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ABSTRACT
An active mechanism referred to as the cochlear amplifier is believed to be responsible

for sharp tuning and excellent sensitivity in the normal auditory system, and is impaired
or absent in many common forms of sensorineural hearing loss. The cochlear amplifier is
thought to benefit normal-hearing listeners, especially in complex listening environments in
which hearing-impaired listeners have difficulty even with hearing aids.
A modeling approach was developed to relate nonlinear physiological response properties

associated with the cochlear amplifier to human psychophysical performance. Quantitative
methods combined analytical and computational population models of the auditory-nerve
(AN) with statistical decision theory to evaluate performance limits imposed by the random
nature of AN discharges (modeled by a nonstationary Poisson process). A new theoretical ap-
proach was developed to predict performance for psychophysical tasks that use random-noise
stimuli to mask signal information. The ability of temporal and average-rate information
in the AN to account for human performance was evaluated for several listening tasks for
which the cochlear amplifier has been suggested to be significant.
The benefit of the cochlear amplifier for extending the auditory system’s dynamic range

was evaluated in terms of AN information available for encoding changes in stimulus level. An
analytical model included nonlinear gain, level-dependent phase, and high-, medium- and
low-spontaneous-rate AN fibers. Both nonlinear-phase and average-rate information were
required to encode levels up to 120 dB SPL based on a narrow range of AN characteristic
frequencies. A physiologically realistic mechanism to decode nonlinear gain and phase cues
is monaural, across-frequency coincidence detection. Level-discrimination performance of a
coincidence-counter population matched human performance across the entire dynamic range
of hearing at both low and high frequencies. Results suggest that the cochlear amplifier is
beneficial for encoding sound level within narrow frequency regions, and has only a small
influence on simple listening tasks in quiet.
The cochlear amplifier alters tuning within the normal auditory system based on the

spectral and temporal configuration of the stimulus. The influences of compression and
suppression on psychophysical measures of auditory frequency selectivity were evaluated.
Implications for the interpretation of psychophysical methods for estimating auditory filters
are discussed.

Thesis Supervisor: Laurel H. Carney, Ph.D.
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2



Acknowledgments

There are many people to whom I owe thanks for their contributions to my dissertation
work. I would like to thank the members of my thesis committee for extremely valuable and
enjoyable interactions throughout the course of this dissertation. Their continual encourage-
ment to focus this work on fundamental issues of broad interest has provided an important
lesson to me, and has made it possible for me to finish in a reasonable amount of time.
Don Eddington’s influence on my work began when I was a 4th-semester student in his

research-methods class. He emphasized the benefits of formulating a good thesis topic and
proposal, the importance of considering relevant clinical issues, and the often forgotten fact
that working on a dissertation should be an enjoyable experience.
Lou Braida, the chairman of the committee, also made an early and profound contribution

to this work through his auditory-perception class, which introduced me to the method of
combining statistical decision theory with auditory-nerve models to evaluate psychophysical
performance limits. Lou has also helped to make me aware of specific conditions in which
hearing-impaired listeners have the most difficulty, even with hearing aids.
Andrew Oxenham provided valuable input to this work by continually reminding me

of the important contributions that have been made to understanding the significance of
cochlear nonlinearity through psychophysics, and of the many experiments for which hearing-
impaired listeners demonstrate near-normal performance.
Bertrand Delgutte made an extremely valuable contribution through his critical evalu-

ations of this work, both in committee meetings as well as in conversations with me. He
continually reminded me of the limitations of the auditory-nerve models used in this disserta-
tion, as well as the new contributions of this work. I have greatly appreciated his willingness
to critically read manuscripts, which were always too lengthy.
I consider myself to be extremely fortunate to have had the opportunity to work so closely

with both Steve Colburn and Laurel Carney during this dissertation. Steve’s willingness to
meet with Laurel and me almost every week is a primary reason that this work has progressed
to its current state. Steve is equally as kind as he is brilliant. His intuition about mathematics
and the auditory system has strongly influenced my way of thinking, and the importance of
his previous work to this dissertation is immeasurable.
Finally, it is difficult to describe the profound influence Laurel Carney has had on this

dissertation, as well as on me as a person. She has contributed invaluable guidance to every
aspect of this dissertation, while giving me unrestricted freedom to work on issues that were
of interest to me. Through her willingness to meet with me far more frequently than she had
time for, she pushed me to continually move forward. Laurel’s encouragement to finish the
dissertation quickly while maintaining rigor has provided valuable lessons on the practical
issues of doing quality research. The ability to combine her enthusiasm for both learning and
teaching with a genuine concern for her students has made her a great role model. Laurel’s
advice and friendship in both academic and personal settings has made working with her an
experience that I will never forget.
In addition to the committee, I would like to thank Craig Formby and Moise Goldstein,

my advisors at Johns Hopkins University, for introducing me to the field of hearing, and for
giving me support and guidance at the beginning of my graduate-school experience.

3



This dissertation would not have been possible without financial support from the Na-
tional Institute on Deafness and Other Communication Disorders in the form of a training
grant to the Harvard-MIT Speech and Hearing Sciences Program. Additional support was
provided by the Office of Naval Research and the National Science Foundation.
The Speech and Hearing Sciences (SHS) Ph.D. Program has provided the ideal multidis-

ciplinary environment for me as a graduate student. I thank Susan Voss, a friend since our
days in Brown Engineering, for introducing me to the SHS program. I am grateful to Nelson
Kiang for his role in founding this program, and for our thought-provoking conversations. Bill
Peake provided early encouragement and advice for my interest in carrying out my research
with Laurel Carney at Boston University. He also maintained an interest in my work, which
included his willingness to read a lengthy manuscript. John Rosowski, who also provided
early encouragement for my working with Laurel, was a great role model during my time as
a teaching assistant, continually demonstrating the importance of focusing on the students’
perspective. Larry Frishkopf provided much valuable advice on academic and career issues
in his role as my academic advisor at MIT. I thank Bill Siebert for his willingness to talk
with me about my work, which would clearly not have been possible without his pioneering
work in this area. Jason Smith and Geoff Meltzner were instrumental in making the first
two years of classes in the SHS program a fun, productive, and memorable experience. In
addition, A.J. Aranyosi, Harold Cheyne, Brad Cranston, Greg Huang, John Iversen, Sridhar
Kalluri, Courtney Lane, Chris Long, Martin McKinney, Janet Slifka, and Jason Sroka have
helped to make graduate school an enjoyable experience beyond all the hard work.
I have truly enjoyed working in the Boston University Hearing Research Center (HRC),

which is where the day-to-day research for this dissertation was conducted. The breadth
of research areas and the pleasant atmosphere provided an excellent location to work on
hearing research. I have benefitted greatly from conversations with Domenica Karavitaki, a
fellow SHS student in the HRC, about research and logistical issues related to working in
the HRC as an MIT student. I have had many valuable discussions with Chris Mason, and
her help with reviewing manuscripts and presentations of the material from this dissertation
has been extremely valuable. Susan Moscynski has also provided much help with reading
drafts of papers, preparing posters, and listening to many long practice talks. In addition,
Mary Evilsizer, Qing Tan, Xuedong (Frank) Zhang, and Ling Zheng have made working in
the lab an enjoyable and productive experience.
I have been extremely fortunate to have had the opportunity to spend the last year getting

to know Torsten Dau, even sharing an office with him for part of the year. I have enjoyed
our many stimulating conversations about all aspects of the auditory field, his never-ending
curiosity and enthusiasm, and especially his friendship.
Finally, I would like to give special thanks to Karen Hull for her never-ending support,

patience, love, friendship, and inspiration. She has put up with me through many stressful
times over the past five years, and has given me a balance in my life, without which com-
pletion of this dissertation would not have been possible. My mother, Jane Arnold Heinz,
and my father, John Heinz, have supported me from the beginning in many ways, giving me
advice all along the way, but without ever an ounce of pressure. Only through the oppor-
tunities that they have provided for me have I been able to arrive where I am today. Jan
Turner has also given me great support throughout my graduate education, and I appreciate
her kindness and sincerity in everything she does.

4



Contents

1 Introduction 14

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Physiological measures of cochlear nonlinearity . . . . . . . . . . . . . 15

1.1.2 Psychophysical measures of cochlear nonlinearity . . . . . . . . . . . 18

1.1.3 Quantitatively relating physiology to psychophysical performance . . 20

1.2 General approach used in this dissertation . . . . . . . . . . . . . . . . . . . 21

1.3 Overview of the dissertation document . . . . . . . . . . . . . . . . . . . . . 22

2 Evaluating auditory performance limits: I. One-parameter discrimination

using a computational model for the auditory-nerve 25

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 General Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Computational auditory-nerve model . . . . . . . . . . . . . . . . . . 32

2.3.2 Optimal decision theory . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 General Analytical Results: One-Parameter Discrimination . . . . . . . . . . 37

2.5 Computational Methods: Use of Auditory-Nerve Models . . . . . . . . . . . 38

2.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Frequency discrimination in quiet . . . . . . . . . . . . . . . . . . . . 41

2.6.2 Level discrimination in quiet . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.1 Analytical versus computational approach . . . . . . . . . . . . . . . 47

2.7.2 Encoding of frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5



2.7.3 Encoding of level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.4 Relation between frequency and level encoding . . . . . . . . . . . . . 54

2.7.5 Limitations of the present study . . . . . . . . . . . . . . . . . . . . . 55

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.10 Appendix: Performance Limits for One-Parameter Discrimination . . . . . . 58

3 Evaluating auditory performance limits: II. One-parameter discrimination

with random level variation 64

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 General Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Computational auditory-nerve model . . . . . . . . . . . . . . . . . . 67

3.3.2 Optimal decision theory . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 General Analytical Results: Random-Level Frequency Discrimination . . . . 69

3.5 Computational Methods: Use of Auditory-Nerve Models . . . . . . . . . . . 70

3.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.1 Random-level frequency discrimination in quiet . . . . . . . . . . . . 71

3.6.2 Random-level frequency discrimination in noise . . . . . . . . . . . . 74

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Appendix: One-Parameter Discrimination with One Unwanted Random Pa-

rameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Monaural, cross-frequency coincidence detection as a mechanism for de-

coding perceptual cues provided by the cochlear amplifier 84

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Auditory-nerve model . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6



4.3.2 Monaural, across-frequency coincidence counting model . . . . . . . . 93

4.3.3 Evaluation of psychophysical performance limits . . . . . . . . . . . . 93

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Distribution of rate, synchrony, and phase information across CF . . 96

4.4.2 Predicted performance based on a narrow CF region . . . . . . . . . 101

4.4.3 Predicted performance based on all CF’s . . . . . . . . . . . . . . . . 108

4.5 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.1 The benefit of the cochlear amplifier for extending the dynamic range

of the auditory system . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.2 Pure-tone level discrimination in quiet . . . . . . . . . . . . . . . . . 118

4.5.3 Coincidence detection: A robust, physiologically realistic neural mech-

anism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.4 Limitations of present study . . . . . . . . . . . . . . . . . . . . . . . 123

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Appendix: Nonlinear analytical auditory-nerve model . . . . . . . . . . . . . 125

4.9 Appendix: Performance based on a monaural coincidence counter . . . . . . 129

5 Quantifying the effects of noise maskers on signal information in auditory-

nerve responses: I. General theory and application to detection in band-

limited noise 133

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1 Separation of stimulus variance from auditory-nerve variance . . . . . 136

5.3.2 General form of optimum processor . . . . . . . . . . . . . . . . . . . 137

5.3.3 General form of a “smart” processor with limited knowledge . . . . . 139

5.3.4 Performance of the general processor . . . . . . . . . . . . . . . . . . 142

5.3.5 Simplifications for suprathreshold conditions . . . . . . . . . . . . . . 145

5.3.6 Specific processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7



5.4 Application of Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.1 Use of computational auditory-nerve models . . . . . . . . . . . . . . 149

5.4.2 Distribution of information across characteristic frequency . . . . . . 154

5.4.3 Analyzing temporal information . . . . . . . . . . . . . . . . . . . . . 158

5.4.4 Estimating psychophysical thresholds . . . . . . . . . . . . . . . . . . 160

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5.1 Auditory detection in noise . . . . . . . . . . . . . . . . . . . . . . . 162

5.5.2 Limitations of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 The influence of the cochlear amplifier on auditory-filter estimates using

the notched-noise method 167

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.1 Computational auditory-nerve model . . . . . . . . . . . . . . . . . . 171

6.3.2 Statistical decision theory . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3.3 Notched-noise method for estimating auditory filters . . . . . . . . . 174

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.5.1 Detection in notched-noise based on auditory-nerve information . . . 191

6.5.2 The influence of cochlear nonlinearity on auditory-filter estimates . . 193

6.5.3 Implications for the measurement of auditory tuning . . . . . . . . . 196

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7 Summary and Comments 203

7.1 Separating the statistical decision theory analysis from the AN model . . . . 204

7.2 Analysis of psychophysical experiments with random variation of a single pa-

rameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.3 Analysis of psychophysical experiments with random-noise stimuli . . . . . . 206

8



7.4 Signal processing capabilities of monaural coincidence counters . . . . . . . . 208

7.5 Limitations of AN models used in this dissertation . . . . . . . . . . . . . . . 210

7.6 Effects of compression and suppression on psychophysical estimates of audi-

tory filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.7 Temporal and average-rate information in the auditory nerve . . . . . . . . . 214

7.8 Psychophysical significance of the cochlear amplifier . . . . . . . . . . . . . . 217

7.8.1 Normal hearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.8.2 Differences in normal and impaired auditory systems . . . . . . . . . 219

7.8.3 Implications for hearing-aid strategies . . . . . . . . . . . . . . . . . . 221

7.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A Nonlinear computational auditory-nerve model 227

References 245

Biographical Note 262

9



List of Figures

2-1 Basic pure-tone response properties of the computational AN model. . . . . 33

2-2 Overview of optimal decision theory used with models of the auditory periph-

ery to evaluate fundamental limits on psychophysical performance. . . . . . . 36

2-3 Approximation of the partial derivative in Eq. 2.1 for evaluating optimal

frequency-discrimination performance. . . . . . . . . . . . . . . . . . . . . . 39

2-4 Optimal performance for pure-tone frequency discrimination. . . . . . . . . . 42

2-5 Information responsible for optimal frequency discrimination for low-, medium-

and high-frequency conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2-6 Optimal performance in terms of ∆L for pure-tone level discrimination. . . . 46

2-7 Information responsible for optimal level discrimination for three levels. . . . 48

3-1 Information responsible for optimal performance on a random-level frequency

discrimination task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3-2 Comparison between human and predicted optimal performance for random-

level frequency-discrimination. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-1 Nonlinear AN model response properties. . . . . . . . . . . . . . . . . . . . . 91

4-2 Simple model of a monaural, across-frequency coincidence counter. . . . . . . 94

4-3 Distribution of rate, synchrony, and phase information across the AN popula-

tion of high-spontaneous-rate fibers for level discrimination of a low-frequency,

high-level tone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4-4 Comparison of nonlinear phase information in high-spontaneous-rate (HSR)

fibers and average-rate information in low-SR fibers for the encoding of high

sound levels in CF’s near the tone frequency. . . . . . . . . . . . . . . . . . . 100

10



4-5 Level-discrimination performance based on the population of high-spontaneous-

rate fibers in a narrow range of CF’s near the tone frequency. . . . . . . . . . 103

4-6 Level-discrimination performance based on the population of low-spontaneous-

rate fibers in a narrow range of CF’s near the tone frequency. . . . . . . . . . 105

4-7 Level-discrimination performance based on individual and combined spon-

taneous-rate groups in a narrow range of CF’s near the tone frequency. . . . 107

4-8 Level-discrimination performance based on the total population of high-spon-

taneous-rate fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4-9 Level-discrimination performance based on the total population of low-spon-

taneous-rate fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4-10 Level-discrimination performance based on the total population of individual

and combined spontaneous-rate groups. . . . . . . . . . . . . . . . . . . . . . 113

5-1 Illustration of auditory-nerve responses used in the theoretical analysis. . . . 141

5-2 Sensitivity Q for detection of a 1049-Hz tone in quiet and in noise maskers

with narrow and broad bandwidths predicted using a computational AN model.152

5-3 Sensitivity Q for detection of a tone in quiet and in random-noise maskers

with bandwidths of 100 Hz and 10 kHz plotted as a function of CF. . . . . . 156

5-4 An illustration of the temporal information available to the realistic processor. 159

5-5 Method for determining detection threshold. . . . . . . . . . . . . . . . . . . 161

6-1 Four versions of the phenomenological AN model used to isolate the effects of

compression and suppression on tuning. . . . . . . . . . . . . . . . . . . . . . 172

6-2 Detection of a tone in random notched noise based on the linear AN model

with sharp tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6-3 Detection of a tone in random notched noise based on the impaired AN model. 180

6-4 Detection of a tone in random notched noise based on the nonlinear AN model

with suppression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6-5 Detection of a tone in random notched noise based on the nonlinear AN model

without suppression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11



6-6 Predicted tone detection in random notched noise based on rate-place infor-

mation for the four versions of the AN model. . . . . . . . . . . . . . . . . . 184

6-7 Predicted tone detection in random notched noise based on all-information

information for the four versions of the AN model. . . . . . . . . . . . . . . . 186

6-8 Detection of a tone in random- and fixed-noise as a function of notch width

based on the linear AN model with sharp tuning. . . . . . . . . . . . . . . . . 188

A-1 Block diagram of computational nonlinear auditory-nerve model. . . . . . . . 228

A-2 Nonlinear-filter responses as a function of level. . . . . . . . . . . . . . . . . 230

A-3 Compressive magnitude responses of the nonlinear filter in the AN model for

CF’s ranging from 500 to 8000 Hz. . . . . . . . . . . . . . . . . . . . . . . . 231

A-4 Rate- and phase-response areas of 2- and 8-kHz CF fibers in the nonlinear AN

model for a range of levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

A-5 Tuning Curves for the four versions of the AN model. . . . . . . . . . . . . . 234

A-6 Two-tone-suppression tuning curves for 1- and 8-kHz fibers. . . . . . . . . . 236

A-7 The growth of two-tone-suppression for 1- and 8-kHz fibers. . . . . . . . . . 238

A-8 Rate-level curves of 1-kHz fibers from the three spontaneous-rate groups in

the four versions of the AN model. . . . . . . . . . . . . . . . . . . . . . . . 239

A-9 Rate-level curves of 8-kHz fibers from the three spontaneous-rate groups in

the four versions of the AN model. . . . . . . . . . . . . . . . . . . . . . . . 240

A-10 Instantaneous discharge rate for a 1-kHz fiber from the nonlinear AN model

in response to at-CF tone bursts for several levels. . . . . . . . . . . . . . . . 242

A-11 Average rate, synchrony coefficient, and onset-rate as a function of level for a

1-kHz HSR fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A-12 The rolloff of phase-locking in the AN model as a function of frequency. . . . 244

12



List of Tables

2.1 Equations and parameters used to implement computational AN model. . . . 34

3.1 Average ratio between thresholds in conditions (2)-(4) relative to condition

(1) (frequency discrimination in quiet). . . . . . . . . . . . . . . . . . . . . . 76

6.1 Auditory-filter parameters estimated from the random-noise thresholds pre-

dicted by the AN-model for notch widths from 0.0 to 0.6. . . . . . . . . . . . 178

6.2 Auditory-filter parameters estimated from the random-noise thresholds pre-

dicted by the AN-model for notch widths from 0.1 to 0.6. . . . . . . . . . . . 179

6.3 Auditory-filter parameters estimated from the fixed-noise thresholds predicted

by the AN-model for notch widths from 0.0 to 0.6. . . . . . . . . . . . . . . . 189

6.4 Auditory-filter parameters estimated from the fixed-noise thresholds predicted

by the AN-model for notch widths from 0.1 to 0.6. . . . . . . . . . . . . . . . 190

13



Chapter 1

Introduction

The excellent sensitivity and exquisite frequency resolution of the normal auditory system

are thought to result from an active mechanism within the inner ear that is often referred to

as the cochlear amplifier (Yates, 1995; Moore, 1995b). Many nonlinear response properties

observed in the auditory periphery have been shown to be related to a single physiologically

vulnerable mechanism, and to correspond to a reduction in basilar-membrane (BM) gain

as stimulus level is increased. The observation that these nonlinear response properties are

reduced or absent in physiologically compromised cochleae suggests that damage or loss of

the underlying active mechanism is related to sensorineural hearing impairment (Patuzzi et

al., 1989; Ruggero and Rich, 1991; Ruggero, 1992; Ruggero et al., 1997). These findings raise

the question of whether the cochlear amplifier benefits normal hearing listeners, especially

in complex listening environments, such as speech in the presence of background sounds,

for which hearing-impaired listeners have difficulty even with hearing aids (Moore, 1995b;

Peters et al., 1998; Moore et al., 1999a). In addition to evaluating the potential benefit

of the cochlear active process for complex tasks, it is also important to address why it is

often difficult to measure deficits in psychophysical performance of impaired listeners in

simple tasks. A sufficient understanding now exists of how many of the basic nonlinear

properties of the auditory periphery relate to one another in terms of a single physiologically

vulnerable mechanism to justify a quantitative evaluation of the psychophysical significance

of the cochlear amplifier.

The modeling study described here seeks to quantitatively relate many of the nonlinear
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physiological response properties associated with the cochlear amplifier to psychophysical

performance in several tasks based on the information in auditory-nerve (AN) discharge

patterns. The five chapters that follow this introduction are written in the form of journal

papers, with individual introduction and discussion sections. This introduction provides

a brief summary of previous physiological and psychophysical work that has characterized

cochlear nonlinearity, as well as previous studies that have quantitatively related physiologi-

cal response properties to psychophysical performance. Each of these topics is also discussed

in several excellent review chapters; however, because the current work relies heavily on this

previous work, a brief overview of these areas is warranted. This introduction concludes with

a brief overview of the general approach taken in the present work, and a description of how

each chapter relates to the overall goals of this dissertation.

