + T + τ
)2(H+1) − 2

(
(j − 1)S + T

)2(H+1)

+
∣∣∣(j − 1)S + T − τ

∣∣∣2(H+1) − 2
[(

(j − 1)S + τ
)2(H+1)

−2
(
(j − 1)S

)2(H+1)
+

∣∣∣(j − 1)S − τ
∣∣∣2(H+1)

]

+
(
(j − 1)S − T + τ

)2(H+1) − 2
(
(j − 1)S − T

)2(H+1)

+
∣∣∣(j − 1)S − T − τ

∣∣∣2(H+1)
}
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Therefore, the variance of mr(T ) is

V ar{mr(T )} =
λT

r
+

σ2

2rτ 2H(2H + 1)(H + 1)

×



[
(T + τ)2(H+1) − 2

(
T 2(H+1) + τ 2(H+1)

)
+ |T − τ |2(H+1)

]

+
1

r

r−1∑
k=1

k

[(
(r − k)S + T + τ

)2(H+1) − 2
(
(r − k)S + T

)2(H+1)

+
∣∣∣(r − k)S + T − τ

∣∣∣2(H+1) − 2
{(

(r − k)S + τ
)2(H+1)

−2
(
(r − k)S

)2(H+1)
+

∣∣∣(r − k)S − τ
∣∣∣2(H+1)

}

+
(
(r − k)S − T + τ

)2(H+1) − 2
(
(r − k)S − T

)2(H+1)

+
∣∣∣(r − k)S − T − τ

∣∣∣2(H+1)
]


or

V ar{mr(T )} =
λT

r
+

σ2

2rτ 2H(2H + 1)(H + 1)

×



[
(T + τ)2(H+1) − 2

(
T 2(H+1) + τ 2(H+1)

)
+ |T − τ |2(H+1)

]

+
1

r

r−1∑
k=1

(r − k)

[
(kS + T + τ)2(H+1)

− 2(kS + T )2(H+1) + |kS + T − τ |2(H+1)

− 2
[
(kS + τ)2(H+1) − 2(kS)2(H+1) + |kS − τ |2(H+1)

]
+ (kS − T + τ)2(H+1) − 2(kS − T )2(H+1)

+ |kS − T − τ |2(H+1)

]
.

Theorem C.7 (4.6). Let N(·) be an fGnDP as in Theorem C.3, and define the sample
mean and sample variance of the counts as in Definition 4.4. Assume that S ≥ τ . Then,
using the approximation (4.6) to the autocovariance function of the rate process of N , the
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expected value of the sample variance is approximately

E
{
s2

r(T )
}
≈ V ar{N(T )} −

(
1

r(r − 1)

)
·
(

σ2

2τ 2H(2H + 1)(H + 1)

)

×
r−1∑
k=1

(r − k)

{
(kS + T + τ)2(H+1) − 2(kS + T )2(H+1) + |kS + T − τ |2(H+1)

− 2
[
(kS + τ)2(H+1) − 2(kS)2(H+1) + |kS − τ |2(H+1)

]

+ (kS − T + τ)2(H+1) − 2(kS − T )2(H+1) + |kS − T − τ |2(H+1)

}
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Proof. The expected value of the sample variance is

E

{
1

r − 1

r∑
i=1

(
Ni(T ) − mr(T )

)2
}

=
1

r − 1

r∑
i=1

E
{(

Ni(T ) − mr(T )
)2

}

=
1

r − 1

r∑
i=1

E
{
N2

i (T ) − 2Ni(T ) mr(T ) + m2
r(T )

}

=
1

r − 1

r∑
i=1

(
E

{
N2

i (T )
}
− 2E

{
Ni(T ) mr(T )

}
+ E

{
m2

r(T )
})

=
1

r − 1

r∑
i=1

(
E

{
N2(T )

}
− 2E

{
Ni(T ) mr(T )

}
+ E

{
m2

r(T )
})

=
1

r − 1

(
nE

{
N2(T )

}
− 2E

{(
r∑

i=1

Ni(T )

)
mr(T )

}
+ nE

{
m2

r(T )
})

=
1

r − 1

(
nE

{
N2(T )

}
− 2nE

{
m2

r(T )
}

+ nE
{
m2

r(T )
})

=
r

r − 1

(
E

{
N2(T )

}
− E

{
m2

r(T )
})

=
r

r − 1

(
V ar{N(T )} +

(
E{N(T )}

)2 − E
{
m2

r(T )
})

,

since V ar{N(T )} = E
{
N2(T )

}
−

(
E{N(T )}

)2

=
r

r − 1

(
V ar{N(T )} +

(
E{N(T )}

)2 − V ar {mr(T )} −
(
E {mr(T )}

)2
)
,

since V ar {mr(T )} = E
{
m2

r(T )
}
−

(
E {mr(T )}

)2

=
r

r − 1

(
V ar{N(T )} +

(
E{N(T )}

)2 − V ar {mr(T )} −
(
E{N(T )}

)2
)

=
r

r − 1

(
V ar{N(T )} − V ar {mr(T )}

)

=
r

r − 1

(
V ar{N(T )} − 1

r
V ar{N(T )} − 2

r2

∑
1≤i<j≤r

Cov
{
Ni(T ), Nj(T )

})

= V ar{N(T )} − 2

r(r − 1)

∑
i<j

Cov
{
Ni(T ), Nj(T )

}
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From the proof of Theorem C.6, we know that

2
∑
i<j

Cov
{
Ni(T ), Nj(T )

}
≈ σ2

2τ 2H(2H + 1)(H + 1)

×
r−1∑
k=1

(r − k)

{
(kS + T + τ)2(H+1) − 2(kS + T )2(H+1) + |kS + T − τ |2(H+1)

− 2
[
(kS + τ)2(H+1) − 2(kS)2(H+1) + |kS − τ |2(H+1)

]

+ (kS − T + τ)2(H+1) − 2(kS − T )2(H+1) + |kS − T − τ |2(H+1)

}

Thus, the expected value of the sample variance is approximately

E

{
1

r − 1

r∑
i=1

(Ni(T ) − mr(T ))2

}
≈ V ar{N(T )}

−
(

1

r(r − 1)

)
·
(

σ2

2τ 2H(2H + 1)(H + 1)

)

×
r−1∑
k=1

(r − k)

{
(kS + T + τ)2(H+1) − 2(kS + T )2(H+1) + |kS + T − τ |2(H+1)

− 2
[
(kS + τ)2(H+1) − 2(kS)2(H+1) + |kS − τ |2(H+1)

]

+ (kS − T + τ)2(H+1) − 2(kS − T )2(H+1) + |kS − T − τ |2(H+1)

}
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