1.1 Background

1.1.1 Physiological measures of cochlear nonlinearity

Gold (1948) proposed an active mechanism based on local feedback within the inner ear

that supplied additional energy to BM vibration. However, it was not until 1971 that BM

motion was observed to be nonlinear (Rhode, 1971; see Ruggero, 1992, and Yates, 1995, for

reviews). The gain of the BM response to tones at the characteristic frequency (CF, the

frequency of maximal low-level response) of basal (high-CF) locations on the BM is reduced

by 60-70 dB as tone level is increased from low to high levels (guinea pig: Nuttall and Dolan,

1996; chinchilla: Ruggero et al., 1997). A similar reduction in gain is observed in the same

animals as a result of death. The strength of cochlear nonlinearity has been reported to be

significantly less in the apex of the cochlea (i.e., low CF’s), e.g., Cooper and Rhode (1997)

observed less than 20 dB of gain for a 500-Hz CF in the chinchilla. The BM response to

near-CF tones is linear at low levels ( ≤� 20 dB SPL) and is compressive at higher stimulus
levels (Nuttall and Dolan, 1996; Ruggero et al., 1997). Many reports have suggested that

near-CF responses become linear at levels above 80-90 dB SPL (e.g., Patuzzi et al., 1989;

Ruggero and Rich, 1991; Ruggero et al., 1992; Goldstein, 1995), but Ruggero et al. (1997)
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have recently demonstrated that the BM response is still compressive at levels above 100

dB SPL in the most sensitive cochleae they studied. Normalized BM magnitude responses

at different levels demonstrate that while the response to tones near CF is highly nonlinear,

responses to tones at frequencies more than roughly half an octave away from CF are linear

at all levels (e.g., Ruggero et al., 1997). Thus, tuning on the BM broadens as stimulus level

is increased in the normal auditory system. In addition to compressive magnitude responses,

level-dependent phase shifts that are consistent with broadened tuning have been observed

over a wide dynamic range in BM (Ruggero et al., 1997), inner-hair-cell (IHC, Cheatham

and Dallos, 1998), and AN responses (Anderson et al., 1971). Several forms of cochlear

nonlinearity have been suggested to provide a benefit to the normal auditory system by

extending the dynamic range. Compressive BM magnitude responses allow a wide input

dynamic range to be encoded over a much smaller output dynamic range on the BM and

in the IHC (e.g., Yates, 1995). In addition, level-dependent phase shifts result in spatio-

temporal discharge patterns across the AN population that vary systematically with level

over a wide dynamic range (Carney, 1994). The relative contributions of nonlinear gain and

level-dependent phase cues to extending the psychophysical dynamic range of the auditory

system are compared quantitatively in this dissertation.

The nonlinear BM responses to tones described above are consistent with the idea that

BM tuning varies with stimulus level, i.e., as stimulus level increases, broadened tuning

results in a shallower phase-versus-frequency response and a decrease in gain near CF. Studies

using complex stimuli, such as multiple tones or bandlimited noise, suggest that BM tuning

is controlled by stimulus energy in a broader frequency region than the excitatory tuning

curve. Studies of two-tone suppression in the AN indicate that the response to a tone at CF

can be reduced by the presence of an off-CF tone (Sachs and Kiang, 1968; Arthur et al., 1971;

Delgutte, 1990b), with suppressive regions flanking and lying below the excitatory tuning

curve. Similar findings have been observed in BM responses, and indicate that two-tone

suppression results from the same mechanism at the level of the BM that is responsible for

the nonlinear gain and phase responses to CF tones (Ruggero et al., 1992). The ability of off-

CF stimulus energy to influence responses to near-CF energy is not limited to tonal stimuli.

Auditory-nerve discharge rate in response to narrowband noises that are centered at CF
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increases as the noise bandwidth is increased initially, but decreases as the noise bandwidth

is increased further such that part of the noise energy falls outside the excitatory tuning

curve and within the suppressive regions (Ruggero, 1973; Gilbert and Pickles, 1980; Schalk

and Sachs, 1980). Basilar-membrane responses to transient stimuli indicate that changes in

BM tuning are extremely fast (a time constant on the order of 200 µs, Recio et al., 1998),

consistent with the fast onset of suppression (Arthur et al., 1971). Thus, peripheral tuning

in the normal auditory system varies based on the spectral and temporal configuration of the

stimulus. Several psychophysical consequences of stimulus-dependent tuning in the normal

auditory system are evaluated and discussed in this dissertation.

Further evidence that nonlinear gain, level-dependent phase, and suppression response

properties originate from the same physiologically vulnerable mechanism comes from obser-

vations that many types of cochlear damage (e.g., due to acoustic trauma, ototoxic drugs,

death) result in simultaneous loss of these nonlinear properties (see Ruggero, 1992 for re-

view). The most prevalent view in the literature is that these nonlinear response properties

originate from a “cochlear-amplifier” mechanism that provides additional energy to BM vi-

bration for low-level stimuli (e.g., Yates, 1995; Ruggero et al., 1997; Recio et al., 1998). In

this view, the gain of the cochlear amplifier is reduced as stimulus level is increased, result-

ing in compressive magnitude responses near CF, broadened tuning, level-dependent phase

shifts, and suppressive effects for complex stimuli. The term cochlear amplifier is used in

this dissertation to represent the underlying physiologically vulnerable mechanism that is

responsible for these nonlinear phenomena, and is not intended to depend on the biophysical

basis for this mechanism. There is ongoing debate concerning the biophysical basis for the

underlying mechanism (see Yates, 1995, and Patuzzi, 1996, for reviews), including whether

an amplification mechanism is required to account for these nonlinear properties (e.g., Allen

and Fahey, 1992; Allen, 1997).

The role of the outer hair cells (OHC’s) in this physiologically vulnerable mechanism is

well established. Ruggero and Rich (1991) demonstrated a strong correlation between the

normal function of the OHC’s and nonlinear BM responses. Further support for the role of

OHC’s comes from the reduction in BM response that results from stimulation of the medial-

olivary-complex efferent fibers (Murugasu and Russell, 1996), which are known to innervate
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OHC’s (see Wiederhold, 1986, Ryugo, 1992, and Guinan, 1996, for reviews). Physiological

studies of damaged cochleae have demonstrated that different functional consequences occur

based on the proportion of IHC and OHC damage, and the effects are consistent with the

proposed role of OHC’s in modifying BM mechanics (Kiang et al., 1970; Liberman and

Dodds, 1984; Liberman and Kiang, 1984; Liberman et al., 1986). Many different types

of cochlear damage result in a reduction in OHC function, suggesting that impairment or

absence of the cochlear amplifier may occur in many common types of sensorineural hearing

loss in humans (Pickles, 1988; Patuzzi et al., 1989; Ruggero and Rich, 1991; van Tasell,

1993; Moore, 1995b). This idea is supported by the observation that otoacoustic emissions

(OAE’s), which depend on the normal function of OHC’s in a variety of ways (Shera and

Guinan, 1999a), are present in most normal-hearing human ears and are absent in most

hearing-impaired ears (Probst et al., 1991; Allen and Lonsbury-Martin, 1993). Despite the

clear relation of the cochlear amplifier to normal hearing, it has been difficult to determine

how loss of the cochlear amplifier relates to the near-normal performance of hearing-impaired

listeners in simple listening tasks and to the large deficits in hearing-impaired performance

in complex listening environments even with hearing aids. A quantitative evaluation of

the psychophysical significance of the physiological response properties associated with the

cochlear amplifier may lead to a better understanding of this important problem.

1.1.2 Psychophysical measures of cochlear nonlinearity

Many psychophysical studies have sought ways to measure the effects of cochlear nonlinear-

ity in humans, with the goal of finding simple performance measures that may be correlated

with the difficulties experienced by hearing-impaired listeners in complex tasks. The most

fundamental physiological nonlinear property that has been evaluated psychophysically is

broadened tuning with increases in stimulus level. Many psychophysical masking methods

that are used to estimate auditory tuning demonstrate reduced frequency selectivity as stim-

ulus level is increased (e.g., Moore and Glasberg, 1987; Glasberg and Moore, 1990; Rosen

and Baker, 1994; Rosen et al., 1998; see Moore, 1995a for a review); however, there is much

debate over the appropriate method to evaluate the dependence of filter shape on stimulus

level, given the underlying physiology (summarized by Rosen et al., 1998). Many recent psy-
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chophysical studies have suggested that compression and suppression have significant effects

on masking in normal-hearing listeners (Oxenham and Moore, 1994; Oxenham et al., 1997;

Moore and Vickers, 1997; Plack and Oxenham, 1998; Oxenham and Plack, 1998; Bacon et

al., 1999; Gifford and Bacon, 2000), thereby raising questions about the interpretation of psy-

chophysical methods for estimating frequency selectivity that do not consider these effects.

Several psychophysical methods have been developed to estimate BM compression based on

assumptions of compressive responses to tones at CF and linear responses to tones well away

from CF (Oxenham and Plack, 1997; Plack and Oxenham, 2000). These methods often

measure compression that is comparable to that observed in BM responses. Psychophysical

methods that are used to evaluate various aspects of cochlear nonlinearity often give results

that are generally consistent with physiological response properties measured in experimen-

tal animals. Many of these psychophysical measures have been shown to be related to one

another (Hicks and Bacon, 1999a,b; Moore et al., 1999b), consistent with the idea that the

underlying physiological response properties result from the same mechanism. However, a

thorough understanding of how the set of physiological response properties associated with

the cochlear amplifier influence psychophysical measures is lacking.

The interpretation of the psychophysical consequences of cochlear damage has often been

based on isolated response properties of the BM that are associated with the cochlear am-

plifier, such as increased thresholds, broadened tuning, or lack of compression (see Moore,

1995b, and Moore and Oxenham, 1998, for reviews). However, damage to the cochlear am-

plifier affects these nonlinear response properties simultaneously, in addition to the effects

of suppression and level-dependent phase shifts. Many of these BM response properties are

significantly transformed in the AN (see Patuzzi and Robertson, 1988 for a review) due to

the limited dynamic range of AN fibers (Sachs and Abbas, 1974), the reduced ability of AN

fibers to phase-lock to the fine-time structure of high-frequency stimuli (Johnson, 1980), and

the random nature of AN discharges (Kiang et al., 1965). Thus, it is desirable to evaluate the

consequences of cochlear damage based on the effects of the cochlear-amplifier mechanism

as a whole on both temporal and average-rate information in the AN, rather than based on

individual BM response properties. The phenomenological AN models used in the present

study allow each of the nonlinear response properties associated with the cochlear amplifier
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to be studied together or individually. These physiological response properties can then be

quantitatively related to psychophysical performance.

1.1.3 Quantitatively relating physiology to psychophysical perfor-

mance

Siebert (1965, 1968, 1970) was the first to evaluate the limits on psychophysical perfor-

mance imposed by the random nature of AN discharges by combining models of peripheral

auditory signal processing with statistical decision theory (SDT). This approach allows the

psychophysical significance of physiological response properties to be evaluated quantita-

tively (see Delgutte, 1996 for a review). The fundamental requirement of this approach is a

statistical description of the variation in the random nature of AN responses as a function

of stimulus parameters. This approach is used in the present dissertation to evaluate the

effects of the cochlear amplifier on both temporal and average-rate information in the AN.

Many studies have used this approach to evaluate the ability of the population of AN

discharge counts (i.e., rate-place models) to account for human performance (e.g., Siebert,

1965, 1968; Delgutte, 1987; Viemeister, 1988a,b; Winslow and Sachs, 1988; Winter and

Palmer, 1991). The number of discharges observed in a small number of AN fibers is of-

ten able to account for human performance levels; however, the trends in predicted per-

formance as a function of stimulus parameters often do not match the trends in human

performance. Siebert (1970) and Colburn (1969, 1973, 1981) extended the analytical AN

models and analysis to include a description of the ability of AN fibers to phase-lock to tonal

stimuli. Siebert (1970) evaluated the ability of temporal and rate-place information to ac-

count for human frequency discrimination performance. Similarly, Colburn (1981) extended

Siebert’s (1968) rate-place analysis of monaural level discrimination to include information

from phase-locking cues. Colburn (1969, 1973, 1977a,b) also evaluated a variety of binau-

ral discrimination and detection tasks based on the average-rate and temporal information

available in the AN. The amount of temporal information in AN responses is often found

to be much greater than rate-place information. Predicted performance based on temporal

information is often orders of magnitude better than human performance; however, trends
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in predicted performance based on temporal information often match trends in human per-

formance as a function of stimulus parameters (see Chapters 2 and 3). Several studies have

demonstrated restricted (sub-optimal) temporal processors that are better able to account for

human performance than optimal use of AN discharge times (Colburn, 1969, 1973, 1977a,b;

Goldstein and Srulovicz, 1977).

1.2 General approach used in this dissertation

The work presented in this dissertation is a direct extension of the approach taken by Siebert

and Colburn to evaluate the effects of physiological response properties on temporal and

average-rate information in the AN. This approach has been extended in several ways in

order to make the approach more general, and therefore better able to address the overall

goals of this dissertation. Several new methods have been developed using statistical decision

theory that allow the application of this approach to more complex psychophysical tasks.

Another significant extension from Siebert and Colburn’s work is the inclusion of more re-

alistic descriptions of auditory peripheral signal processing. The most significant nonlinear

response properties associated with the cochlear amplifier have been included in phenomeno-

logical analytical and computational AN models. Comparisons of performance predictions

based on various nonlinear and linear versions of the AN models allow for the evaluation of

the relative significance of individual response properties of the cochlear amplifier that may

not be separable in psychophysical experiments. Many of these model versions are unreal-

istic models of auditory processing (e.g., nonlinear gain with linear phase), but are useful

in gaining insight into the contributions of specific response properties to psychophysical

performance.

Performance predictions are made throughout this dissertation based on two models that

differ in the type of AN information that is assumed to be used by an optimal processor. The

rate-place model assumes that the processor uses the distribution of discharge counts across

the AN population to make decisions in a psychophysical task, i.e., no temporal information

is used. The all-information model assumes that the set of discharge times from each AN fiber

are processed optimally to make a decision, i.e., both temporal and average-rate information
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is used. Comparisons of optimal performance based on the all-information and rate-place

models to human data from the literature are made in terms of both trends and absolute

performance levels. These comparisons provide an indication of the significance of different

types of information for explaining human performance. The methods developed in this

dissertation were used to make predictions for several psychophysical tasks for which the

cochlear amplifier has been suggested to be significant.

1.3 Overview of the dissertation document

Chapter 2 (Heinz et al., 2000a) describes a method that generalizes Siebert and Colburn’s

approach to allow any AN model to be used, either analytical or computational, for any one-

parameter discrimination experiment. Much of the previous work in this area has been tied

to specific analytical AN models, and therefore has been limited in the ability to evaluate

new physiological response properties or stimuli other than pure tones. This general exten-

sion is particularly important for evaluating hearing impairment because tasks with complex

stimuli are typically required in order to demonstrate a significant impairment. The method

developed in Chapter 2 was verified by comparing frequency- and level-discrimination per-

formance predictions based on a simple computational AN model to previous predictions

from an analytical AN model (Siebert, 1968, 1970).

Chapter 3 (Heinz et al., 2000b) presents an extension of the statistical decision theory

analysis to allow a more general set of psychophysical tasks to be evaluated, specifically

discrimination experiments in which a secondary parameter is randomized in order to limit

the cues available to a listener. Many psychophysical experiments have eliminated level cues

by randomizing the overall stimulus level in each observation interval. For example, the class

of profile-analysis experiments developed by Green (1988) and colleagues have provided new

constraints on how to interpret the ability of listeners to discern changes in the spectral

shape of complex stimuli in terms of basic auditory level-discrimination performance. The

method developed in Chapter 3 was used to evaluate the effects of random level variation on

frequency-discrimination performance predicted based on the rate-place and all-information

models.
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Chapter 4 describes an evaluation of the benefit of the cochlear amplifier for extending

the dynamic range of the auditory system. An analytical AN model was developed to in-

clude nonlinear gain, level-dependent phase, and high-, medium-, and low-spontaneous-rate

AN-fibers. The relative contributions of average-rate and nonlinear-phase information were

evaluated in terms of the ability of AN fibers with a narrow range of CF’s to encode changes

in level. Both nonlinear-phase and average-rate information are shown to be required to

encode changes in level over the entire dynamic range of hearing based on a narrow range

of CF’s. A realistic processor for decoding the level-dependent phase and nonlinear-gain

cues provided by the cochlear amplifier is monaural coincidence detection across adjacent

AN fibers (Carney, 1994). This processor is attractive because several neural response types

in the antero-ventral cochlear nucleus (the first stage of processing in the auditory pathway

after the AN) have been shown to have response properties consistent with monaural coin-

cidence detection (Carney, 1990; Joris et al., 1994). Predictions based on a population of

coincidence counters are shown to be consistent with both the absolute performance levels

and performance trends in human data across the entire dynamic range of hearing for both

low and high frequencies. A comparison of human level-discrimination performance to pre-

dicted performance based on the entire AN population suggests that the cochlear amplifier

has only a small effect on overall performance in quiet; however, several subtle but significant

aspects of the human data [e.g., the “near-miss” to Weber’s Law at low frequencies and the

“mid-level bump” at high frequencies (Florentine et al., 1987)] appear to be consistent with

nonlinear response properties associated with the cochlear amplifier.

The level-discrimination predictions in Chapter 4 suggest that the cochlear amplifier is

beneficial for encoding changes in sound level within AN fibers with a narrow range of CF’s;

however, the cochlear amplifier has only a small influence on level-discrimination perfor-

mance in quiet, i.e., when all CF’s in the AN population are considered. Chapters 5 and 6

address this issue by first developing the theoretical analyses required to study noise-masking

experiments, and then applying this approach to test a common psychophysical measure of

auditory frequency selectivity.

Chapter 5 presents a new theoretical approach that allows the significance of physiological

response properties to be evaluated in psychophysical masking experiments that use random-
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noise stimuli. Noise stimuli have been used extensively in psychophysical experiments as

maskers and signals, and many theories of auditory processing are based on the results of

these experiments. However, many of these theories are based on the assumption that a

noise masker simply eliminates the information in CF’s that are within the noise spectrum.

The complex effects of the cochlear amplifier on auditory tuning, e.g., compression and

suppression, raise questions about the validity of many of these assumptions. In addition,

random-noise stimuli are variable, and thus stimulus fluctuations from noise waveform to

noise waveform can limit psychophysical performance in addition to the random nature

of AN discharges. The general approach developed in Chapter 5 extends the analyses in

Chapters 2 and 3 to quantify the relative contributions of stochastic AN responses and

random stimulus fluctuations for limiting performance based on temporal and average-rate

information in the AN.

Chapter 6 describes an evaluation of the significance of the cochlear amplifier for a com-

monly used psychophysical method for estimating auditory frequency selectivity. The theo-

retical approach developed in Chapter 5 was used to quantify AN information in discharge

counts and in discharge times for the detection of a tone in notched-noise maskers. Different

versions of a computational AN model (Appendix A) were used to evaluate the effects of

compression and suppression on estimates of auditory filters using the notched-noise method

(Patterson, 1976; Glasberg and Moore, 1990). Both compression and suppression are shown

to be significant for psychophysical methods of estimating auditory frequency selectivity,

based on the dependence of the cochlear amplifier on the spectral and temporal configura-

tion of the stimulus. Implications of these results for the interpretation of psychophysical

methods for estimating auditory filters are discussed.

The analysis in Chapter 6 represents one example of the applicability of the general

approach developed in this dissertation to complex psychophysical experiments. In general,

this approach can be used to evaluate many types of complex masking phenomena that

are important to theories of normal and impaired auditory processing. The last chapter

summarizes the significance of the work presented in this dissertation, provides some brief

comments on potential implications of this work for evaluating hearing impairment, and

suggests future work.
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Chapter 2

Evaluating auditory performance

limits: I. One-parameter

discrimination using a computational

model for the auditory-nerve

2.1 Abstract

A new method for the calculation of psychophysical performance limits based on neural
responses is introduced and compared to previous analytical methods for evaluating auditory
discrimination of tone frequency and level. The new method uses optimal decision theory
(ODT) and a computational model for a population of auditory-nerve (AN) fiber responses.
The use of computational AN models allows predictions to be made over a wider parameter
range and with more complete descriptions of AN responses than in analytical models.
Performance based on AN discharge times (all information) is compared to performance
based only on discharge counts (rate-place). After the new method is verified over the
range of parameters for which previous analytical models are applicable, the parameter
space can then be extended. For example, a computational model of AN activity that
extends to high frequencies can be used to explore the idea that rate-place information is
responsible for frequency encoding at high frequencies because the rolloff in AN phase locking
above 2 kHz is thought to eliminate temporal information at high frequencies. Contrary
to this belief, results of the new analysis show that rate-place predictions for frequency
discrimination are inconsistent with human performance in the dependence on frequency
for high frequencies, and that there is significant temporal information up to at least 10

0A similar version of this chapter has been submitted to Neural Computation (Heinz et al., 2000a).
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kHz. In contrast, all-information predictions match the trends in human performance across
all frequencies, although optimal performance is much better than humans. The use of
computational AN models in the present study provides new constraints on hypotheses
of neural encoding of frequency in the auditory system; however, the present method is
limited to simple tasks with deterministic stimuli. A companion paper describes an extension
of this approach to more complex tasks that include random variation of one parameter,
e.g., random level variation, which is often used in psychophysics to test neural encoding
hypotheses.

2.2 Introduction

One of the challenges in understanding sensory perception is to test, quantitatively, hy-

potheses for the physiological basis of psychophysical performance. The random nature

of neural responses (i.e., that two presentations of an identical stimulus produce different

discharge patterns) imposes limitations on performance. The fundamental requirement for

relating neural encoding to psychophysical performance is a statistical description of neural

discharge patterns in response to the relevant stimuli. In general, if the statistics of the

response change significantly as a stimulus parameter is varied, then accurate discrimination

of that parameter is possible.

Attempts to relate neural responses to psychophysical performance often involve the ques-

tion of whether a small set of individual neurons can statistically account for performance,

but can also involve studies of encoding by an entire population of neurons (see review by

Parker and Newsome, 1998). Implicit in any hypothesis focused on a small set of neurons

is the assumption that the brain ignores statistically significant information in other neu-

rons within the population. To avoid this assumption, the total amount of information in

a neural population can be quantified. The amount of total information, and the trends

in information as stimulus parameters are varied, can be used to test hypotheses of neural

encoding and to suggest neural information-processing mechanisms. These studies, which

require modeling approaches due to the inability to record from all neurons within a popula-

tion, have typically been limited to simple psychophysical tasks with simple stimuli that can

be studied with analytical models. The present paper describes a new method that allows

computational models for neural responses to be used in studies that relate physiological
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properties to psychophysical performance. A companion paper describes a further general-

ization of this approach to include psychophysical tasks that randomly vary one stimulus

parameter in order to limit the cues available to a subject (Chapter 3).

The auditory system provides a useful example of the benefits that can result from

quantifying the total information in a neural population. The auditory nerve (AN) is an

obligatory pathway between the cochlea (inner ear) and the central nervous system (CNS),

and thus contains all of the information about an auditory stimulus that can be processed

by a listener. Siebert (1965, 1968, 1970) was the first to evaluate limits on psychophysical

performance in auditory discrimination tasks by combining methods from optimal decision

theory (ODT) with models of peripheral auditory signal processing 1 [see Delgutte (1996)

for a review of Siebert’s approach and many subsequent studies]. The questions addressed

by the ODT approach were fundamental, such as whether the physiological noise inherent in

peripheral auditory processing can account for human performance, and whether the central

nervous system (CNS) makes use of temporal information in AN discharge patterns to en-

code frequency. In addressing these questions, simple analytical AN models were used that

included only those response properties considered to be of primary importance: bandpass

frequency tuning, saturating rate-level curves, phase-locking to tonal stimuli, a population of

30,000 AN fibers with logarithmic characteristic frequency (CF) spacing, and nonstationary

Poisson statistics of AN discharges (Kiang et al., 1965). These studies were limited to sim-

ple psychophysical tasks, such as pure-tone level and frequency discrimination, because of

their relatively simple interpretations and the limits of the analytical AN models. Valuable

insight into the encoding of frequency and level in the peripheral auditory system was gar-

nered from these previous studies; however, fundamental questions are still debated, such as

the frequency ranges over which average-rate and temporal information are used to encode

frequency, and how a system in which the majority of AN fibers have a small dynamic range

can encode sound level over a broad dynamic range.

The physiological mechanism of frequency encoding has been a disputed issue since (at

least) the 1940s, when spectral (place) cues (von Helmholtz, 1863) were challenged by tem-

1Fitzhugh (1958) used this approach to investigate visual psychophysical performance based on the ran-
dom nature of optic-nerve responses.
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poral cues (Schouten, 1940; Wever, 1949). The task of pure-tone frequency discrimination

has been widely used to test rate-place and temporal hypotheses for frequency encoding by

measuring the just-noticeable-difference (JND) in frequency between two tones [see Moore

(1989) and Houtsma (1995) for reviews of human performance, also see Fig. 2-4]. Rate-place

schemes are based on the frequency selectivity (or tuning) of AN fibers (Kiang et al., 1965;

Patuzzi and Robertson, 1988). Two tones of differing frequency excite different sets of AN

fibers, and thus the listener can discriminate two tones that differ in frequency by detecting

differences in the sets of AN fibers that are activated. Temporal schemes are based on the

phase-locked responses of AN fibers to tones (Kiang et al., 1965; Johnson, 1980; Joris et al.,

1994).

It is generally believed that rate-place information must be used at high frequencies (at

least above 4-5 kHz, e.g., Wever, 1949; Moore, 1973, 1989; Dye and Hafter, 1980; Wakefield

and Nelson, 1985; Javel and Mott, 1988; Pickles, 1988; Moore and Glasberg, 1989), because

of the rolloff in phase-locking above 2-3 kHz [Johnson, 1980; Joris et al., 1994; or see Fig. 2-

1(c)]. For low frequencies, there is continued debate as to whether rate-place or temporal

information is used to encode frequency (e.g., Pickles, 1988; Javel and Mott, 1988; Moore,

1989; Cariani and Delgutte, 1996a,b; Kaernbach and Demany, 1998). The assumption that

there is no temporal information above 4-5 kHz has been used to interpret numerous psy-

chophysical experiments and to develop theories for the encoding of sound (e.g., Moore,

1973; Viemeister, 1983). However, no study has accurately quantified the total amount of

temporal information at high frequencies, nor compared the trends in rate-place and tem-

poral information versus frequency at high frequencies using the same AN model. Siebert

(1970) used an analytical AN model and ODT analysis to evaluate the ability of temporal

and rate-place information to account for human frequency discrimination. His model in-

cluded a nonstationary Poisson process with a time-varying discharge rate that described the

AN fibers’ phase-locking to low-frequency tonal stimuli; however, the model did not include

rolloff in phase-locking above 2-3 kHz, and thus Siebert’s predictions were limited to low

frequencies. Siebert found that temporal information significantly outperformed rate-place

information at low frequencies, but that optimal performance based on rate-place is more

similar to levels of human performance. Goldstein and Srulovicz (1977) found that when a
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simple description of the rolloff in phase-locking at high frequencies was included in Siebert’s

(1970) AN model, predicted performance based on temporal information (in terms of ∆f/f)

became worse as frequency increased above 1 kHz, similar to human performance (Moore,

1973). However, the description of the lowpass rolloff in phase-locking used by Goldstein

and Srulovicz (1977) had too low a cutoff frequency (600 Hz rather than 2500 Hz), and too

shallow a slope (40 dB/dec rather than 100 dB/dec) when compared to more recent data

from cat [see Fig. 2-1(c) and Johnson, 1980; Weiss and Rose, 1988]. In addition, Goldstein

and Srulovicz (1977) only quantified performance based on a small set of AN fibers with

CF equal to the tone frequency, and thus it is not possible from their predictions to know

whether there is significant temporal information at high frequencies.

Another significant result from Siebert (1970) was that optimal performance based on

all information improved much too quickly as a function of duration compared to human

performance, at least for long durations. Siebert concluded that human listeners are severely

limited in their ability to use the temporal information in AN discharges, and that there is

sufficient rate-place information to account for human performance if this information were

used efficiently. Goldstein and Srulovicz (1977) demonstrated that a restricted temporal

scheme based on only the intervals between adjacent discharges (first-order intervals) cor-

rected the duration dependence at long durations, and concluded that temporal schemes

should not be ruled out. However, both of these analytical models are based on steady-state

responses, and therefore are limited to long-duration stimuli due to the absence of onset and

offset responses as well as neural adaptation.2 The trends in human frequency discrimi-

nation performance versus duration have been shown to differ at long and short duration

(Moore, 1973; Freyman and Nelson, 1986).

The encoding of level in the auditory system is an interesting problem given the dis-

crepancy between the wide dynamic range of human hearing [at least 120 dB (Viemeister

and Bacon, 1988)] and the limited dynamic range of the majority of AN fibers [less than

30 dB (May and Sachs, 1992)] (see Viemeister, 1988a,b for reviews of the “dynamic-range

2An analytical model that included transient responses was used by Duifhuis (1973) to evaluate the
consequences of peripheral filtering on nonsimultaneous masking; however, his model did not include neural
adaptation.
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problem”). For many types of stimuli, the JND in level is essentially constant across a wide

range of levels. The observation of constant performance across level (i.e., that the smallest

detectable change in intensity is proportional to intensity) is referred to as Weber’s Law.

Weber’s Law is observed for broadband noise (Miller, 1947) and for narrow-band signals in

the presence of notched noise (Viemeister, 1974, 1983; Carlyon and Moore, 1984). However,

for narrow-band signals in quiet where spread of excitation across the population of AN

fibers is possible, performance improves slightly as a function of level, an effect referred to as

the “near-miss” to Weber’s Law (e.g., McGill and Goldberg, 1968; Rabinowitz et al., 1976;

Jesteadt et al., 1977; Florentine et al., 1987). Siebert (1965, 1968) demonstrated that a

rate-place encoding scheme based on a population of AN fibers with limited dynamic range

can produce Weber’s Law for pure-tone level discrimination through spread of excitation.

However, Siebert’s model did not predict the near-miss to Weber’s law for pure tones, and

would not be expected to predict Weber’s law for broadband noise or for narrowband stimuli

in notched noise. Other studies have implicated the role of low-spontaneous rate, high-

threshold AN fibers in producing Weber’s law for conditions in which spread of excitation is

assumed to be restricted (Colburn, 1981; Delgutte, 1987; Viemeister, 1988a,b; Winslow and

Sachs, 1988; Winter and Palmer, 1991). However, when models have been used to quan-

tify the total information available in a restricted CF-region with physiologically realistic

distributions of the spontaneous-rate groups, performance degrades as level increases above

40 dB SPL (Colburn, 1981; Delgutte, 1987), inconsistent with Weber’s law and with trends

in human performance. In addition, no model has accurately quantified the effect of noise

maskers on the spread of rate or temporal information across the population of AN fibers;

instead simple assumptions for the influence of the noise maskers have been used.

There are now computational AN models (e.g., Payton, 1988; Carney, 1993; Robert

and Eriksson, 1999) that provide more accurate physiological responses over a wider range

of stimulus parameters than the analytical models described above. In addition, compu-

tational models can simulate AN responses to arbitrary stimuli, and thus can be used to

study a wider range of psychophysical tasks, such as those involving noise maskers. The

present paper focuses on extension of the ODT approach to allow the use of computational

AN models to predict psychophysical performance limits for auditory discrimination. The
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potential of rate-place and all-information (including rate-place and temporal information)

encoding schemes to account for human performance is characterized for both frequency and

level discrimination. The adjective all-information is used to emphasize the fact that this

encoding scheme makes use of all the information in the distribution of average rates, in

addition to the times of all discharges across the population of AN fibers. The contribution

of temporal information in the responses can be inferred by comparing the predictions of

the rate-place and all-information models. Note that the all-information model does not

assume any specific forms of temporal processing, such as calculating synchrony coefficients

or creating interval histograms. All-information predictions thus provide an absolute limit

on achievable performance given the total information available in the AN.

It is critical, before proceeding to more complex computational AN models, to verify

the computational method by comparing it to previous analytical model predictions (e.g.,

Siebert, 1965, 1968, 1970). Thus, optimal performance predictions were made for pure-tone

frequency- and level-discrimination as a function of frequency, level, and duration based on a

relatively simple computational AN model. The general agreement between computational

and analytical predictions provides confidence that the computational method is valid. The

present study quantifies that there is significant temporal information for frequency discrim-

ination up to at least 10 kHz, and that all-information performance demonstrates the same

trends versus frequency as human performance, whereas rate-place does not. These new pre-

dictions are important to theories of frequency encoding in the auditory system because they

contradict the generally held belief that the rolloff in phase-locking eliminates all temporal

information at high frequencies.

Previous studies have typically focused on either frequency or level discrimination, have

often only examined a limited parameter range, and have used different AN models. By

using the same AN model to make both rate-place and all-information predictions for both

frequency and level discrimination versus frequency, level, and duration, the present study

provides a unified description of previously suggested constraints on rate-place and tempo-

ral models. Thus, the present study demonstrates several benefits of using computational

neural models to predict psychophysical performance limits. This approach is applicable to

predicting performance limits for any one-parameter discrimination experiment based on any
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neural population of any sensory system for which there are accurate models of the discharge

statistics.

2.3 General Methods

2.3.1 Computational auditory-nerve model

The type of computational AN model for which the current study was designed can process

an arbitrary stimulus and produce a time-varying discharge rate that can be used with a

nonstationary point process (e.g., Poisson) to simulate AN discharge times. Examples of

this type of model were described by Payton (1988) and Carney (1993). A simplified version

of the Carney (1993) model was used in the present study to provide a better comparison

to the AN model used by Siebert (1970), and to provide a simple comparison for future

predictions with more complex AN models.3

Figure 2-1 shows pure-tone response properties of the computational AN model that are

important for the present study. Table 2.1 provides details of the implementation of the

model. A linear fourth-order gamma-tone filter bank was used to represent the frequency

selectivity of AN fibers [see population response in Fig. 2-1(a)]. Model filter bandwidths were

based on estimates of human bandwidths from the psychophysical notched-noise method for

estimating auditory filter shapes [Glasberg and Moore (1990), see Table 2.1]. Psychophys-

ically measured filters have been shown to match AN frequency tuning when both were

measured in guinea pig (Evans et al., 1992). The bandpass filter was followed by a memory-

less, asymmetric, saturating nonlinearity (implemented as an arctan with a 3:1 asymmetry),

which represents the mechano-electric transduction of the inner hair cell (IHC). The saturat-

ing nonlinearity contributes to the limited dynamic range of AN fibers [Fig. 2-1(b)]. [Note

that the dynamic range is also affected by the IHC-AN synapse, see below and Patuzzi and

Robertson (1988).] All AN model fibers had a rate threshold of roughly 0 dB SPL, a sponta-

neous rate of 50 spikes/s, and a maximum sustained rate of roughly 200 spikes/s. The model

dynamic range for sustained rate was roughly 20-30 dB, while the dynamic range for onset

3Code for the AN model used in the present study is available at http://earlab.bu.edu/.
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Figure 2-1: Basic pure-tone response properties of the computational AN model. (a) Sustained-
rate population responses for the 60 AN-model CF’s used in this study to pure tones at several
levels. Tones were 970 Hz, 62 ms (10-ms rise/fall), with levels from 0 to 80 dB SPL. Sustained
rate (calculated as the average rate over all full stimulus cycles within a temporal window from
10 to 52 ms) is plotted versus characteristic frequency (CF) of each model fiber. (b) Onset rate,
sustained rate, and synchrony for a 970-Hz model fiber responding to a 970-Hz, 62-ms tone as
a function of level. Onset rate was calculated as the maximum average rate over one stimulus
cycle. The synchrony coefficient (units on right axis), represents the vector strength (Johnson,
1980) of the model response calculated over one cycle beginning at 40 ms. (c) Maximum synchrony
coefficient over level for tones at CF as a function of frequency. Circles are data from cat (Johnson,
1980). Dashed line is from analytical model used by Goldstein and Srulovicz (1977). (d) Stimulus
waveform and instantaneous discharge rates r(t, f, L) for a f = 970-Hz fiber in response to 970-Hz,
25-ms (2-ms rise/fall) tones over a range of levels (L).
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Table 2.1: Equations and parameters used to implement computational AN model.

Symbol Description (units) Equations/values
Human cochlear mapa

x distance from apex (mm)
f(x) frequency corresponding to a position x (Hz) = 165.4(100.06x − 0.88)

Gamma-tone filtersb

CF characteristic frequency (kHz)
ERB equivalent rectangular bandwidth (Hz) = 24.7(4.37CF + 1)
τ Time constant of gamma-tone filter (s) = [2π(1.019)ERB]−1

gtf [k] output of gamma-tone filter

Inner-hair-cell
ihc[k] output of saturating nonlinearity

ihc[k] = {arctan(K · gtf [k] + β)− arctan(β)}/ {π/2− arctan(β)}
K controls sensitivity 1225
β sets 3:1 asymmetric bias -1
ihcL[k] lowpass-filtered inner-hair-cell output (see text)

Neural adaptation modelc

Ts sampling period (s) (see text)
ro spontaneous discharge rate (spikes/s) 50
VI immediate “volume” 0.0005
VL local “volume” 0.005
PG global permeability (“volume”/s) 0.03
PL local permeability (“volume”/s) 0.06
PIrest resting immediate permeability (“volume”/s) 0.012
PImax maximum immediate permeability (“volume”/s) 0.6
CG global concentration (“spikes/volume”)

CG = CL[0](1 + PL/PG)− CI [0]PL/PG = 6666.67
PI [k] immediate permeability (“volume”/s)

PI [k] = 0.0173 ln{1 + exp(34.657 · ihcL[k])}
CI [k] immediate concentration (“spikes/volume”)

CI [k + 1] = CI [k] + (Ts/VI){−PI [k]CI [k] + PL[k](CL[k]− CI [k])}
CI [0] = ro/PIrest = 4166.67

CL[k] local concentration (“spikes/volume”)
CL[k + 1] = CL[k] + (Ts/VL){−PL[k](CL[k]− CI [k]) + PG(CG − CL[k])}
CL[0] = CI [0](PIrest + PL)/PL = 5000.00

r[k] instantaneous discharge rate (spikes/s) = PI [k]CI [k]
a Greenwood (1990).
b see Patterson et al. (1987); Glasberg and Moore (1990); Carney (1993).
c see Westerman and Smith (1988); Carney (1993).
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rate was much larger. The synchrony-level curves had a threshold roughly 20 dB below rate

threshold, a maximum at a level that was just above rate threshold, and a slight decrease

in synchrony as level was increased further [comparable to Johnson (1980) and Joris et al.

(1994)].

An important property for the present study is the rolloff in phase-locking as frequency

increases above 2-3 kHz [Fig. 2-1(c); Johnson, 1980; Joris et al., 1994]. Weiss and Rose (1988)

compared synchrony versus frequency in five species on a log-log scale and reported that the

data from all species were well described by a lowpass filter with roughly 100 dB/decade

rolloff (the only difference across species was the 3-dB cutoff frequency, e.g., fc = 2.5 kHz

for cat, and fc = 1.1 kHz for guinea pig). To achieve the proper rolloff in synchrony (for all

species) and cutoff frequency (for cat), seven first-order lowpass filters were used, each with

a first-order cutoff frequency of 4800 Hz. The resulting filter had a 3-dB cutoff frequency

near 2500 Hz and ∼ 100 dB/decade rolloff in the frequency range 4-6 kHz [Fig. 2-1(c)]. The
model synchrony coefficients above 5 kHz are a simple extrapolation of the physiological

data, consistent with the lowpass shape and slope across many species reported by Weiss

and Rose (1988). For comparison, a typical description of synchrony rolloff used in analytical

AN models is also shown (Goldstein and Srulovicz, 1977).

Neural adaptation was introduced through a simple three-stage diffusion model based on

data from Westerman and Smith (1988) for the IHC-AN synapse. The continuous-time ver-

sion of this adaptation model used by Carney (1993) was simplified by using fixed values for

the immediate and local volumes and the local and global permeabilities [Lin and Goldstein

(1995); and see Fig. 3 of Westerman and Smith (1988)]. The immediate permeability was a

function of the input amplitude, where the relation was essentially linear above the resting

permeability, and exponentially decayed to zero for negative inputs (Table 2.1). The model’s

time constants for rapid adaptation (1.3 ms at high levels) and short-term adaptation (63 ms

at high levels) are consistent with those reported for AN fibers (e.g., Westerman and Smith,

1988). The output of the AN model [Fig. 2-1(d)] represents the instantaneous discharge rate

r(t, f, L) of an individual high-spontaneous-rate, low-threshold AN fiber.
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Figure 2-2: Overview of optimal decision theory (ODT) used with models of the auditory
periphery to evaluate fundamental limits of performance on a psychophysical task (frequency
discrimination shown).

2.3.2 Optimal decision theory

The application of ODT to evaluate auditory discrimination in the present study is an

extension of Siebert’s (1970) study of frequency discrimination (Fig. 2-2). A model of the

auditory periphery describes the time-varying discharge rate ri(t, f, L) of the i
th AN fiber in

response to a tonal stimulus of level L, frequency f , and duration T . A model population

response is produced from a range of characteristic frequencies (CF’s). A Poisson process

provides a good description of the random nature of AN discharges [e.g., exponential interval

distribution, and independent successive intervals (Colburn, 1969, 1973; Siebert, 1970)]. Two

types of analyses are considered in the present study. Rate-place predictions are based on

the assumption that the set of AN discharge counts over the duration of the stimulus, {Ki},
is the only information used by the listener. Thus, the rate-place analysis (left branch of

Fig. 2-2), is based on a set of independent, stationary Poisson processes with rates equal to
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the average discharge rates ri(f, L) of the AN model fibers (Siebert, 1968). In contrast, the

all-information predictions (right branch of Fig. 2-2) are based on the assumption that the

set of observations are the population of discharge times and counts {ti1, · · · , tiKi
} produced

by a set of independent, nonstationary Poisson processes with time-varying rates ri(t, f, L)

provided by the AN model (Siebert, 1970). Descriptions of the probability density of the

observations, p(ti1, · · · , tiKi
|ri), are used to evaluate the optimal performance achievable by

any decision process (see Appendix in Section 2.10). Optimal performance based on rate-

place, ∆fRP (f, L, T ), and all-information, ∆fAI(f, L, T ), is compared directly to human

performance measured psychophysically, ∆fHUMAN(f, L, T ).

2.4 General Analytical Results: One-Parameter Dis-

crimination

The results in this section are presented in terms of discrimination of a single stimulus pa-

rameter α, which is either frequency f or level L in the present study. A measure closely

related to the sensitivity measure d′ of psychophysics, (δ′α[CF ])
2, is used to represent the

information from an individual AN fiber with characteristic frequency CF, where the sensi-

tivity per unit α is represented by δ′α (see Appendix in Section 2.10).
4 Assuming independent

AN fibers (Johnson and Kiang, 1976), the total information from the population is the sum

of the information from individual AN fibers. The just-noticeable difference in α, ∆αJND,

is inversely related to the amount of information available from the AN population, and can

be calculated as

∆αJND =

{∑
i

(δ′α [CFi])
2

}− 1
2

=

∑
i

∫ T

0

1

ri(t, α)

[
∂ri(t, α)

∂α

]2

dt


− 1

2

, (2.1)

4Durlach and Braida (1969) used the metric δ′ to represent sensitivity per bel for intensity discrimination
[i.e., δ′ = d′(I1, I2)/ log10(I2/I1)] (see also Braida and Durlach, 1988). In the present study, δ′α is used to
represent sensitivity per unit α, where α can be level L in dB, or frequency f in Hz. Thus, the normalized
sensitivity metric δ′L differs from that used by Durlach and Braida (1969) only in the unit of level used (i.e.,
δ′L represents sensitivity per decibel).
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as described in the Appendix in Section 2.10. Equation 2.1 describes the optimal performance

possible from all information available in the AN nerve in terms of the time-varying discharge

rates ri(t, α) of the population of AN fibers. Optimal rate-place performance is calculated

by using the average discharge rate ri(α) in Eq. 2.1, rather than ri(t, α). Equation 2.1 is

extremely general because it is applicable to any single-parameter discrimination experiment,

and it can be used with any AN model (e.g., analytical or computational) that assumes

Poisson, statistically independent fiber responses.

2.5 Computational Methods: Use of Auditory-Nerve

Models

The time-varying discharge rates ri(t, α) from the computational AN model can be substi-

tuted into Eq. 2.1 to evaluate optimal performance for various stimulus conditions. However,

the partial derivative of the rate waveform with respect to α must be calculated as a function

of time. The partial derivative was approximated from the responses of a computational AN

model, e.g.,

∂ri(t, α)

∂α
� ri(t, α+∆α)− ri(t, α)

∆α
. (2.2)

An approximation of the partial derivative with respect to frequency using ∆f = 0.0001 Hz

is illustrated in Fig. 2-3. The top panel shows the two stimuli (although only one waveform

is apparent due to the small ∆f), while the middle panel illustrates the two time-varying

discharge rate waveforms from the AN model fiber. The bottom panel represents the ap-

proximation of the partial derivative squared as a function of time. The distinct growth of

the derivative-squared as time increases up to 30 ms (bottom panel of Fig. 2-3) is a result of

the increasing difference in the phase between the two tones as a function of time. Even if a

random phase were used, as in some psychophysical experiments, the ability to distinguish

between a difference in phase and a difference in frequency increases with duration. The

bimodal shape within each stimulus period of the derivative-squared arises because the two

rate waveforms differ both in the upward- and downward-going portions of each response

38



Figure 2-3: Approximation of the partial derivative in Eq. 2.1 for evaluating optimal
frequency-discrimination performance for the stimulus condition: L = 40 dB SPL, f = 500
Hz, and T = 25 ms (2-ms rise/fall). Two tonal stimuli differing in frequency by ∆f = 0.0001
Hz are shown in the top panel. The middle panel shows the two time-varying rate waveforms
from the computational AN model (CF = 500 Hz) in response to the two stimuli. The two
functions cannot be distinguished visually in the top and middle panels. The bottom panel
illustrates the partial derivative squared, as approximated by Eq. 2.2.
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period. Values of ∆f = 0.0001 Hz and ∆L = 0.0001 dB were used to approximate the

partial derivatives in Eq. 2.2. These values were chosen by verifying that the derivatives for

a variety of conditions were unaffected by increases in ∆f or ∆L by an order of magnitude.

All predictions from the computational AN model are based on 60 model CF’s ranging

from 100 Hz to 10 kHz and uniformly spaced in location according to a human cochlear

map (Greenwood, 1990; see Table 2.1). The choice of 60 model CF’s represents a (somewhat

arbitrary) compromise between a dense sampling of the frequency range and reduced compu-

tation time. The model CF range represents two orders of magnitude, while the commonly

accepted human CF range [20 Hz - 20 kHz, Greenwood (1990)] represents three orders of

magnitude. Thus, roughly two-thirds of the 30,000 total AN fibers in human (Rasmussen,

1940) are represented by the model. Also, the model only represents high-spontaneous-rate,

low-threshold fibers, which make up 61% of the population in cat (Liberman, 1978). Thus,

predictions in this study are based on a population of 12,200 total AN fibers, where each of

the 60 model responses represent roughly 200 independent AN fibers.

Stimulus conditions were chosen based on psychophysical experiments of interest,5 and

a sampling rate of 500 kHz was used.6 Stimulus duration was defined to be the duration

between half-amplitude points on the stimulus envelope. All rise/fall ramps were generated

from raised-cosine functions. The temporal-analysis window (Eq. 2.1) included the model

response beginning at stimulus onset and ending 25 ms after stimulus offset, to allow for the

response delay and the transient onset and offset responses associated with AN fibers [see

Figs. 2-1(d) and 2-3] over the range of CF’s and stimulus parameters used in this study.

5Two factors occasionally led to a slight mismatch between the stimulus parameters used in the present
study and those that were used in the psychophysical studies. (1) Stimulus conditions were chosen to be the
same for frequency- and level-discrimination predictions in order to allow for direct comparisons of model
results between frequency and level discrimination. (2) Tone frequencies were always chosen to be equal
to one of the 60 model CF’s in order to avoid artifacts related to the spatial undersampling of the human
frequency range.

6A sampling frequency of 500 kHz was used for all predictions, except for three high-frequency conditions
for which higher sampling rates were chosen to avoid sub-harmonic distortion generated by the saturating
nonlinearity for specific relations between stimulus and sampling frequency. In general, this sampling artifact
was most prominent for high levels and high frequencies, and thus for high frequencies the present predictions
were limited to low- to medium-levels.
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2.6 Computational Results

2.6.1 Frequency discrimination in quiet

Predicted optimal frequency JND’s were calculated as a function of frequency f , level L,

and duration T for the all-information and rate-place encoding schemes using Eq. 2.1. Fig-

ure 2-4 shows the frequency discrimination predictions along with predictions from Siebert’s

(1970) study and human performance. Rate-place and all-information predictions from the

computational AN model match predictions from Siebert (1970) well, both qualitatively and

quantitatively, over the range of frequencies for which Siebert’s analytical model is applicable

(200 < f < 2000 Hz, T ≥ 100 ms, and 20 ≤ L ≤ 50 dB SPL).
The effect of frequency on pure-tone frequency discrimination is shown in Fig. 2-4(a).

Rate-place predictions are essentially flat as a function of frequency, and match human

performance very closely below 2 kHz. The predictions from the computational AN model

show a slight improvement in performance as frequency increases due to the increase in the

sharpness of tuning (quality factor Q = CF/ERB) as frequency increases (Table 2.1 and

Glasberg and Moore, 1990).

All-information performance is roughly two orders of magnitude better than rate-place

and human performance, consistent with Siebert (1970). At low frequencies, predicted per-

formance based on all-information improves as frequency increases, due to the increased

number of stimulus cycles as frequency increases [i.e., the two tones become more out of

phase by the end of the stimulus duration for higher frequencies (see bottom panel of Fig. 2-

3)]. All-information predictions, when extended to high frequencies, demonstrate a sharp

worsening in performance above 2-3 kHz due to the rolloff of phase-locking at high frequen-

cies [Fig. 2-1(c)]. This worsening matches the general trend observed in human data (Moore,

1973; Wier et al., 1977, Moore and Glasberg, 1989). The all-information predictions con-

verge towards the rate-place predictions as frequency increases, as expected due to the loss of

temporal information. However, all-information performance is still one order-of-magnitude

better than rate-place performance at 10 kHz [Fig. 2-4(a)], despite low synchrony coefficients

at high frequencies [Fig. 2-1(c)]. The upper-CF limit in the model slightly influenced both

rate-place and all-information by underestimating the amount of information available (by
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Figure 2-4: Optimal performance for pure-tone frequency discrimination. Predictions from
the computational AN model are shown by filled circles for the rate-place (RP) scheme,
and by filled squares for the all-information (AI) scheme. Predictions from Siebert’s (1970)
analytical model are shown for the two encoding schemes by corresponding open symbols.
Typical human performance is illustrated by stars. (a) The Weber fraction ∆f/f is plotted
as a function of frequency. All model predictions are for L = 40 dB SPL and T = 200 ms
(20-ms rise/fall). Human data are from Moore (1973) for T = 200 ms and equal loudness
across frequency (L = 60 dB SPL at 1 kHz). The two high-frequency points not connected by
lines for each encoding scheme are conditions for which the upper limit of the computational
model CF range influenced the results. (b) The difference limen ∆f is plotted as a function
of duration. Predictions are for L = 40 dB SPL, f = 970 Hz, and 4-ms rise/fall ramps.
Human data are from Moore (1973) for L = 60 dB SPL, f = 1000 Hz and 2-ms rise/fall
ramps. (c) The difference limen ∆f is plotted as a function of level. Predictions were made
for f = 970 Hz and T = 500 ms (20-ms rise/fall). Human data are from Wier et al. (1977)
for f = 1000 Hz and T = 500 ms.
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up to a factor of 2), and thus overestimating the JND (by up to a factor of
√
2).

Performance as a function of duration is shown in Fig. 2-4(b). Predictions for long

durations can generally be described by ∆f ∝
√
T−1 for rate-place, and ∆f ∝

√
T−3 for all-

information. Predicted performance from the all-information scheme improves much faster

with duration than the rate-place predictions or the human data. The rapid improvement

with increased duration is due to allowing the decision process to make all possible temporal

comparisons throughout the entire time course of the stimulus (see the distinct growth

of information with time in the bottom panel of Fig. 2-3). Both the rate-place and all-

information predictions have a smaller slope at shorter durations than at longer durations,

with the all-information slope matching the slope of human performance for T ≤ 16 ms. The
computational AN model included realistic onsets and offsets as well as neural adaptation,

which would be expected to be significant for shorter durations.

Frequency discrimination performance as a function of level is shown in Fig. 2-4(c). At

low levels, both rate-place and all-information predictions from the computational AN model

demonstrate the same sharp improvement in performance with increasing level as seen in the

human data. Above 20 dB SPL, rate-place performance is roughly flat, with the predicted

JND’s from the computational AN model demonstrating a slight increase as level increases.

Both all-information and human performance continue to improve slowly as level increases.

The improvement with level in the model is due to the increase in the number of excited

fibers as level increases.

In order to understand the basis for predicted rate-place and all-information frequency-

discrimination performance, it is useful to examine the distribution of information across

the population of AN fibers. Information profiles (δ′f [CF ])
2 are plotted in Fig. 2-5 for all

60 AN model CF’s for low-, medium-, and high-frequency tones. The information profiles

(δ′f [CF ])
2 are plotted on a logarithmic scale to allow comparison across the three tone fre-

quencies shown. The information profiles for the all-information and rate-place schemes are

different in shape. A contiguous range of CF’s centered at the frequency of the tone provides

information in the all-information scheme. Above 10 dB SPL, fibers near the frequency of the

tone have similar high levels of synchrony, and thus contribute nearly equally to frequency

discrimination. In contrast, model AN fibers firing at the maximum average rate do not
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Figure 2-5: Information responsible for optimal frequency discrimination for low- (487 Hz),
medium- (1951 Hz), and high-frequency (6803 Hz) conditions 5 (indicated by arrows) with
L = 40 dB SPL and T = 200 ms (20-ms rise/fall). The top and bottom panels show the
information (δ′f [CF ])

2 for each AN model CF in the all-information and rate-place encoding
schemes, respectively. The linear decline in the peaks of the rate-place information profiles
as frequency increases contrasts the sharp drop in the all-information peaks at the highest
frequency. These trends correspond directly to the flat rate-place ∆f/f and to the increasing
all-information ∆f/f seen in Fig. 2-4(a) as frequency increases.
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provide any information for estimating frequency in the rate-place encoding scheme. Only

AN fibers at the edge of the rate-response area provide useful information for estimating

frequency based on rate-place (Siebert, 1968).

2.6.2 Level discrimination in quiet

Predictions of optimal performance for pure-tone level discrimination are compared with

human performance in terms of ∆L as a function of level, duration, and frequency (Fig. 2-

6).7 Rate-place predictions from an analytical AN model are also shown for comparison

(Siebert, 1968). Optimal performance is roughly an order of magnitude better than human

performance, while all-information JND’s are roughly a factor of two lower than rate-place

predictions [due to the level information from AN phase-locking (Colburn, 1981)].

Both the human and computational model predictions demonstrate a decrease in ∆L as

level is increased in Fig. 2-6(a), i.e., the near-miss to Weber’s Law. The slope of ∆L versus

level in the computational model predictions is similar to that in the human data for levels

above 30 dB SPL. Conversely, Siebert’s (1968) model demonstrates Weber’s Law above 40

dB SPL.

The computational model predictions for both all-information and rate-place illustrate

the same rate of improvement in performance as a function of duration as is observed in the

human data [Fig. 2-6(b)]. The rate of improvement is shallower in slope than the predictions

from the analytical AN model (open circles), and than predictions for an optimal detector

applied directly to the stimulus (∆L ∝
√
T−1, solid line). The decay in discharge rate due

to neural adaptation is likely to be responsible for the shallow slope in optimal performance

demonstrated by the computational AN model.

The rate-place predictions are essentially flat as a function of frequency [Figure 2-6(c)],

except for the highest-frequency conditions for which the upper-limit of the model CF range

limited performance. The all-information predictions converge towards the rate-place pre-

7Level discrimination will be discussed in terms of the level difference between the two tones, defined as
∆L = 20 log10 [(p +∆p)/p] dB, where p is the sound pressure of the standard tone. While there is much
debate about the most appropriate metric for level discrimination (see Grantham and Yost, 1982; Green,
1988), ∆L has been reported to be proportional to sensitivity d′ by several groups (e.g., Rabinowitz et al.,
1976; Buus and Florentine, 1991), and thus this metric will be used in the present study.
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Figure 2-6: Optimal performance in terms of ∆L for pure-tone level discrimination. Pre-
dictions from the computational AN model are shown by filled circles for the rate-place
scheme, and by filled squares for the all-information scheme. Rate-place predictions from an
analytical AN model (Siebert, 1968) are shown as open circles. Typical human performance
is illustrated by stars. (a) Effect of level. All model predictions are for f = 970 Hz and
T = 500 ms (20-ms rise/fall). Human data are from Florentine et al. (1987) for f = 1000
Hz and T = 500 ms (20-ms rise/fall). (b) Effect of duration. Predictions are for L = 40
dB SPL, f = 970 Hz, and 4-ms rise/fall ramps. Human data are from Florentine (1986) for
L = 40 dB SPL and f = 1000 Hz, and 1-ms rise/fall ramps. The solid line represents the
predictions for an optimal detector applied directly to the stimulus, i.e., ∆L ∝ T−1/2. (c)
Effect of frequency. Predictions are for L = 40 dB SPL and T = 200 ms (20-ms rise/fall).
Human data are from Florentine et al. (1987) for L = 40 dB SPL and T = 500 ms (20-ms
rise/fall). The two high-frequency points not connected by lines for each encoding scheme
are conditions for which the upper limit of the computational model CF range resulted in
overestimates of the JND’s.
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dictions as frequency increases due to the loss of temporal information at high frequencies.

The shallow slope versus frequency in the all-information predictions is similar to that in the

human JND’s for this stimulus level. A much sharper increase with frequency is observed in

human data at high levels (Florentine et al., 1987), but this effect is not likely to be present

in model predictions at higher levels.

Level-discrimination information profiles (Fig. 2-7) for rate-place and all-information have

the same general shape, unlike the information profiles for frequency discrimination (Fig. 2-

5). For level discrimination, the edges of the response area provide the only information in

the model for both the all-information and rate-place encoding schemes due to the saturation

of both rate and synchrony as level increases. The primary source of the near-miss in the

model predictions is an increase in the number of fibers that contribute significantly as level

increases, especially above the frequency of the tone.

2.7 Discussion

2.7.1 Analytical versus computational approach

The limits on performance for level and frequency discrimination imposed by the random

nature of AN responses were first examined roughly thirty years ago by Siebert (1965, 1968,

1970). The primary goal of the present study was to extend the optimal decision theory

approach used by Siebert to allow the use of computational, rather than analytical, AN

models. In order to verify the new method, a simplified AN model was used in the present

study to permit direct comparisons to Siebert’s predictions based on his analytical AN model.

The predictions from the present study matched Siebert’s predictions well in almost all

aspects over the parameter range for which the analytical AN model was applicable: (1) there

is significantly more temporal information than rate-place information in the AN for encoding

changes in frequency, (2) rate-place performance in terms of ∆f/f is roughly flat as a func-

tion of frequency, (3) all-information performance in terms of ∆f/f improves as frequency

increases for low frequencies, (4) all-information performance improves as ∆f ∝
√
T−3, while

rate-place improves as ∆f ∝
√
T−1, (5) all-information ∆f continues to decrease as level in-
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Figure 2-7: Information responsible for optimal level discrimination for three level conditions
(20, 40, and 60 dB SPL) with f = 970 Hz (indicated by arrow)and T = 500 ms (20-ms
rise/fall). The top and bottom panels show the information (δ′L[CF ])

2 for each AN model
CF in the all-information and rate-place encoding schemes, respectively.
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creases, while rate-place ∆f is roughly asymptotic above 20 dB SPL, (6) spread of excitation

can produce constant level-discrimination performance over a wide range of levels based on

only low-threshold fibers with a limited dynamic range, and (7) level discrimination is essen-

tially independent of frequency. The predictions from the computational AN model differed

from Siebert’s predictions in two cases: (1) level discrimination in the computational model

improved at a slower rate versus duration and similarly to human data, due to the effect of

neural adaptation that was not included in Siebert’s model, and (2) level-discrimination per-

formance in the present model demonstrated the near-miss to Weber’s Law that is observed

in human performance, due to the nontriangular filters used in the computational model,

whereas Siebert’s model predicted Weber’s Law. Both of these discrepancies represent cases

in which the computational model provides a better match to human performance. The

general agreement between the predictions from the computational and analytical models

establishes the validity of the computational approach.

The predictions from the computational AN model extended Siebert’s predictions in two

cases: (1) all-information predictions were made at high frequencies due to the inclusion

of the rolloff in phase-locking, and (2) predictions could be made at short durations due

to the inclusion of realistic onset and offset responses and neural adaptation. Both of these

extensions lead to important issues for auditory encoding of frequency and level, as discussed

below.

2.7.2 Encoding of frequency

Rate-place

The absolute JND’s for optimal use of rate-place information are much closer to human

JND’s than are all-information predictions (Fig. 2-4). Further, rate-place predictions match

the trends in human performance versus frequency below 2 kHz and versus duration above

20 ms. However, there are several inconsistencies between predicted rate-place and human

performance that must be explained if a rate-place model is to account for human perfor-

mance.

(1) Predicted frequency-discrimination performance based on rate-place information is
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inconsistent with the distinct worsening in human performance above 2 kHz [Fig. 2-4(a)].

The present prediction of invariant performance with frequency is consistent with all other

rate-place models for frequency discrimination that incorporate realistic filter slopes as a

function of frequency (e.g., Siebert, 1968, 1970; Javel and Mott, 1988; Delgutte, 1995).

Thus, in order for a rate-place model to account for human frequency discrimination, some

alteration must be included to account for the order-of-magnitude increase in ∆f/f between

2 and 8 kHz. Several possible explanations are considered below:

(a) A decrease in the efficiency of processing rate-place information above 2 kHz could

explain human performance; however, it is not clear why a mechanism for counting AN

discharges would be optimal at low frequencies, but an order-of-magnitude less efficient at

high frequencies. (b) A reduction in the innervation density of independent AN fibers at

high frequencies by a factor of 100 could explain the order-of-magnitude worsening in human

performance. However, this is inconsistent with the increase in AN-fiber innervation density

from apex to base of the cat cochlea (Keithley and Schreiber, 1987; Liberman et al., 1990).

(c) The maximum potential increase in ∆f/f that would result from the disappearance of

the entire upper side of the information profile (Fig. 2-5) off the basal end of the cochlea as

tone-frequency increases is
√
2, which is too small to account for human performance. (d) A

decrease in the sharpness of tuning at high frequencies is inconsistent with reports of human

[Glasberg and Moore (1990), used in the present study] and cat tuning (Liberman, 1978;

Miller et al., 1997), which become sharper as frequency increases.

Thus, there appears to be no physiologically realistic explanation for the worsening of

rate-place performance as frequency increases above 2 kHz, as observed in the human data.

(2) The asymptotic rate-place performance as level increases (actually slight increase

in computational-model JND’s), is inconsistent with the shallow improvement in human

performance as level increases [Fig. 2-4(c)]. The inclusion of high-threshold, low-spontaneous

rate AN fibers could be expected to lead to improved performance at high levels. However,

Erell (1988) demonstrated that inclusion of medium- and low-spontaneous-rate fibers [with

higher thresholds and larger dynamic ranges (Liberman, 1978)] did not significantly extend

the limited range of levels over which rate-place performance improves.
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All-information

In contrast to rate-place, all-information performance matches the trends in human perfor-

mance across all frequencies, especially at high frequencies, and across level [Figs. 2-4(a), (c)].

The current predictions quantify that there is significant temporal information in the AN up

to at least 10 kHz, despite very low synchrony coefficients for AN fibers at high frequencies

[Fig. 2-1(c)]. However, there are several inconsistencies between predicted all-information

performance and human performance.

(1) There is a two-orders-of-magnitude discrepancy between human performance and

optimal all-information performance at both low and high frequencies. (2) All-information

performance for frequency discrimination improves much too rapidly as duration increases

[∆f ∝
√
T−3 rather than ∆f ∝

√
T−1; Fig. 2-4(b)]. This rapid improvement is due to

allowing all possible comparisons between discharges to be used by the optimal processor

(see Fig. 2-3).

Potential signal-processing mechanisms

It is of interest to hypothesize signal processing mechanisms that would incorporate the

useful aspects of both rate-place and all-information encoding schemes for explaining human

performance. A processor that makes use of the temporal discharge patterns appears to be

required to produce the U-shaped dependence of ∆f/f on frequency [Fig. 2-4(a)]; however,

the temporal information must be used inefficiently to account for the duration effect [Fig. 2-

4(b)]. In a pilot modeling study, the computational AN model population was used to make

predictions based on Goldstein and Srulovicz’s (1977) analysis of first-order intervals.8 While

the first-order interval behavior demonstrated a ∆f ∝
√
T−1 relation at long durations

(T ≥ 50 ms), a ∆f ∝
√
T−3 relation was observed at short durations. The steep improvement

at short durations is similar to Goldstein and Srulovicz’s (1977) predictions, but is steeper

8There are several simplifying assumptions in Goldstein and Srulovicz’s (1977) analysis of frequency-
discrimination performance based on first-order intervals. Several of the simplifications that were made by
assuming that RT was large (where R is average rate), were removed in the pilot study with the computational
AN model and had little effect. However, the assumption that all intervals within the duration of the stimulus
are independent, which is not true for a limited-duration stimulus or for a nonstationary Poisson process,
was not able to be removed. The significance of this assumption for predicting optimal performance based
on first-order intervals is not clear.
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than the improvement in human performance at short durations [Fig. 2-4(b); Moore, 1973].

The U-shaped dependence of performance versus frequency was maintained by the first-

order-interval scheme, similar to Goldstein and Srulovicz (1977), with a parallel upward

shift of the entire curve by roughly one order of magnitude (i.e., roughly half-way closer to

human performance).

A temporal processor that considered all discharge times (i.e., all-order intervals) within

a limited temporal window would be expected to demonstrate the desired ∆f ∝
√
T−1 de-

pendence for stimulus durations much longer than the length of the temporal window. For

durations shorter than the temporal window, such a scheme would be expected to behave

similarly to the all-information processor, which matches the rate of improvement in human

performance with duration for T ≤ 16 ms in the present study [Fig. 2-4(b)]. A restricted tem-
poral processor of this type would demonstrate the same shallow improvement with level as

the all-information scheme, consistent with human performance, and would be considerably

closer to overall human performance levels due to the large amount of temporal information

discarded [see Figs. 2-3 and 2-4(b)]. It is reasonable to assume that neurons in the CNS

perform signal processing over restricted temporal windows, given that cell membranes have

finite time constants; however, specific restricted temporal processors must be proposed and

tested quantitatively to determine if the above expectations hold.

2.7.3 Encoding of level

The present predictions for pure-tone level discrimination did not demonstrate a large dif-

ference between performance based on the all-information and rate-place encoding schemes.

Performance based on optimal use of the information available in the AN was roughly one

order-of-magnitude better than human performance. Optimal performance demonstrated

the same general trends seen in human performance for the conditions studied [Fig. 2-6],

despite the absence of many physiological properties that have been hypothesized to be

important for level discrimination, as discussed below.

The computational AN model used in the present study did not include several important

aspects of the basilar-membrane (BM) compressive nonlinearity: changes in gain, bandwidth,

and phase with level (Rhode, 1971; Anderson et al., 1971; Geisler and Rhode, 1982; Ruggero
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et al., 1997; Recio et al., 1998), and suppression (Sachs and Kiang, 1968; Delgutte, 1990b;

Ruggero et al., 1992). The perceptual significance of the compressive gain observed on

the BM has been primarily examined psychophysically (see Moore, 1995b, and Moore and

Oxenham, 1998 for reviews). The compressive gain can extend the dynamic range over

which changes in level can be detected in individual AN fibers (Heinz et al., 1999). The

level-dependent phase response of AN fibers has a much larger dynamic range than rate-

information (Anderson et al., 1971), and thus can provide additional temporal information

for level discrimination at high levels for which the majority of AN fibers are saturated in

terms of average rate (Carney, 1994; Carney et al., 1999; Heinz et al., 1999). The absence

of suppression in the present model prohibits the accurate simulation of AN responses to

complex stimuli. Suppression could potentially produce significant interactions between a

target and an off-frequency noise masker that are not intuitively clear, nor consistent with the

assumption that all fiber information is eliminated within the noise masker (e.g., Viemeister,

1983; Moore and Glasberg, 1989).

The near-miss to Weber’s Law in the computational-model predictions matches human

performance [Fig. 2-6(a)], but contrasts with Siebert’s (1965, 1968) prediction of Weber’s

Law. Both the computational AN model and Siebert’s model have only high-spontaneous-

rate (HSR), low-threshold fibers, and rely strongly on spread of excitation across the AN

population to encode changes in level for medium and high levels. In the computational

model, an increase in the number of CF’s contributing useful information as level increases,

especially above the frequency of the tone, produces the near-miss (Fig. 2-7). Potentially

significant differences between the computational AN model and Siebert’s analytical model

include: (1) the use of gamma-tone filters rather than triangular filters, (2) the form of the

variation in filter bandwidth with CF, and (3) the distribution of CF across the population

of AN fibers. The present results, and those of Teich and Lachs (1979), demonstrate that the

near-miss does not require Weber’s Law to hold in narrow frequency regions [an assumption

that is often made in psychophysical models (e.g., Florentine and Buus, 1981)]. However,

the simplified AN model used in the present study has several significant limitations that

preclude any definitive conclusions regarding level encoding.

The present model would not likely predict Weber’s Law for broadband noise (Miller,
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1947) or for narrowband noise in notched-noise (Viemeister, 1983), or the nonmonotonic

dependence of ∆L on level at high frequencies (Carlyon and Moore, 1984; Florentine et al.,

1987). A significant limitation of the AN model used in the present study is the exclusion

of low-spontaneous-rate (LSR), high-threshold AN fibers (16% of the population; Liberman,

1978), which have been implicated in accounting for Weber’s Law in limited frequency regions

(Colburn, 1981; Delgutte, 1987; Viemeister, 1988a,b; Winslow and Sachs, 1988; Winter and

Palmer, 1991). However, more efficient processing of the LSR fibers than the HSR fibers is

required to achieve Weber’s Law in narrow frequency regions, and thus the near-miss when

information is combined across the population of CF’s (Delgutte, 1987). A more complex AN

model that includes the nonlinear changes in gain and phase as well as the LSR population is

needed to quantify the relative contributions of these physiological properties to the encoding

of sound level at high levels.

An interesting finding from the present study, despite the limitations mentioned above,

is that the shallow improvement in ∆L with duration observed in the computational-model

predictions matches human performance [Fig. 2-6(b)]. This shallow improvement is likely

due to neural adaptation, as suggested by Buus and Florentine (1992), and indicates that

a limitation in the temporal-integration capabilities of a central processor is not needed to

explain the shallow improvement in level-discrimination performance as duration increases.

2.7.4 Relation between frequency and level encoding

The bandpass tuning in the auditory system implies that a change in rate on an AN fiber

can result from either a change in stimulus level or frequency. Siebert (1968) used a simple

AN model with triangular-shaped filters to demonstrate a fundamental relationship between

level and frequency discrimination based on rate-place information. A shortcoming of rate-

place models has been their inability to account for both frequency and level discrimination

in terms of the ratio of Weber fractions WA/WF (Siebert, 1968; Erell, 1988; Delgutte, 1995).

Siebert predicted that the ratio of the Weber fraction for amplitude, WA = ∆A/A, to the

Weber fraction for frequency, WF = ∆f/f , should be roughly 15 for rate-place models based

on the shapes of AN tuning curves. Values of 10-15 for this ratio are typical of most rate-place

models; however, human psychophysical data typically yield a ratio closer to 50 (Erell, 1988).
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Erell (1988) suggested that this discrepancy could be resolved by using filter bandwidths that

were four to five times narrower than those based on tuning in cat, and that human tuning

is sharper than in cat. Typical values of the ratio WA/WF from the present study (based on

human tuning) were 11 for rate-place and 710 for all-information (for f = 970 Hz, L = 40 dB

SPL, T = 64 ms, and 4-ms rise/fall). Human behavior lies between the predicted behavior

based on rate-place and all-information encoding schemes. This result supports the notion

that a restricted temporal encoding scheme should be pursued (i.e., an encoding scheme that

is intermediate to rate-place and all-information).

2.7.5 Limitations of the present study

Computational auditory-nerve model

The computational AN model used in this study has a basic filter shape that is the same

for low and high CF’s, with the only difference being filter bandwidth. This assumption

ignores the tails of AN tuning curves observed for high-CF AN fibers (Kiang and Moxon,

1974). Inclusion of tails would affect the details of the predicted performance as a function

of level; however, the significance of this assumption is minimized for the predictions versus

frequency and duration, which were limited to low- and mid-level stimuli. The omission of

tuning-curve tails also limits the applicability of the present AN model for complex sounds.

The Poisson assumption used in the present model ignores refractory effects, and could

affect some of the details of the performance limits predicted in this study. Siebert (1965,

1968, 1970) and Colburn (1969, 1973) have argued that this assumption is not significant

because the AN never responds at a sustained rate for which the typical inter-spike interval is

less than four to five times larger than the absolute refractory period; however, this argument

does not rule out a significant influence of the relative refractory period. The standard

deviation of AN discharge counts has been reported to be less than that predicted by the

Poisson model (Teich and Khanna, 1985; Young and Barta, 1986; Delgutte, 1987; 1996;

Winter and Palmer, 1991). The maximum deviation from the Poisson model occurs at high

discharge rates, and the Poisson model becomes more accurate as discharge rate decreases.

Young and Barta (1986) reported that the standard deviation of discharge counts ranged
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from 55% to 80% of the Poisson value at high discharge rates, values that are consistent

with other reports. Thus, the maximum discrepancy from using the Poisson model could be

an overestimate of some rate-place JND’s by a factor of two; however, the discrepancy will

typically be much less since fibers with high discharge rates do not contribute significant

rate-place information (see Figs 2-5 and 2-7; Colburn, 1981; Winter and Palmer, 1991).

Miller et al. (1987) provided evidence that single-unit phase-locked responses are consistent

with a nonstationary Poisson model. They showed that the mean and variance of period

histograms had roughly the same pattern and absolute value. Thus, the errors from using a

Poisson model without refractory effects are small compared with the important trends in

the present predictions, which often range over more than an order of magnitude.

Optimal decision theory

The Cramér-Rao-bound analysis in the present study is restricted in that it only provides

limits on the performance of all possible decision processes for a Poisson process, and thus

should be viewed primarily as a method for quantifying the total information available

in the auditory nerve. This method does not describe the type of processing required to

achieve optimal performance, which is often significantly better than human performance

(e.g., Fig. 2-4). Derived optimal processors typically include many physiologically unrealistic

operations on the observed population of AN discharges, such as the ability to compare all

discharge times across the entire duration of the stimulus, as well as the ability to compare the

discharges across all AN fibers (Colburn, 1969, 1973; Siebert, 1970). It is often the case that

physiologically realistic, but non-optimal, processors can be described that perform at levels

more consistent with human performance (e.g., Colburn, 1969, 1973, 1977a,b; Goldstein and

Srulovicz, 1977; see Delgutte, 1996). This approach provides intuition regarding the actual

processing performed in the auditory system, and is thus a natural second step after the

fundamental performance limits have been described based on the total AN information.

The ODT used in the present study is applicable to any single-parameter discrimination

task (e.g., frequency or level discrimination). A useful extension will be to incorporate the

potential for adding random noise to the stimulus; however, this will require a significant

extension of the ODT used in the present study in order to quantify the influence of stimulus
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(external) noise. However, this extension is now warranted because computational AN mod-

els that produce responses to arbitrary stimuli provide the potential to predict the effects

of noise maskers on psychophysical performance. As mentioned above, there is particular

interest in the potential to evaluate quantitatively the effect of noise maskers in experiments

that have been used to test rate-place and temporal encoding schemes (e.g., Viemeister,

1983; Moore and Glasberg, 1989). In addition to the effects of suppression, the information

contained in the temporal patterns (either fine-time or envelope) of AN fiber responses may

be significant in these studies.

2.8 Conclusions

Optimal decision theory can be combined with computational models to predict psychophysi-

cal performance limits based on an entire neural population. Auditory discrimination perfor-

mance limits based on the computational model matched predictions from previous studies

over the parameter range for which analytical models were applicable. The parameter range

over which psychophysical performance can be predicted was extended using the computa-

tional AN model.

The following three conclusions related to the encoding of frequency are not likely to

depend on the details of the AN model used in the present study. Optimal use of rate-

place information is consistent with human frequency discrimination performance at low

frequencies, but is inconsistent with the trends in performance versus frequency at high

frequencies. Frequency discrimination based on optimal use of all-information is roughly two

orders-of-magnitude better than human performance at all frequencies, but demonstrates the

correct trends versus frequency, based on the frequency-dependence of phase-locking in the

cat. There is significant temporal information in the AN for frequency discrimination up to

at least 10 kHz, and thus temporal schemes cannot be rejected at high frequencies based on

the decrease in phase-locking in the AN.

Future studies using the computational approach with more complex AN models are now

justified, and will be particularly interesting for the task of level discrimination. In addition,

this approach is applicable to any neural population in a sensory system for which a model
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of the discharge-pattern statistics is available.
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2.10 Appendix: Performance Limits for One-Param-

eter Discrimination

This appendix describes a complete analysis of a general one-parameter discrimination ex-

periment using ODT, and extends several previous results (e.g., Siebert, 1970; Colburn, 1981;

Rieke et al., 1997). This analysis is applicable to any physiological model that assumes Pois-

son discharge statistics. Prediction of performance limits based on the Cramér-Rao bound

is described first, because this was the method first described by Siebert (1970); however,

this approach lacks an explicit description of the processing that is required to achieve op-

timal performance. The use of a likelihood ratio test, which is described second, provides

insight into the meaning of the Cramér-Rao bound result, describes the form of an optimal

processor, and demonstrates that the Cramér-Rao bound is efficient [i.e., can be met with

equality (van Trees, 1968)].

The assumption that a nonstationary Poisson process is a good model for the AN dis-

charge patterns allows the random nature of the observations to be described (see Parzen,
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1962; Snyder and Miller, 1991; Rieke et al., 1997). The joint probability density of the

unordered discharge times {ti1, · · · , tiKi
} on the ith AN fiber is given by

p(ti1, · · · , tiKi
|α) =

∏Ki
n=1 ri(t

i
n, α)

Ki!
exp

[
−
∫ T

0
ri(t, α)dt

]
, (2.3)

where ri(t, α) is the time-varying discharge rate, and α is the stimulus parameter to be dis-

criminated. [Note that this formula applies to unordered discharge times (i.e., the discharge

times are not constrained such that ti1 < ti2 < · · · < tiKi
).]

Cramér-Rao Bound: The Poisson description of the random nature of the observations

can be used in the Cramér-Rao bound (Cramér, 1951; van Trees, 1968) to describe optimal

performance for estimating the value of α based on the response of a single AN fiber in

terms of its time-varying discharge rate ri(t, α). The variance σ
2
α̂[i] of any unbiased estimate

of the parameter α from the observed discharge times on the ith fiber is bounded by the

Cramér-Rao inequality

1

σ2
α̂[i]

≤ E


[
∂

∂α
ln p(ti1, · · · , tiKi

|α)
]2
 , (2.4)

=
∞∑

Ki=0

∫ T

0
· · ·

∫ T

0

[
∂

∂α
ln p(ti1, · · · , tiKi

|α)
]2

p(ti1, · · · , tiKi
|α)dti1 · · · dtiKi

,

(2.5)

where the expectation in Eq. 2.4 is over the random observations {ti1, · · · , tiKi
}. This in-

equality provides a lower bound on the variance of any unbiased estimator by relating the

accuracy of the estimate to the rate of change with α of the likelihood of the observations.

The variance σ2
α̂[i] can be related to the time-varying discharge rate ri(t, α) by substitut-

ing the joint probability density from Eq. 2.3 into Eq. 2.5 and performing some extensive

simplifications to obtain

1

σ2
α̂[i]

≤
∫ T

0

1

ri(t, α)

[
∂ri(t, α)

∂α

]2

dt. (2.6)

Equation 2.6 provides a lower bound on the variance of any unbiased estimate of α based on
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the observations from a single AN fiber in terms of the time-varying discharge rate ri(t, α).

The just-noticeable difference ∆αJND of the ideal observer is equal to the minimum

standard deviation of any estimator based on the observations, when threshold is defined as

75% correct in a two-interval, two-alternative forced-choice task. This definition of threshold

corresponds to d′ = 1, where d′ = ∆αJND/σα̂[i]. The JND based on the population of AN

fibers is given by

∆αJND =

∑
i

∫ T

0

1

ri(t, α)

[
∂ri(t, α)

∂α

]2

dt


− 1

2

, (2.7)

because the information from each AN fiber adds under the assumption that the discharge

patterns of all fibers are statistically independent.

Likelihood Ratio Test: This analysis extends previous results from Colburn (1981) and

Rieke et al. (1997) to show that evaluation of the performance of a sufficient statistic

for a nonstationary Poisson process derived from a likelihood-ratio test leads to the same

equation obtained from the Cramér-Rao bound (i.e., that an efficient estimator exists).

This alternative approach provides more intuition, and is therefore more accessible than the

Cramér-Rao bound analysis. Most importantly, it is shown that the quantity

(δ′α[CFi])
2=�

∫ T

0

1

ri(t, α)

[
∂ri(t, α)

∂α

]2

dt (2.8)

represents the information available on the ith AN fiber for discriminating α, where δ′α[CFi]

represents the normalized sensitivity of the ith fiber, and is defined as the sensitivity d′ per

unit α (see Durlach and Braida, 1969; Braida and Durlach, 1988).

The form of the optimal processor for discriminating between α and α + ∆α can be
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derived from a log-likelihood test,

ln
p(ti1, · · · , tiKi

|α+∆α)
p(ti1, · · · , tiKi

|α)

α+∆α

>

<

α

0, (2.9)

where the threshold of 0 corresponds to the minimum-probability-of-error criterion with

equal a priori probabilities (van Trees, 1968, pp. 23-30). Substituting the joint probability

density of the discharge times (Eq. 2.3) into Eq. 2.9 and simplifying, one obtains the following

form of an optimal test

Y (ti1, · · · , tiKi
)=�

Ki∑
n=1

ln
ri(t

i
n, α +∆α)

ri(tin, α)

α+∆α

>

<

α

∫ T

0
[ri(t, α+∆α)− ri(t, α)] dt.

(2.10)

Since the decision variable Y is a sum of random variables, a Gaussian assumption is rea-

sonable if Ki is large, and (d
′)2 is an appropriate performance measure. Thus, optimal

performance based on Y (ti1, · · · , tiKi
) can be evaluated as (see Green and Swets, 1966)

(d′[CFi])
2
=

{
E
[
Y (ti1, · · · , tiKi

)
∣∣∣α+∆α]− E

[
Y (ti1, · · · , tiKi

)
∣∣∣α]}2

V ar
[
Y (ti1, · · · , tiKi

)
∣∣∣α] . (2.11)

It can be shown (e.g., see Rieke et al., 1997) that for any decision variable Y of the form

Y (t1, · · · , tK) =
K∑
n=1

g(tn), (2.12)

where g(tn) is any function of the Poisson discharge time tn, that the expected value and

61



variance of Y are given by

E [Y (t1, · · · , tK)|α] =
∫ T

0
g(t)ri(t, α)dt, (2.13)

V ar [Y (t1, · · · , tK)|α] =
∫ T

0
g2(t)ri(t, α)dt. (2.14)

Given these relations with g(t) = ln[ri(t, α+∆α)/ri(t, α)],

(d′[CFi])
2
=

{∫ T

0
ln

ri(t, α+∆α)

ri(t, α)
[ri(t, α +∆α)− ri(t, α)] dt

}2/

∫ T

0

[
ln

ri(t, α+∆α)

ri(t, α)

]2

ri(t, α)dt

 . (2.15)

With the additional assumption that ri(t, α) varies linearly and slowly over the incremental

range from α to α+∆α (Colburn, 1981), i.e.,

ri(t, α+∆α) � ri(t, α) + ṙi(t, α)∆α, (2.16)

where ṙi(t, α) = ∂ri(t, α)/∂α, one obtains

(d′[CFi])
2 �

{∫ T

0
ln

[
1 +

ṙi(t, α)∆α

ri(t, α)

]
[ṙi(t, α)∆α] dt

}2/
∫ T

0

{
ln

[
1 +

ṙi(t, α)∆α

ri(t, α)

]}2

ri(t, α)dt

 . (2.17)

The approximation ln(1 + x) � x for small x then leads to the equations

(d′[CFi])
2 �

[
(∆α)2

∫ T

0

ṙi(t, α)
2

ri(t, α)
dt

]2/[
(∆α)2

∫ T

0

ṙi(t, α)
2

ri(t, α)
dt

]

= (∆α)2
∫ T

0

1

ri(t, α)

[
∂ri(t, α)

∂α

]2

dt (2.18)

= (∆α)2 (δ′α[CFi])
2
. (2.19)

Note that the “small-x” approximation may not be appropriate for low discharge rates. To
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avoid this potential problem in the valleys of the phase-locked response, a constant was

added to all discharge rates r(t, f, L) prior to the ODT analysis in the present study. [A

value of � 7 spikes/s was used, based on the minimum value of r(t, f, L) in Siebert’s (1970)
model. The precise value of this constant is not significant, as long as the instantaneous

discharge rate does not go to zero.]

Finally, taking d′ = 1 as the JND and combining over independent fibers, one obtains

∆αJND �
{∑

i

(δ′α[CFi])
2

}− 1
2

, (2.20)

which is the same form derived from the Cramér-Rao bound (Eq. 2.7). [Note that the

summation over fibers in Eq. 2.20 results from the independence assumption, and would

come directly in the analysis if the probability function in Eq. 2.3 were written as a product

of the fiber probabilities.]
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Chapter 3

Evaluating auditory performance

limits: II. One-parameter

discrimination with random level

variation

3.1 Abstract

Previous studies have combined analytical models of neural responses with optimal decision
theory (ODT) to predict psychophysical performance limits; however, these studies have typ-
ically been limited to simple models and simple psychophysical tasks. A companion paper
describes an extension of the ODT approach to allow the use of computational models that
provide more accurate descriptions of neural responses. The present paper describes an ex-
tension to more complex psychophysical tasks. A general method is presented for evaluating
psychophysical performance limits for discrimination tasks in which one stimulus parameter
is randomly varied. Psychophysical experiments often randomly vary a single parameter
in order to restrict the cues that are available to the subject. The new method is demon-
strated for the auditory task of random-level frequency discrimination using a computational
auditory-nerve (AN) model. Performance based on AN discharge times (all information) is
compared to performance based only on discharge counts (rate place). Both decision models
are successful in predicting that random level variation has no effect on performance in quiet,
which is the typical result in psychophysical tasks with random level variation. The distri-
bution of information across the AN population provides insight into how different types
of AN information can be used to avoid the influence of random level variation. The rate-

0A similar version of this chapter has been submitted to Neural Computation (Heinz et al., 2000b).
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place model relies on comparisons between fibers above and below the tone frequency (i.e.,
the population response), while the all-information model does not require such across-fiber
comparisons. Frequency discrimination with random level variation in the presence of high-
frequency noise is also simulated. No effect is predicted for all-information, consistent with
the small effect in human performance; however, a large effect is predicted for rate-place in
noise with random level variation.

3.2 Introduction

The use of optimal decision theory (ODT) combined with models of neural responses has

provided much insight into neural encoding of sensory stimuli (e.g., Fitzhugh, 1958; Siebert,

1965,1968,1970; Colburn, 1969, 1973, 1977a,b, 1981; Goldstein and Srulovicz, 1977; Delgutte,

1987; Erell, 1988; see Delgutte, 1996 and Parker and Newsome, 1998 for reviews). These

studies evaluated psychophysical performance limits based on the stochastic behavior of

neural responses. However, the application of this approach has been limited to simple

psychophysical tasks due to the use of simple analytical models and by the restricted use of

ODT to deterministic stimuli. In a companion paper, an extension of the ODT approach

to incorporate computational neural models is presented, which allows a much wider range

of stimuli to be studied (Chapter 2). The present study extends the ODT analysis to allow

more complicated psychophysical tasks to be evaluated, specifically discrimination tasks in

which one parameter is randomly varied from trial to trial.

Many psychophysical experiments have used random variation of certain stimulus param-

eters in order to limit the cues available to the subject. For example, McKee et al. (1986)

observed that human velocity discrimination was unaffected by random variation of either

contrast or temporal frequency, and concluded that performance was mediated by sensing

velocity. In the auditory system, this method has been used in profile-analysis experiments

to demonstrate that level discrimination of a single component of a tone complex, or de-

tection of a tone in noise, is not affected by the randomization of overall level, and thus

these tasks can be performed without relying on an absolute energy cue (Green et al., 1983;

Kidd et al., 1989; see Green, 1988 for a review). While psychophysical performance in the

presence of overall-level randomization is typically unchanged, performance based on sin-

gle neurons would likely be severely degraded. Therefore, it is important to quantitatively
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evaluate how physiological responses can account for behavior in these types of psychophys-

ical tasks. Durlach et al. (1986) described a quantitative model for profile-analysis tasks

based on across-frequency level comparisons, which included the effects of both external

(stimulus) variations and internal processing noise. However, the internal noise used in their

model was not directly related to the known physiological noise that exists in AN fibers,

and thus was somewhat arbitrary. The present study extends the approach used by Siebert

and others to include the effect of random stimulus variation in a single parameter on psy-

chophysical performance limits. In order to demonstrate this new method, predictions for

a random-level frequency discrimination task are evaluated using the same computational

auditory-nerve (AN) model used in Chapter 2. Predictions are made for both rate-place and

all-information (including temporal and rate-place information) encoding schemes, as was

done in the companion study of pure-tone frequency and level discrimination.

Random level variation has been used in several frequency-discrimination experiments to

test rate-place models for frequency encoding (Henning, 1966; Verschuure and van Meeteren,

1975; Emmerich et al., 1989; Moore and Glasberg, 1989). In this task, the listener is asked to

discriminate the frequency of two tones whose levels are varied randomly and independently

from trial to trial. Frequency-discrimination-in-quiet could hypothetically be performed by

observing the average discharge rate of a single frequency channel tuned either above or below

the tone frequency (e.g., Zwicker, 1956; 1970; Henning, 1967). Such rate-based models would

be expected to be greatly affected by random level variation because changes in level could

not be discriminated from changes in frequency. Conversely, temporal models would not be

expected to be affected by random level variation. It is often stated that listeners use rate-

place information to encode frequency at high frequencies, (e.g., Wever, 1949; Moore, 1973,

1989; Dye and Hafter, 1980; Wakefield and Nelson, 1985; Javel and Mott, 1988; Pickles,

1988; Moore and Glasberg, 1989), because AN phase-locking rapidly degrades above 2-3

kHz [Johnson, 1980; Joris et al., 1994; or see Fig. 2-1(c)].

Several studies have observed an effect of random level variation on frequency discrimina-

tion (e.g., Henning 1966, Emmerich et al., 1989); however, the observed effect of random level

variation is likely to be largely due to pitch shifts associated with the changes in level over

the broad range of level variation used in these studies (Verschuure and van Meeteren, 1975;
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Emmerich et al., 1989). Moore and Glasberg (1989) measured frequency discrimination as a

function of frequency with a smaller range of random level variation, and observed virtually

no effect. Moore and Glasberg also measured frequency discrimination in the presence of

high-frequency noise that was used to mask the characteristic frequencies (CF’s) above the

tone frequency. This experiment was designed to test the idea that rate-place models could

avoid the effect of random level variation by comparing information from CF’s above and

below the tone frequency. A small but significant effect of adding the high-frequency noise

was observed, with a slightly larger effect when the noise was added to the random-level con-

dition. Despite a similar effect at all tone frequencies, Moore and Glasberg (1989) concluded

that their results were consistent with the “duplex theory” for frequency encoding (Wever,

1949), i.e., that rate-place information is used at high frequencies and temporal information

is used at low frequencies. The results in the present study question this conclusion by quan-

tifying that there is insufficient rate-place information in the AN model to account for human

performance with random level variation under the assumption that the high-frequency noise

masks all CF’s above the tone frequency. The quantitative approach described in the present

study can be used for any sensory system for which there are statistical descriptions of neural

responses as a function of the relevant stimulus parameters.

3.3 General Methods

3.3.1 Computational auditory-nerve model

The computational AN model used in the present study was the same model described in

Chapter 2.1 This AN model was a simplified version of a previous nonlinear AN model

(Carney, 1993), and was used in order to simplify the verification of the new ODT methods.

The major components of the AN model are summarized below [see Chapter 2 for a detailed

description].

The initial model stage was a linear fourth-order gamma-tone filter bank, which was

used to represent the frequency selectivity of AN fibers. Model filter bandwidths were based

1Code for the AN model used in the present study is available at http://earlab.bu.edu/.
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on estimates of human bandwidths from Glasberg and Moore (1990). Each bandpass filter

was followed by a memoryless, asymmetric, saturating nonlinearity, which represents the

mechano-electric transduction of the inner hair cell (IHC). All AN model fibers had a rate

threshold of roughly 0 dB SPL, a spontaneous rate of 50 spikes/s, and a maximum sustained

rate of roughly 200 spikes/s. The model dynamic range for sustained rate was roughly 20-30

dB, while the dynamic range for onset rate was much larger. The rolloff in phase-locking

was consistent with all species discussed in Weiss and Rose (1988), and the cutoff frequency

matched data from cat (Johnson, 1980). Neural adaptation was introduced through a simple

three-stage diffusion model for the IHC-AN synapse based on data from Westerman and

Smith (1988). The output of the ith AN model fiber represents the instantaneous discharge

rate ri(t, f, L) of an individual high-spontaneous-rate, low-threshold AN fiber in response to

an arbitrary stimulus. The AN discharges are assumed to be produced by a population of

nonstationary Poisson processes with rate functions described by ri(t, f, L).

3.3.2 Optimal decision theory

The application of ODT in the present study is extended from the companion study (Chap-

ter 2) to evaluate psychophysical tasks in which a single parameter is randomly varied.

Optimal performance is evaluated for both rate-place and all-information models and com-

pared to data from human listeners. Rate-place predictions are based on the assumption

that the population of AN-fiber discharge counts {Ki} over the duration of the stimulus is
the only information used by the listener. In contrast, the all-information predictions are

based on the assumption that the listener uses the population of discharge times and counts

{ti1, · · · , tiKi
}, where tij represents the jth discharge from the ith AN fiber. The contribution

of temporal information in the responses can be inferred by comparing the predictions of

the rate-place and all-information models. The all-information model does not assume any

specific forms of temporal processing, such as calculating synchrony coefficients or creating

interval histograms, and thus provides an absolute limit on achievable performance given the

total information available in the AN.
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3.4 General Analytical Results: Random-Level Fre-

quency Discrimination

The use of ODT with stochastic models of neural responses has never been used to evaluate

the many psychophysical tasks that randomly vary one parameter in order to restrict the cues

that are available to the subject. The ODT analysis of a general one-parameter discrimina-

tion experiment with one unwanted random parameter is a straightforward extension to the

multiple-parameter case (see Appendix in Section 3.10). In the present study, this analysis

is described in terms of a random-level frequency-discrimination task. The just-noticeable

difference in frequency for this task can be calculated as

∆fJND =

EL

{∑
i

(
δ′f [CFi]

)2
}
−

{
EL

(∑
i δ

′
Lf [CFi]

)}2

EL

{∑
i (δ

′
L[CFi])

2
}
+ APIL


− 1

2

, (3.1)

where EL denotes the expected value over the random-level range, (δ
′
f [CFi])

2 and (δ′L[CFi])
2

represent the normalized sensitivities for estimating frequency and level, respectively, APIL

represents the a priori information about level (e.g., the random-level range), and δ′Lf [CFi]

represents the cross-interaction between changes in level and frequency on the ith AN fiber

(see Appendix in Section 3.10, and Chapter 2). Each of the normalized-sensitivities and the

cross-interaction term in Eq. 3.1 can be evaluated in terms of the time-varying discharge rates

ri(t, f, L) for all AN fibers. Thus, Eq. 3.1 can be used with any AN model (e.g., analytical

or computational), and is applicable to any single-parameter discrimination experiment with

one randomized parameter. This analysis is also applicable to any sensory system for which

the statistics of the neural responses can be described as a function of the stimulus parameters

of interest.

This general form of the relation between optimal performance and the relevant informa-

tion quantities provides insight about the influence of random level variation on the ability to

perform frequency discrimination. Equation 3.1 illustrates that the AN information available

to estimate frequency in the random-level experiment is equal to the average (over level) of

the information available for fixed-level frequency discrimination, EL

{∑
i(δ

′
f [CFi])

2
}
, minus
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the amount of information that is lost due to the random level variation. The numerator of

the second term,
{
EL

(∑
i δ

′
Lf [CFi]

)}2
, represents the square of the average total correlation

between the effect of changes in frequency and changes in level on the AN observations. If

changes in level influence the observations in the same way as changes in frequency, then it is

more difficult to estimate frequency in the presence of random level variation. The denomina-

tor of the second term, EL {
∑

i(δ
′
L[CFi])

2}+APIL, is a normalization factor that represents

the total information available to estimate level. The first term in the denominator is the

average information for estimating level from the AN observations, while the second term is

the a priori information available for estimating level from the limited random-level range.

If the tone level can be estimated accurately (relative to the square of the total correlation

between changes in level and frequency), then the denominator of the second term is large

relative to the numerator and there is little loss of information (i.e., this corresponds to the

known-level case averaged over level).

3.5 Computational Methods: Use of Auditory-Nerve

Models

All predictions in the present study were made using the computational AN model in the

identical manner used in the companion paper (Chapter 2). Briefly, predictions are based

on 60 model CF’s ranging from 100 Hz to 10 kHz, which are uniformly spaced in location

according to a human cochlear map (Greenwood, 1990). The predictions are based on

a population of 12,200 total AN fibers, where each of the 60 model responses represent

roughly 200 independent, high-spontaneous-rate AN fibers. Tone frequencies were always

chosen to be equal to one of the 60 model CF’s. Stimulus duration was defined as the

duration between half-amplitude points on the stimulus envelope. All rise/fall ramps were

generated from raised-cosine functions. The temporal window in the all-information analysis

included the model response beginning at stimulus onset and ending 25 ms after stimulus

offset, in order to allow for the response delay and the transient onset and offset responses

associated with AN fibers over the range of CF’s and stimulus parameters used in this study.
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Predictions for the rate-place encoding scheme were based on the average discharge rate

across the entire temporal-analysis window (i.e., including the extra 25 ms after the nominal

offset of the stimulus).

3.6 Computational Results

3.6.1 Random-level frequency discrimination in quiet

Predictions of optimal performance for the random-level frequency discrimination task were

calculated using Eq. 3.1 for the same values of frequency, level, and duration used in Chap-

ter 2. A random-level range was uniformly distributed and centered around the nominal

level for each condition. For all conditions, there was no effect of random level variation for

the rate-place or all-information schemes for either a 6-dB or a 20-dB random-level range

(neither shown).2 This result is consistent with human performance measured by Moore

and Glasberg (1989), in which no effect of random level variation was observed with a 6-dB

range. Conversely, Emmerich et al. (1989) observed a factor of three degradation in human

performance when measured with a 20-dB random-level range; however, they showed that

much of this effect was due to the confounding role of level-dependent shifts in pitch (Ver-

schuure and van Meeteren, 1975), which are not likely to be produced by the simplified AN

model used in the present study. The present results for both rate-place and all-information

models thus support the idea that there is no effect of random level variation on frequency

discrimination when a small enough random-level range is used to avoid the influence of

level-dependent-pitch effects (Moore and Glasberg, 1989).

In order to illustrate how each encoding scheme can discriminate frequency accurately in

the presence of random level variation, the distribution of information quantities in Eq. 3.1

across the population of AN fibers is shown in Fig. 3-1. The first row shows the average

2The effect of random level variation was evaluated by comparing random-level performance (given
by Eq. 3.1) to average (across level) fixed-level performance (determined by the first term in Eq. 3.1,

EL

{∑
i

(
δ′f [CFi]

)2
}
). This comparison avoids any potential effect of variation in performance across the

levels within the random-level range, which could result in a difference between fixed-level performance and
average fixed-level performance that was not truly an effect of random level variation.
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Figure 3-1: Information responsible for optimal performance on a random-level frequency
discrimination task for f = 970 Hz (indicated by arrows), L = 40 dB SPL, T = 200 ms
(20-ms rise/fall), and a 6-dB random-level range. The left and right columns illustrate
information from the all-information and rate-place encoding schemes, respectively. The top
panel represents the average level information EL{(δ′L[CF ])2} available for each AN model
fiber. The middle panel shows the average cross-interaction between level and frequency
for each AN fiber, EL(δ

′
Lf [CF ]). In the bottom panel, the average information available for

fixed-level frequency discrimination, EL{(δ′f [CF ])2}, is shown by the solid line. The dashed
line represents the information for estimating frequency based on individual AN fibers that
is lost due to the random level variation (second term in Eq. 3.1). The amount of lost
information (a positive quantity) is plotted so that those CF’s that have negative correlation
between changes in level and changes in frequency have a negative value (for illustrative
purposes only).
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information about level available for each CF, EL {(δ′L[CF ])2}. The second row shows the
average cross-interaction term as a function of CF , EL

(
δ′Lf [CF ]

)
. The average fixed-level

information about frequency for each AN fiber, EL

{
(δ′f [CF ])

2
}
, is shown by the solid line

in the bottom row. The dashed line in the bottom row represents the average frequency

information that is lost due to the random level variation based on estimating frequency

from single AN fibers (i.e., the second term in Eq. 3.1 evaluated for single CF’s, and with

APIL = 0). The amount of lost information is plotted so that those CF’s that have a

negative correlation between changes in level and frequency have a negative value. This is

solely for illustrative purposes, as the second term in Eq. 3.1 is always positive because it is

the ratio of a squared value and a positive information quantity.

The curves in the bottom panel of Fig. 3-1 illustrate how both encoding schemes overcome

the influence of random level variation. In the all-information scheme, each fiber possesses

significantly more information for estimating frequency than is lost due to the random level

variation (compare solid and dashed lines, Fig. 3-1 bottom left). However, the situation

with single-fiber rate-place information is very different. The average amount of rate-place

information on a single fiber that is lost due to random level variation is equal to the average

amount of information available for estimating frequency with fixed level (compare solid and

dashed lines, Fig. 3-1 bottom right). However, when the population response is considered,

there is no effect of random level variation for the rate-place scheme due to the opposite

polarity of the cross-interaction term above and below the frequency of the tone (middle

panel, Fig. 3-1). The lack of an effect for the rate-place population response can be seen in

Eq. 3.1 to result from the summation of the cross-interaction term δ′Lf [CF ] over all CF’s prior

to squaring the total interaction. The rate-place cross-interaction profile is an odd function

around the frequency of the tone (Fig. 3-1, middle panel), and thus the positive interaction

above the frequency of the tone cancels the negative interaction below the frequency of the

tone so that the overall effect of random level variation is negligible.

In summary, single AN fibers in the all-information scheme can perform random-level

frequency discrimination equally as well as fixed-level frequency discrimination. In contrast,

it is not possible to discriminate frequency in the presence of random level variation based on

rate-place information from a single AN fiber. However, a rate-place model that compared

73



information in CF’s above and below the frequency of the tone could make use of the opposite

interaction to separate the effect of changes in level from the effect of changes in frequency,

and thereby discriminate frequency in the presence of random level variation.

3.6.2 Random-level frequency discrimination in noise

Moore and Glasberg (1989) measured frequency discrimination in four conditions in order to

test the duplex theory of frequency coding, i.e., that rate-place information is used at high

frequencies while temporal information is used at low frequencies. They reported perfor-

mance as a function of frequency for four conditions: (1) fixed-level frequency discrimination

in quiet, (2) random-level frequency discrimination in quiet, (3) fixed-level frequency dis-

crimination with a high-frequency noise masker that spanned from 1.1f to 1.4f , and (4)

random-level frequency discrimination in the presence of the high-frequency noise. Moore

and Glasberg suggested that if the high-frequency noise were assumed to mask completely all

CF’s above the frequency of the tone, then the performance of a rate-place model should be

significantly affected by randomizing the level of the tone in the presence of the noise. The

random-level frequency discrimination analysis in the present study was used to simulate all

four conditions. The first two conditions have been described above, while the conditions

that included the high-frequency noise were simulated by discarding the information from

all CF’s above the frequency of the tone. While this simulated effect of the noise is extreme

[e.g., given the effects of suppression (Sachs and Kiang, 1968; Delgutte, 1990b; Ruggero et

al., 1992)], this is the assumption that was made by Moore and Glasberg (1989), and has

been used often to interpret psychophysical experiments with noise maskers (e.g., Viemeis-

ter, 1983). Future studies using more complex AN models and ODT analyses will evaluate

the validity of this assumption.

The group mean results from Moore and Glasberg (1989) are shown in Fig. 3-2(a), the all-

information predictions in Fig. 3-2(b), and the rate-place predictions in Fig. 3-2(c). Moore

and Glasberg reported that there was no statistically significant interaction between condi-

tion and frequency, as indicated by the roughly parallel shifts of the curves for the different

conditions [Fig. 3-2(a)]. Table 3.1 shows the average factor across frequency by which thresh-

olds for each condition became worse relative to frequency discrimination in quiet [condition
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Figure 3-2: Comparison between human and predicted optimal performance for the random-
level frequency-discrimination conditions reported by Moore and Glasberg (1989). The We-
ber fraction ∆f/f is plotted as a function of frequency in each panel. Human performance is
shown in (a); all-information predictions in (b); rate-place predictions in (c). Condition (1)
(circles): fixed-level frequency discrimination in quiet; Condition (2) (squares): random-level
frequency discrimination in quiet; Condition (3) (upward triangles): fixed-level frequency
discrimination in the presence of high-frequency noise; Condition (4) (downward triangles):
random-level frequency discrimination in high-frequency noise. Human data are for L = 70
dB SPL, T=200 ms (10-ms rise/fall), 6-dB random-level range, and overall noise level of 75
dB SPL (Moore and Glasberg, 1989); Model predictions are for L = 40 dB SPL, T = 200
ms (20-ms rise/fall), and 6-dB random-level range.
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Table 3.1: Average ratio between thresholds in conditions (2)-(4) relative to condition (1)
(frequency discrimination in quiet). Conditions are defined in the text and the caption to
Fig. 3-2.

Human Model

Condition Moore and Glasberg (1989) All-information Rate-place

random level (2) 1.15a 1.00 1.00

in noise (3) 1.37 1.41 1.26

random level in noise (4) 1.65 1.40 9.68

a not statistically significant.

(1)] for human and model performance. Moore and Glasberg reported that there was not

a statistically significant difference between frequency discrimination in quiet and with a

random level [i.e., between conditions (1) and (2)]. Human thresholds became worse by an

average factor of 1.37 (statistically significant) for the in-noise condition, while the most

significant effect was seen for the random-level in noise condition in which performance be-

came worse by an average factor of 1.65. However, all of these effects in human performance

are relatively small, especially compared with the factor-of-five degradation in performance

between 2 and 6.5 kHz in all four conditions.

Both all-information [Fig. 3-2(b)] and rate-place predictions [Fig. 3-2(c)] in quiet were

unaffected by random-level variation, as described above. The simulated effect of adding

the high-frequency noise for the fixed-level task resulted in similar increases in predicted

thresholds for both the rate-place and all-information encoding schemes [Figs. 3-2(b),(c)].

The increase is consistent with the removal of roughly half of the available information (see

solid curve in bottom panels of Fig. 3-1) and the resultant increase in threshold by a factor

of
√
2, and is similar to the size of the observed effect in the human data. The only relative

difference between the rate-place and all-information predictions was for the random-level

in-noise condition. All-information thresholds were worse than condition (1) by a factor of
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1.40; there was no effect of imposing random level variation in the presence of high-frequency

noise [i.e., conditions (3) and (4) were identical, Fig. 3-2(b), Table 3.1]. In contrast, the

rate-place thresholds increased by a factor of 9.68 compared to frequency discrimination in

quiet [Fig. 3-2(c), Table 3.1]. The large predicted increase in rate-place thresholds for the

random-level in-noise condition compared to the noise-alone condition is due to the inability

of the rate-place model to compare CF’s above and below the tone frequency (see Fig. 3-1).

This large effect is inconsistent with the small effect observed in human performance at all

frequencies.

3.7 Discussion

The companion study (Chapter 2) and the present study each describe new methods to gen-

eralize the use of neural models with optimal decision theory (ODT) to relate physiological

response properties to psychophysical behavior. The present study describes an extension of

the ODT analysis to more complex psychophysical tasks in which one stimulus parameter

is randomly varied in order to restrict the cues available to the subject. Optimal frequency-

discrimination performance based on either the population of discharge counts (rate-place) or

discharge times (all information) was unaffected by random level variation, consistent with

human performance. The distributions of frequency and level information across the AN

population demonstrated how both rate-place and all-information encoding schemes avoid

the effect of random level variation in quiet. Predictions were also made for random-level

frequency discrimination in the presence of high-frequency noise, based on the simplified

assumption that the noise masker acts to eliminate all information above the frequency of

the tone.

When the simple model of the effect of noise masking is used, the predictions for the

random-level frequency discrimination in noise experiment (Fig. 3-2) are inconsistent with

the use of rate-place information to encode frequency. The predicted effect in rate-place

performance of adding random level variation in the presence of high-frequency noise [Fig. 3-

2(c)] is much larger than the small effect observed in human performance [Fig. 3-2(a); Moore

and Glasberg (1989)]. In fact, there is insufficient rate-place information in the total AN
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model population to account for human performance in the random-level-in-noise condition.

The cause of the large reduction in information in the random-level-in-noise condition is

the inability of the rate-place model to compare CF’s above and below the tone frequency.

Neither an increase in the total number of AN fibers nor an alteration of the innervation

density across CF would reduce the large discrepancy (factor of 9.68) between rate-place

JND’s for the in-quiet and random-level-in-noise conditions. The implications of other, less

easily quantified, alterations to the AN model for the assumed effect of the masking noise

are discussed below.

The inconsistency between the effect of random level variation with a noise masker for the

rate-place model and human performance occurs for all frequencies. This finding, combined

with the finding by Moore and Glasberg (1989) that there was no statistically significant

interaction between the effects of condition [(1)-(4), Fig. 3-2] and frequency, suggests that

a single encoding scheme is responsible for performance at all frequencies, rather than the

duplex theory often invoked to explain frequency encoding (e.g., Wever, 1949; Moore, 1973;

Dye and Hafter, 1980; Wakefield and Nelson, 1985; Moore and Glasberg, 1989). As discussed

in Chapter 2, rate-place performance in quiet is closer to human performance than all-

information performance in terms of absolute performance level. However, the trends in

rate-place performance versus frequency are inconsistent with human performance at high

frequencies, converse to the duplex theory. This strong discrepancy between the trends

in rate-place and human performance is shown in the present study to exist for all four

frequency-discrimination conditions described by Moore and Glasberg (1989). In contrast

to rate-place, all-information performance matches the trends in human performance across

all frequencies and all four conditions. Notably, and contrary to general beliefs (e.g., Moore,

1973, 1989; Dye and Hafter, 1980; Wakefield and Nelson, 1985; Javel and Mott, 1988;

Pickles, 1988; Moore and Glasberg, 1989), there is significant temporal information at high

frequencies for all four conditions in the present study. Also, the present study shows that all-

information performance is unaffected by random level variation in quiet and in the presence

of high-frequency noise (Fig. 3-2), consistent with the small effects on human performance.

The computational AN model used in the present study did not include several impor-

tant aspects of AN responses that could affect the predictions for the masking conditions.
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The absence of suppression (Sachs and Kiang, 1968; Delgutte, 1990b; Ruggero et al., 1992)

in the present model prohibits the accurate simulation of AN responses to noise stimuli.

Suppression could potentially produce effects that contradict the assumption that the high-

frequency noise acts to mask completely all AN fibers with CF above the tone frequency.

Another potentially significant limitation of the current AN model is the exclusion of high-

threshold AN fibers with low and medium spontaneous rates (Liberman, 1978). Low- and

medium-spontaneous-rate AN fibers (16% and 23% of the AN population, respectively) have

been suggested to contribute to level encoding at higher levels (e.g., Colburn, 1981; Delgutte,

1987; Winter and Palmer, 1991), and therefore should be included in future AN models to

quantify the true effect of masking noise on random-level frequency discrimination. In addi-

tion, a significant extension of the ODT analysis is necessary in order to accurately evaluate

psychophysical tasks with complex random stimuli, such as noise. Despite these limitations,

the present study provides interesting new analyses of how the information in a neural pop-

ulation can be used to perform a complex psychophysical task. In addition, the present

analysis motivates several important questions about the ability of rate-place information to

account for human frequency-discrimination performance, which can be addressed by future

extensions of this approach using more complex AN models and ODT analysis.

The primary goal of the present study was to demonstrate a method for relating neural

responses to behavior in psychophysical tasks that include random variation of one param-

eter. This new method was demonstrated for the auditory task of random-level frequency

discrimination, but is applicable to any psychophysical discrimination experiment in which

one parameter is randomly varied. The analysis presented applies to any sensory system

for which there are models that describe the statistical properties of neural responses to the

relevant stimuli. Equation 3.1 is valid for any neural model, while some of the analysis in

the Appendix in Section 3.10 is specific for neural responses that are well described sta-

tistically by a nonstationary Poisson process. Thus, the present study describes a general

modeling approach for quantitatively relating physiological responses to behavior in complex

psychophysical tasks that are often used to test neural encoding hypotheses.
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3.8 Conclusions

1. Optimal decision theory can be used to quantify the effects of both physiological noise

and stimulus variation on psychophysical performance in discrimination experiments

with random variation in one stimulus parameter.

2. Optimal frequency-discrimination performance based on the population of auditory-

nerve (AN) discharge counts (rate-place) or based on discharge times on individual AN

fibers is unaffected by random level variation in quiet.

3. There is insufficient rate-place information in the present AN model to account for hu-

man performance in a random-level frequency-discrimination task with high-frequency

noise.

4. All-information performance with high-frequency noise is unaffected by random level

variation, consistent with human performance.
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3.10 Appendix: One-Parameter Discrimination with

One Unwanted Random Parameter

This appendix describes an extension of the analysis presented in Chapter 2 to more complex

psychophysical tasks. Extension of the ODT analysis to the multiple-parameter case allows

for the evaluation of psychophysical tasks in which a single parameter (e.g., overall level)

is randomly varied from trial to trial in order to restrict the cues that are available to the

subject.

Optimal performance in a random-level frequency discrimination experiment can be eval-

uated by considering the general case of a one-parameter discrimination experiment in the

presence of one unwanted random parameter. In this experiment, the observations (Poisson

discharge times on M AN fibers, T = {ti1, · · · , tiKi
; i = 1, · · · ,M}, where tij represents the jth

discharge on the ith fiber) are influenced by both the nonrandom, unknown frequency f and

the random level L. The Cramér-Rao bound for estimating a vector of random parameters

(N = 2 in this case) can be used (Cramér, 1951; see van Trees, 1968, pp. 84-85). In general,

the information available to an observer to estimate a random parameter is the sum of the

a priori information based on the known distribution of the parameter, and the informa-

tion available from the data. In order to treat the frequency parameter as nonrandom, but

unknown, the a priori information is set to zero. The Cramér-Rao bound provides a lower

bound on the variance of any unbiased estimate of f , in the presence of randomized level L,

and is given by

1

σ2
f̂

≤ EL,T


[
∂

∂f
ln p (T |L; f)

]2


−

(
EL,T

{[
∂
∂L
ln p (T |L; f)

] [
∂
∂f
ln p (T |L; f)

]})2

EL,T

{[
∂
∂L
ln p (T |L; f)

]2}
+ EL

{[
∂
∂L
ln p (L)

]2} , (3.2)

where EL,T indicates the expectation over both the random level L and the random obser-

vations T , and p(L) is the probability density used to specify the random-level distribution

and determines the a priori information for level. Equation 3.2 can be written in a more
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useful form using iterated expectations

1

σ2
f̂

≤ EL

ET


[
∂
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
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−

[
EL

(
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{[
∂
∂L
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] [
∂
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]∣∣∣L})]2
EL

(
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{[
∂
∂L
ln p (T |L; f)

]2∣∣∣∣L})+ EL

{[
∂
∂L
ln p (L)

]2} . (3.3)

The probability density of the observed Poisson discharge times on all fibers is the product

of the densities for individual fibers, assuming each fiber is conditionally independent given

L (see Parzen, 1962; Snyder and Miller, 1991; Rieke et al., 1997; Chapter 2. The conditional

expectations with respect to T are of a form which has been previously evaluated for Poisson
observations (Siebert, 1970; Chapter 2).

The just-noticeable difference ∆fJND of the ideal observer is equal to the minimum

standard deviation of any estimator based on the observations, where threshold is defined as

75% correct in a two-interval, two-alternative forced-choice task. This threshold definition

corresponds to d′ = 1, where d′ = ∆fJND/σf̂ . The JND based on the population of AN

fibers is given by

1

(∆fJND)2
= EL

∑
i

∫ T

0

1

ri(t, f, L)

[
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 (3.4)
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})2/
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0
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+ EL


[
∂ ln pL(L)
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]2

 .

Equation 3.4 describes optimal performance for discriminating frequency in the presence of

random level variation based on the AN-population response in terms of the time-varying

discharge rates ri(t, f, L). Following the notation used in Chapter 2,

(δ′f [CFi])
2 =�

∫ T

0

1

ri(t, f, L)

[
∂ri(t, f, L)

∂f

]2

dt. (3.5)
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and

(δ′L[CFi])
2 =�

∫ T

0

1

ri(t, f, L)

[
∂ri(t, f, L)

∂L

]2

dt, (3.6)

The quantities (δ′f [CFi])
2 and (δ′L[CFi])

2 represent the information available on the ith fiber

for estimating frequency f and level L, respectively, and are shown in Chapter 2 to represent

normalized sensitivities, defined as the sensitivity d′ per unit f or L (also see Durlach and

Braida, 1969; Braida and Durlach, 1988). Similarly, the cross-interaction term is defined as

δ′Lf [CFi] =
�

∫ T

0

1

ri(t, f, L)

[
∂ri(t, f, L)

∂L

∂ri(t, f, L)

∂f

]
dt, (3.7)

and represents the correlation between changes in level and changes in frequency on the ith

fiber. Eq. 3.4 can thus be written as

∆fJND =

EL

{∑
i

(
δ′f [CFi]

)2
}
−

{
EL

(∑
i δ

′
Lf [CFi]

)}2

EL

{∑
i (δ

′
L[CFi])

2
}
+ APIL


− 1

2

, (3.8)

where APIL represents the a priori information available about level (e.g., the range of levels

used in the random variation of level).

A Gaussian distribution was used to calculate APIL due to the analytical difficulty for a

uniform distribution that results from the undefined derivative with respect to L for levels

at the edges of a uniform distribution. The a priori information for level was calculated to

be APIL = 2π/R
2 for a Gaussian distribution with a variance of R2/2π, where R represents

the random-level range in dB. A Gaussian distribution with variance R2/2π has the same

equivalent-rectangular-width as a uniform distribution with random-level range R.
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Chapter 4

Monaural, cross-frequency

coincidence detection as a mechanism

for decoding perceptual cues provided

by the cochlear amplifier

4.1 Abstract

The perceptual significance of the cochlear amplifier was evaluated by predicting optimal
level-discrimination performance based on auditory-nerve (AN) discharge counts and on dis-
charge times. An analytical AN model was used that included compressive-magnitude and
level-dependent phase responses associated with the cochlear amplifier, and high-, medium-,
and low-spontaneous-rate (SR) AN-fiber populations. Strongly compressive basilar mem-
brane (BM) responses at high frequencies interact with the high thresholds associated with
low-SR AN fibers to produce large dynamic ranges, while nonlinear BM phase responses
are encoded in AN fibers at levels above 30 dB SPL at low frequencies. Broadened tuning
produces an increase in the correlation between responses of adjacent AN fibers. Thus, per-
formance was also predicted based on a monaural, across-frequency coincidence detection
mechanism that can extract nonlinear phase cues. Nonlinear phase changes are required to
encode levels up to 120 dB SPL at low frequencies based on AN fibers with a narrow range
of characteristic frequencies (CF). In contrast, average-rate information from LSR fibers is
required for robust level encoding within a narrow CF range at high frequencies. Coincidence
performance matched human performance at all levels and at both low and high frequencies.
The “near-miss” to Weber’s Law at low frequencies is accounted for by nonlinear phase cues,
while the high-frequency “mid-level bump” is produced by compressive magnitude responses.
The current predictions suggest that the cochlear amplifier is primarily beneficial to normal-
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hearing listeners for encoding sound level within narrow frequency regions, and has only a
small influence on performance in simple listening tasks, e.g., in quiet.

4.2 Introduction

The cochlear amplifier is the name used to describe an active mechanism within the cochlea

that is thought to provide amplification of low-level sounds in the cochlea. The active mech-

anism is believed to involve motile outer-hair cells, which transduce mechanical motion on

the basilar membrane (BM) into intracellular electrical potentials that are in turn converted

into mechanical energy that enhances BM motion (Yates, 1995; Mountain, 1996). While

the mechanism of amplification is not well understood, several physiological response prop-

erties associated with the cochlear amplifier are clear. The most significant of these is that

the active mechanism is vulnerable to cochlear damage, and has been shown to be absent

in many common forms of sensorineural hearing loss (Patuzzi et al., 1989). This finding

raises the question of how the cochlear amplifier benefits normal hearing listeners, especially

in complex listening environments such as the understanding of speech in noise, for which

hearing-impaired listeners have much difficulty (Moore, 1995b). The present study evaluates

quantitatively some of the benefits of the cochlear amplifier for extending the dynamic range

of the auditory system. The absence of the cochlear amplifier in damaged cochleae is likely

responsible for the common report of loudness recruitment by listeners with sensorineural

hearing loss, and the associated reduction in dynamic range.

It is still not well understood how the auditory system overcomes the dynamic-range

problem (for reviews see Evans, 1981; Viemeister, 1988a,b), i.e., the discrepancy between

the large dynamic range of human hearing [over 120 dB (Viemeister and Bacon, 1988)], and

the limited dynamic range of most auditory-nerve (AN) fibers [less than 30 dB (May and

Sachs, 1992)]. The present study focuses on quantifying how the cochlear amplifier helps to

extend the dynamic range of the auditory system in terms of the AN information available for

encoding changes in level. A psychophysical experiment in which the dynamic-range problem

is most clearly evident was examined in the present modeling study: level discrimination of

high-level, narrowband signals in conditions for which information is restricted to frequency
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regions near the frequency of the signal (e.g., Carlyon and Moore, 1984; Viemeister, 1983).

An influential experiment for level-encoding hypotheses was performed by Viemeister (1983),

who found that Weber’s Law (i.e., constant just-noticeable-difference in level as a function

of level), was achieved for high-frequency, narrow-band noise in the presence of band-reject

noise. This experiment was designed to prevent the spread of excitation by using a band-

reject noise masker, and to prevent the use of temporal information by using a high-frequency

signal. Viemeister’s finding has been taken as evidence that Weber’s Law must hold in narrow

frequency regions and must rely on the use of average rate information.

The population of low-spontaneous-rate (LSR), high-threshold AN fibers (Liberman,

1978) have been implicated in the encoding of high sound levels based on average-rate in-

formation in narrow frequency regions (Colburn, 1981; Delgutte, 1987; Viemeister, 1988a,b;

Winslow and Sachs, 1988; Winter and Palmer, 1991). However, when models have been used

to quantify the total information available in a restricted CF-region with physiologically re-

alistic distributions of the spontaneous-rate (SR) groups, performance has been predicted

to degrade as level increases above 40 dB SPL (Colburn, 1981; Delgutte, 1987), inconsis-

tent with Weber’s law and with trends in human performance (Viemeister, 1983; Carlyon

and Moore, 1984). Delgutte (1987) demonstrated that Weber’s Law could be achieved in

single CF-channels by processing high-threshold, LSR AN fibers more efficiently than low-

threshold, high-spontaneous-rate (HSR) fibers. He showed that the “near-miss” to Weber’s

Law (i.e., a slight improvement in performance as level increases), which is observed in hu-

man performance for tones in quiet (e.g., McGill and Goldberg, 1968; Rabinowitz et al.,

1976; Jesteadt et al., 1977; Florentine et al., 1987), could be obtained by combining infor-

mation across CF channels that individually achieved Weber’s Law. This idea is similar

to the assumption made by Florentine and Buus (1981) in their excitation-pattern model.

However, there is no strong evidence for the type of preferential processing of LSR fibers

used by Delgutte (1987). In addition, the wide dynamic range of LSR fibers depends on the

compressive BM responses (Sachs and Abbas, 1974), which appears to be much less com-

pressive at low frequencies (Cooper and Rhode, 1997; Hicks and Bacon, 1999a). Reduced

compression at low frequencies is consistent with the presence of non-saturating (“straight”)

rate-level curves only at high frequencies in guinea pig (Winter and Palmer, 1991). Thus, it
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is desirable to investigate other potential sources of information that could produce Weber’s

Law in narrow frequency regions.

The cochlear amplifier is potentially relevant for the encoding of sound level in narrow

frequency regions because the associated nonlinear properties have typically been reported to

influence primarily characteristic frequencies (CF’s) near the frequency of a tone. Specifically,

the nonlinear near-CF response properties include both compressive magnitude responses

(Rhode, 1971; Ruggero et al., 1997), as well as level-dependent phase shifts (BM: Ruggero

et al., 1997; IHC: Cheatham and Dallos, 1998; AN: Anderson et al., 1971). In evaluating the

potential of the cochlear amplifier to extend the dynamic range of the auditory system, it is

important to consider several limiting transformations that occur between the BM and the

AN. These include: (1) saturating rate-level curves (Kiang et al., 1965; Sachs and Abbas,

1974), which act to limit the encoding of nonlinear gain, (2) roll-off of phase-locking at

high frequencies (Johnson, 1980; Joris et al., 1994), which limits nonlinear phase encoding,

and (3) randomness of AN responses (Young and Barta, 1986; Miller et al., 1987; Winter

and Palmer, 1991; Delgutte, 1996), which limits overall psychophysical performance. Thus,

it is important to consider the encoding of information in the AN, not just based on the

compression in BM responses, when evaluating the significance of the cochlear amplifier.

The nonlinear phase changes associated with the cochlear amplifier, which have not

been studied in as much detail as the compressive magnitude responses (Sachs and Abbas,

1974; Winter and Palmer, 1991; Moore, 1995b; Moore and Oxenham, 1998), are a focus of

the present study. These phase cues continue to encode changes in stimulus level at high

levels, despite the saturation of average rate above 40 dB SPL for the majority of AN fibers

(Sachs and Abbas, 1974; May and Sachs, 1992), and thus may provide a partial solution

to the dynamic-range problem. However, in order for the central nervous system to make

use of these changes in phase, a phase reference is required. Therefore, it is important to

consider physiologically realistic mechanisms that could make use of the information provided

by nonlinear phase shifts. Due to the differences in phase changes in adjacent CF’s, a

relative phase reference can be obtained by looking across neighboring CF’s. Carney (1994)

demonstrated that nonlinear phase shifts on single AN fibers result in systematic changes

in the temporal discharge patterns across CF (i.e., spatio-temporal patterns that vary with
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level over a wide dynamic range), and hypothesized that changes in spatio-temporal patterns

may be important for the encoding of sound level. Any two AN fibers with different CF’s

have a relative phase difference that varies with level, independent of the absolute phase of

the stimulus. Thus, a mechanism that compared the relative timing of two AN fibers would

be sensitive to changes in level, without requiring an absolute phase reference.

The present study considers monaural, cross-frequency coincidence detection as a mech-

anism for decoding the nonlinear phase cues provided by the cochlear amplifier. Coincidence

detection is a physiologically realistic mechanism, because any neuron with multiple sub-

threshold inputs acts as a coincidence detector (Carney, 1994; Joris et al., 1998). Carney

(1990) has shown that several response types in the antero-ventral cochlear nucleus (AVCN)

were sensitive to changes in relative phase across their inputs, consistent with a coincidence

detection mechanism. In addition, there is much evidence for coincidence detection in the

binaural system (Colburn, 1996). Neurons in the medial superior olive (MSO) and inferior

colliculus (IC) have responses that are consistent with coincidence detection between inputs

from each ear as a mechanism for decoding interaural time differences that are known to be

important for sound localization (Yin and Chan, 1990; Goldberg and Brown, 1969; Rose et

al., 1966; Yin et al., 1987; Joris et al., 1998).

In the present study, methods from statistical decision theory (SDT) were combined with

an analytical nonlinear AN model and a simple coincidence-counting model. The relative

contributions of nonlinear magnitude and nonlinear phase responses to level encoding are

compared by using four versions of the analytical AN model, which are created by turning on

and off the nonlinear gain and nonlinear phase responses in all possible combinations. The

nonlinear gain provides large dynamic ranges for high-threshold, LSR fibers, which support

consistent level encoding based on average-rate information in narrow CF regions for high-

frequency tones, but not for low-frequency tones. The nonlinear phase cues support Weber’s

Law for low-frequency, high level tones based on temporal information in low-threshold,

HSR fibers near the frequency of the tone, unlike rate and synchrony information, as was

shown by Carney et al. (1999). The performance of a population of monaural, cross-

frequency coincidence detectors is shown to be consistent with human performance for both

low- and high-frequency tones in quiet. This physiologically realistic mechanism is extremely
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general in that it can decode AN information from all SR groups in the form of average-rate,

synchrony, and nonlinear phase cues, and thus is robust across a wide range of sound levels.

4.3 Methods

4.3.1 Auditory-nerve model

The nonlinear AN model used in the present study is an extension of simple linear analytical

AN models used by Siebert (1965, 1968, 1970) and by Colburn (1969, 1973, 1977a,b, 1981).

The linear AN model was modified to include the main properties of the cochlear nonlin-

earities associated with the active process, including: (1) nonlinear compressive responses

from 30 to 120 dB SPL, (2) compressive nonlinearity restricted to “near-CF” regions, (3)

compression that varies with CF, (4) maximum phase shifts of ±π/2 both above and below

CF, (5) no phase shifts at CF, and (6) dynamic range of each SR group that depends on

the compressive magnitude response. The response properties of the model are described in

the text below, while the assumptions and equations used to specify the model are described

in the Appendix in Section 4.8. This analytical nonlinear AN model was purposefully kept

as simple as possible in order to provide greater intuition and to allow the contribution of

each nonlinear property to be investigated separately. The analyses presented below are not

limited to this AN model, however, and could be pursued in the future with more complex

computational nonlinear models.

The statistics of the AN discharges are modeled by a non-stationary Poisson process

with rate function r(t). The phase-locked response of the ith AN fiber (with characteristic

frequency CFi) to a tone burst of level L, frequency f0, duration T , and phase φ, is described

by a time-varying rate function similar to that used by Colburn (1981), i.e.,

ri(t;L, f0, T, φ) =
r̄[Leff (L, f0, CFi)]

I0{g[Leff (L, f0, CFi), f0]}
(4.1)

× exp{g[Leff (L, f0, CFi), f0] cos[2πf0t+ θ(L, f0, CFi) + φ]},
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where I0{g} is the zeroth-order Bessel function (equal to the time-average of the exponential
term). Both the average rate r̄[Leff ] and synchrony g[Leff , f0] are affected by saturating

nonlinearities, where the effective level Leff is determined by the nonlinear BM filtering

properties and by the level and frequency of the tone. The term g[Leff , f0] also depends

on f0 such that the strength of phase locking decreases at high frequencies. The nonlinear

phase response θ(L, f0, CFi) depends on the level and frequency of the tone as well as on

the CF of the AN fiber (see Anderson et al., 1971; Ruggero et al., 1997), and is described

similarly to Carney et al. (1999). The stimulus is assumed to have random phase φ in order

to avoid the assumption that the phase of the tone is known.

Many basic response properties of the AN model are illustrated in Fig. 4-1. Panels (a)-(c)

show the implementation of the nonlinear magnitude responses, which are consistent with

physiological data from Ruggero et al. (1997). Normalized BM response versus frequency

for a 10-kHz CF is shown in Fig. 4-1(a), for a range of levels. The filters are triangular

at low levels, consistent with the linear AN models used by Siebert (1965, 1968, 1970) and

Colburn (1969, 1973, 1977a,b, 1981) to fit AN tuning curves in cat. The maximum gain

of the cochlear amplifier (i.e., the gain relative to high levels, or equivalently the amount

of compression relative to low levels) occurs at CF, and is equal to 60 dB for this CF. The

nonlinear gain decreases as tone frequency moves away from CF, and the response is linear

well away from CF (roughly more than ±1/2 octaves). Fig. 4-1(b) shows BM output at CF
as a function of level for the 10-kHz place. The solid curve represents the nonlinear BM

response, while the dashed line represents the linear version of the model. The compressive

region extends from 30 to 120 dB SPL, and the model responses are linear below this range.

Fig. 4-1(c) shows the cochlear-amplifier gain at CF as a function of CF. The maximum gain

decreases as CF decreases, with 60 dB of gain for frequencies above 8 kHz, 20 dB of gain

for frequencies below 500 Hz, and a smooth transition for CF’s in between. This pattern of

nonlinear gain across CF is consistent with both physiological and psychophysical evidence,

although the exact amount of gain at low frequencies is still unclear. The majority of BM

data has been obtained at high CF’s, and indicate a maximum gain of roughly 50-60 dB

(Ruggero et al., 1997; Nuttall and Dolan, 1996). The BM data at low CF’s is less abundant,

but indicates reduced nonlinearity at low CF’s (e.g., Cooper and Rhode, 1997). Hicks and
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Figure 4-1: Nonlinear AN model response properties. (a) Normalized basilar-membrane
(BM) response for a 10-kHz place as a function of frequency for levels ranging from 0-100
dB SPL. (b) BM output at CF as a function of level for a 10-kHz place (solid: nonlinear;
dashed: linear). (c) Nonlinear gain at CF as a function of CF. (d) Rate-level curves for
a 10-kHz tone at CF for three SR groups (HSR: solid, MSR: dash-dot, LSR: dashed). (e)
Maximum synchrony versus frequency. Model responses are compared to data measured in
cat (Johnson, 1980). (f) Rate-level curves for a 1-kHz tone. (g) BM phase-response areas
(phase relative to 80 dB SPL) from chinchilla for a 10-kHz CF (data from Ruggero et al.,
1997). (h) AN-model phase-response areas for a 10-kHz CF [(g,h): same symbols as in (a)].
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Bacon (1999a) presented psychophysical evidence that cochlear nonlinearity is reduced at low

frequencies, and is characterized by a gradual, rather than steep, transition as CF decreases.

Figure 4-1(d) and (f) illustrates how average rate varies with level for the three spon-

taneous-rate (SR) groups of AN fibers at high and low frequencies, respectively. The AN

model represents all fibers within each SR population with a fixed threshold and SR. Based

on data from Liberman (1978), SR values of 60, 3, and 0.1 sp/sec, thresholds of 0, 10, and

30 dB SPL, and population percentages of 61%, 23%, and 16%, were used for the HSR,

MSR, and LSR populations, respectively. A saturated rate of 200 sp/sec was used for all

three SR groups. Note that the rate-level curves at low frequencies are either “saturating” or

“sloping saturating,” while at high frequencies there is a third class of “straight” rate-level

curves. This pattern is consistent with rate-level curves in guinea pig described by Winter

and Palmer (1991), who found no “straight” rate-level curves below 1.5 kHz, and results

from the decrease in cochlear-amplifier gain as frequency decreases. Figure 4-1(e) compares

the rolloff in phase-locking versus frequency in the model to that observed in cat (Johnson,

1980).

Figure 4-1(g) illustrates nonlinear physiological BM phase responses for a 10-kHz CF

(Ruggero et al., 1997), while Fig. 4-1(h) shows the AN-model phase responses. Phase is

plotted relative to the phase at a high level (80 dB SPL) in both panels, where each curve

represents a different tone level. Thus, any difference from zero represents a phase response

that changes with level. The major properties of this nonlinear response, observed for BM

responses at high frequencies (Geisler and Rhode, 1982; Ruggero et al., 1997), and IHC

(Cheatham and Dallos, 1998) and AN (Anderson et al., 1971) responses at low frequencies,

are that (1) phase lags as level increases for f < CF , (2) phase leads as level increases for

f > CF , (3) there are no phase changes at CF, (4) the nonlinear-phase region is the same

width in frequency as the nonlinear region for the magnitude response, and (5) the maximum

phase shifts observed are roughly ±π/2 and occur about half-way into the nonlinear region.

The nonlinear phase responses are consistent with broadened tuning as level increases and

the associated changes in the phase-versus-frequency slope (i.e., the slope becomes more

shallow as filters broaden).

All predictions in the present study were made with 120 distinct model CF’s spaced

92



logarithmically from 300 to 20,000 Hz. It was assumed that the total AN population consists

of 30,000 total AN fibers with CF’s ranging from 20 to 20,000 Hz.

4.3.2 Monaural, across-frequency coincidence counting model

The present study uses a simple coincidence-counting model that was described by Colburn

(1969, 1973, 1977a,b) in his studies of binaural phenomena (Fig. 4-2). A coincidence detector

receives two AN-fiber inputs, and is assumed to discharge only when the two input fibers

discharge within a narrow temporal window. The coincidence counter outputs the number of

coincident discharges within the duration of the stimulus. The present use of the coincidence-

counting model differs from that of Colburn only in the source of the two AN inputs. In

the binaural model, each AN fiber was from a different ear and had the same CF. In the

present study, the two AN inputs are from the same ear, but can have different CF’s. In both

studies, performance was assumed to depend only on the number of coincidences between

two AN fibers (i.e., the timing of the coincidences was ignored). The number of coincidences

between two AN fibers with discharge times T i = {ti1, · · · , tiKi
} and T j = {tj1, · · · , tjKj

} is
given by

Cij{T i, T j} =
Ki∑
l=1

Kj∑
m=1

f(til − tjm), (4.2)

where til is the l
th discharge out ofKi on the i

th AN fiber, and f(·) is a rectangular coincidence
window with 10-µs width and unity height (see Colburn, 1969).

4.3.3 Evaluation of psychophysical performance limits

Psychophysical performance is limited by the random nature of AN responses (i.e., that

different responses are observed for two identical stimulus presentations). Psychophysical

performance limits for discrimination experiments have been evaluated with methods from

statistical decision theory (SDT) by using a nonstationary Poisson process with a time-

varying discharge rate r(t) to describe the stochastic nature of AN discharges (e.g., Siebert,

1968; 1970; Colburn, 1969; 1973; Chapters 2 and 3). Chapter 2 described a general com-
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Figure 4-2: Simple model of a monaural, across-frequency coincidence counter. The coin-
cidence detector receives two AN inputs with characteristic frequencies CFi and CFj, and
discharge times T i = ti1, · · · , tiKi

and T j = tj1, · · · , tjKj
, where til is the l

th discharge on the ith

AN fiber. The coincidence detector discharges if both inputs discharge within the narrow co-
incidence window f(x). The output of the coincidence counter is the number of coincidences
that occur within the duration of the stimulus.

putational method for evaluating psychophysical performance limits using any AN model

that describes r(t) for the stimulus conditions of interest. The analytical AN model used in

the present study was implemented computationally, and psychophysical performance limits

were evaluated based on two hypotheses for the type of information used to perform the

task, all-information and rate-place. The all-information model assumes that the observa-

tions used by the optimal processor consist of the complete set of discharge times across the

entire AN population, T = {til}i=1,···,M ;l=1,···,Ki
, where M =30,000 total AN fibers, and Ki is

the number of discharges on the ith AN fiber. Thus, the all-information model assumes that

the processor makes optimal use of all available information from the AN (e.g., average-rate,

synchrony, and phase information). The rate-place model assumes that the optimal proces-

sor only uses the number of discharges observed on each AN fiber, {Ki} (i.e., the processor
is assumed to not make use of any temporal information).

The contribution of each AN fiber to a level discrimination task can be quantified by

calculating the normalized sensitivity δ′ to changes in stimulus level [δ′ is defined as the

sensitivity d′ per dB (see Durlach and Braida, 1969; Braida and Durlach, 1988); Chapter 2].

The square of the normalized sensitivity of the ith AN fiber in the all-information model is
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given by

(δ′[CFi])
2 =

∫ T

0

1

ri(t)

[
∂ri(t)

∂L

]2

dt, (4.3)

where T is the duration of the stimulus (Siebert, 1970; Chapter 2). The total normalized

sensitivity based on the population of AN fibers is the sum of the individual normalized

sensitivities, (δ′)2 =
∑

i(δ
′[CFi])

2, based on the assumptions of independent AN fibers for

deterministic stimuli (Johnson and Kiang, 1976), and an optimal combination across AN

fibers. The just-noticeable-difference (JND) in level is given by

∆L =
1√
(δ′)2

. (4.4)

Equation 4.3 describes the normalized sensitivity based on the all-information model;

the normalized sensitivity based on rate-place information can be calculated with Eq. 4.3

by assuming that r(t) is constant across the duration of the stimulus and equal to the

average-discharge rate r̄. The contribution of temporal information in AN discharges can be

discerned from a comparison between performance based on the all-information and rate-

place models. Comparisons between predicted and human performance in terms of trends

and absolute performance levels provide insight into the potential significance of average-rate

and temporal information for the encoding of sound level in the AN.

Performance based on the outputs of a set of coincidence counters is calculated and

compared to rate-place, all-information, and human performance. While the all-information

predictions represent the optimal performance of any decision device based on the AN dis-

charge times, the coincidence mechanism represents a specific physiologically realistic pro-

cessor that uses the discharge times sub-optimally. The number of discharges from a single

coincidence detector, Cij{T i, T j}, is a simple function (Eq. 4.2) of the two sets of Poisson
AN discharge times, T i and T j, and thus the statistics of the coincidence counts can be

described (Appendix in Section 4.9). The performance of a single coincidence counter Cij for
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level discrimination can be evaluated by calculating the sensitivity index

Qij =
(E[Cij|L+∆L]− E[Cij|L])2

V ar[Cij|L]
, (4.5)

where the just-noticeable difference for this coincidence counter, ∆Lij,JND corresponds to

Qij = 1. The sensitivity index Qij corresponds to the commonly used sensitivity index (d
′)2

if Cij has a Gaussian distribution. It can be assumed that E[Cij|L] varies linearly over the
incremental level range from L to L+∆LJND. Thus, the normalized sensitivity squared for

a single coincidence counter, defined as (δ′ij)
2=�Qij/(∆L)

2, can be approximated as

(δ′ij)
2 �

(
∂
∂L
E[Cij|L]

)2

V ar[Cij|L]
. (4.6)

The expectation and variance in Eq. 4.6 can be evaluated in terms of the stimulus parameters

and the two AN CF’s (Appendix in Section 4.9). The partial derivative with respect to level

in Eq. 4.6 can be approximated computationally by the difference between the expected value

at two slightly different levels divided by the incremental level difference (Chapter 2). The

total normalized-sensitivity-squared for a population of coincidence counters is given by the

sum of the individual normalized-sensitivities-squared, if the individual coincidence counts

are assumed to be independent and combined optimally. In order to satisfy the independence

assumption, it is assumed throughout the present study that no AN fiber innervates more

than one coincidence counter. The JND based on coincidence counts is calculated from

Eq. 4.4.

4.4 Results

4.4.1 Distribution of rate, synchrony, and phase information across

CF

In order to illustrate the potential benefit of nonlinear phase cues to the encoding of sound

level, we first focus on level discrimination at high levels, where the dynamic-range problem
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is most prominent. Figure 4-3 illustrates the distribution and relative contributions of rate,

synchrony, and phase cues across the AN population of high-spontaneous-rate (HSR) fibers

for level discrimination of a 1-kHz, 100-dB SPL tone. The rate responses (i.e., average

discharge rate as a function of CF) are shown for two tones of slightly different level in panel

(b). The louder tone produces a wider activation pattern; however, the discharge rate for

a wide range of CF’s near the tone frequency is the same for both tones due to saturation.

The distribution of rate information [i.e., normalized sensitivity squared, (δ′[CF ])2] shown

in panel (c) illustrates which AN fibers across the population contribute information for

level discrimination. Near the frequency of the tone, there is no rate information due to the

saturation of rate-level curves for the HSR fibers. The only rate information available for

HSR fibers is at frequencies well away from the tone frequency (Siebert, 1965, 1968).

The situation of primary interest in this study is when information is restricted to AN

fibers with CF’s near the frequency of the tone. This situation is thought to occur in exper-

iments that use a notched noise masker to limit the spread of excitation (e.g., Viemeister,

1983; Carlyon and Moore, 1984). A narrow frequency region that will be considered in the

current study is indicated by the vertical dotted lines. This region represents seven model

CF’s, three above and three below the CF equal to the tone frequency. The narrow frequency

region for the 1-kHz tone is 896-1107 Hz, and is similar to the notch width used by Carlyon

and Moore (1984), which extended ±10% from the tone frequency. Humans are typically
able to perform level discrimination well in the presence of a notched noise (e.g., Viemeister,

1983; Carlyon and Moore, 1984; Schneider and Parker, 1987); however, Fig. 4-3(c) shows

that there is no average-rate information in HSR AN fibers within the narrow-CF region.

AN phase-locking has a different level dependence than average rate, and thus it is impor-

tant to examine the distribution of synchrony information in addition to rate information.

Fig. 4-3(d) shows the 1-kHz synchrony coefficient (or vector strength, which ranges from 0 to

1, see Johnson, 1980) for each tone plotted as a function of CF. Synchrony-level curves have

thresholds that are roughly 20 dB below rate thresholds, and typically saturate just above

rate threshold (Johnson, 1980). The synchrony-response regions are thus slightly wider than

the rate response regions, but are also saturated over a wide range of CF’s near the tone

frequency. The distribution of information available from both rate and synchrony informa-
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Figure 4-3: Distribution of rate, synchrony, and phase information across the AN population
of high-spontaneous-rate fibers for level discrimination of a low-frequency, high-level tone.
(a) AN filter bank with a 1-kHz, 100-dB SPL tone. (b) Average discharge rate as a function
of CF for two tones of slightly different level. (c) Average-rate information (normalized
sensitivity squared) as a function of CF. The vertical dotted lines indicate the restricted-CF
region used in the present study to emphasize the dynamic-range problem. (d) Synchrony
coefficient (or vector strength, which ranges from 0 to 1, see Johnson, 1980) as a function
of CF for both tones. (e) Information available from both rate and synchrony cues. (f)
Normalized phase response (relative to 90 dB) for both tones. (g) Total information from
rate, synchrony, and phase cues.
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tion is shown in panel (e). Similar to rate information, there is no synchrony information

near the frequency of the tone for high levels due to saturation of the synchrony coefficient.

The useful information from synchrony cues is spread further away from the tone than rate

information due to lower synchrony thresholds (Colburn, 1981).

The distribution and relative contribution of nonlinear phase cues is illustrated in panels

(f) and (g). The phase responses (relative to the phase at 90 dB SPL) of both tones are shown

as a function of CF in panel (f). Auditory-nerve fibers with CF’s above and below the tone

frequency have phase responses that change with level, and thus contribute information.

There are no changes in phase at CF, or well away from CF where the BM response is

linear. The distribution of the total information provided from rate, synchrony, and phase

cues is shown in panel (g). By comparing panels (e) and (g), the significant contribution of

nonlinear-phase cues to the encoding of level can be seen. While there is no information for

the CF equal to the tone frequency, there is significant phase information just below and

just above the tone frequency since the nonlinear phase responses are restricted to near-

CF frequencies. The amount of phase-information is roughly twice as large as the rate and

synchrony information. Most importantly, the only information available in the restricted-CF

region is information from nonlinear phase cues. In considering the benefits of the cochlear

amplifier to level encoding, it is important to note that while compression is present over a

wide dynamic range on the BM, saturation of average discharge rate below 40 dB SPL limits

the encoding of this nonlinear property in the majority of AN fibers.

There are a small number of low-spontaneous-rate (LSR) fibers that have a larger dynamic

range than the majority of AN fibers [Fig. 4-1(d) and (f)]. Therefore, it has been suggested

that the LSR fibers are responsible for the encoding of level based on average-rate information

in narrow frequency regions at high sound levels (e.g., Delgutte, 1987; Viemeister, 1988a,b;

Winslow and Sachs, 1988; Winter and Palmer, 1991). Figure 4-4 compares the distribution of

information across CF for HSR and LSR fibers at low and high frequencies. The contribution

of nonlinear phase information in HSR fibers is compared to the contribution of average-rate

information in LSR fibers. The limited-CF region is indicated by the vertical dotted lines in

the top panels, and this region is magnified in the bottom panels. At low frequencies (left

column), the HSR fibers (solid curve) contribute significant information from the nonlinear
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(10 kHz, right column) tones. The HSR curves (solid) represent rate, synchrony, and phase
information, while the LSR curves (dashed) represent only average-rate information. Physi-
ologically realistic properties of HSR and LSR fibers were used to scale the predictions (see
text). The vertical dotted lines in the top row represent the narrow-CF region discussed
in the present study, which is magnified in the bottom row. Same stimulus conditions as
Fig. 4-3.
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phase cues within the limited CF region. The LSR fibers (dashed curve) do not contribute

any information within the limited CF region for the 1-kHz tone because the LSR fibers

saturate at 80 dB [see Fig. 4-1(f)] due to the small amount of gain from the cochlear amplifier

at low frequencies [Fig. 4-1(c)]. In contrast, at high frequencies (right column) the HSR fibers

contribute no phase information due to the rolloff in phase locking [Fig. 4-1(e)], while the

LSR fibers contribute significant average-rate information within the narrow CF region. The

large gain from the cochlear amplifier at high frequencies [Fig. 4-1(c)] results in very shallow

(“straight”) rate-level curves for LSR fibers at high frequencies [Fig. 4-1(d)].

4.4.2 Predicted performance based on a narrow CF region

The dynamic range problem for the encoding of sound level is most severe in the case where

the spread of excitation is limited (e.g., due to the presence of a notched-noise masker).

This condition is simulated in the present study by considering information contained in a

small set of model CF’s (seven) surrounding the frequency of the tone. Level-discrimination

performance (in terms of ∆L, Eq. 4.4) is predicted for a low- (996 Hz) and a high-frequency

(9874 Hz) tone, where the tone frequency was chosen to be equal to one of the 120 model

CF’s. For the low and high tone frequencies, the near-CF regions used were 896-1107 Hz

and 8882-10977 Hz, respectively. Performance was predicted for the HSR, MSR, LSR, and

total populations of AN fibers, based on the physiological proportions described by Liberman

(1978). Predicted level discrimination performance is compared for the rate-place and all-

information models, where information in the seven model CF’s was assumed to be combined

optimally, and was scaled to account for the number of AN fibers represented by each model

CF. Performance for the monaural-coincidence scheme was calculated based on the same

number of total AN fibers as the rate-place and all-information predictions. The seven model

CF’s in the narrow-frequency region were assumed to innervate a set of four coincidence

counters, one of which had both CF-inputs equal to the tone frequency. The other three

coincidence counters received one CF-input above and one below the tone frequency, which

were both separated from the tone frequency by an equal number (one, two, or three) model

CF’s. Based on the assumption that each AN fiber innervates only one coincidence counter,

one-half as many same-CF-input coincidence counters were included in the total coincidence
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population as were coincidence counters with different CF inputs. Thus, rate-place, all-

information, and coincidence predictions are all based on the same set of AN fibers with

CF’s near the tone frequency.

Figure 4-5 (left column) shows level-discrimination performance based on the HSR fibers

within the narrow frequency region in terms of ∆L as a function of stimulus level L for a

low-frequency tone. Rate-place, all-information, and coincidence performance is shown in

the top, middle, and bottom panels, respectively. Note that the scale for the ordinate of the

coincidence panel is different than that for the rate-place and all-information panels. In order

to illustrate the relative contributions from nonlinear gain and nonlinear phase properties,

performance based on four versions of the AN model are shown in each panel. The circles

represent performance based on the AN model with both linear gain and phase, the triangles

represent nonlinear gain and linear phase, the x’s represent linear gain and nonlinear phase,

and the squares correspond to the AN model with both nonlinear gain and nonlinear phase.

Because all three models are identical below 30 dB SPL, the four curves lie on top of one

another at low levels in each panel. Levels for which symbols are not shown for a given model

represent conditions in which no information existed for that model (i.e., infinite JND).

Average-rate information encodes changes in level only over a limited dynamic range (top

row). Because of the low thresholds and corresponding limited dynamic range of HSR fibers,

there is no rate-place information above 40 dB SPL for the AN model versions with linear

gain. When the nonlinear gain is included in the AN model, the dynamic range over which

changes in level are encoded is extended by 10 dB at low frequencies, and by 20 dB at high

frequencies. The degradation in performance at 30 dB SPL for the nonlinear-gain models

results from the compressive BM response that begins at 30 dB SPL [Fig. 4-1(b)]. The larger

influence of the nonlinear gain at high frequencies compared with low frequencies is due to

the CF-dependence of the cochlear-amplifier gain.

The contributions of synchrony and nonlinear-phase information are demonstrated by

comparing rate-place and all-information predictions. The role of synchrony information is

most clearly illustrated with the linear-phase versions of the AN model. Synchrony infor-

mation improves performance at low levels for the low-frequency tone; however, synchrony

does not extend the dynamic range to higher levels due to the fact that synchrony co-
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Figure 4-5: Level-discrimination performance based on the population of high-spontaneous-
rate (HSR) fibers in a narrow range of CF’s near the tone frequency (see text). The just-
noticeable difference ∆L is plotted as a function of stimulus level for a 996 Hz (left column)
and a 9874 Hz (right column) tone (500-ms duration). Optimal performance based on
average-rate and all information is shown in the top and middle rows, respectively. Perfor-
mance based on a set of monaural coincidence counters is shown in the bottom row. [Note
the scale difference between rows.] Four versions of the AN model are shown in each panel to
illustrate the effect of nonlinear gain and phase responses. Predictions from the four model
versions are identical below 30 dB SPL. Levels for which symbols are not shown represent
conditions in which there is no information available for a particular model (i.e., infinite
JND).
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efficients saturate at lower levels than average rate (Colburn, 1981). At high frequencies,

rate-place and all-information predictions are essentially the same because of the sharp rolloff

of phase-locking at high frequencies [Fig. 4-1(e)]. The extended dynamic range from the non-

linear gain is also seen in all-information predictions because the all-information encoding

scheme includes both temporal and average-rate information. The significant contribution of

nonlinear-phase responses at low frequencies is illustrated by comparing the rate-place and

all-information predictions for the nonlinear-phase versions of the AN model. The dynamic

range for level discrimination is extended up to 100 dB SPL based on the nonlinear phase

responses. This is in sharp contrast to the rate-place information, which does not encode

changes in level in HSR fibers above 50 dB SPL.

The predictions from the simple coincidence-counter model follow the general trends in

the all-information predictions for both low and high frequencies, but are more than an or-

der of magnitude worse than optimal all-information performance. The coincidence-model

decodes the average-rate (and some of the synchrony) information that dominates perfor-

mance below 30 dB SPL. The coincidence mechanism successfully decodes nonlinear phase

cues provided by the cochlear amplifier at low frequencies, as illustrated by the relatively flat

performance in the coincidence predictions for the AN model with nonlinear phase responses.

Predictions based on the set of LSR AN fibers within the narrow frequency region are

shown in Fig. 4-6. Comparison of the rate-place predictions from the AN models with linear

and nonlinear gain illustrates the ability of LSR fibers to encode high sound levels in a small

set of CF’s. At both low and high frequencies, the nonlinear gain extends the dynamic range

over which changes in level are encoded; however, performance degrades significantly above

40 dB SPL at low frequencies. Changes in level of a 1-kHz tone are not encoded above 90 dB

SPL in the average rate of the set of LSR fibers with CF’s near the frequency of the tone. In

contrast, LSR rate-place performance for a high-frequency tone is roughly constant across a

wide dynamic range, up to 100 dB SPL. The all-information predictions demonstrate that

the nonlinear phase responses extend the dynamic range of LSR fibers at low frequencies up

to 100 dB SPL.

The coincidence predictions at low frequencies also show a small benefit from the nonlin-

ear gain responses; however, performance based on nonlinear gain alone significantly degrades
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Figure 4-6: Level-discrimination performance based on the population of low-spontaneous-
rate (LSR) fibers in a narrow range of CF’s near the tone frequency (see text). Same symbols
as Fig. 4-5.
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above 70 dB SPL. The benefit from the nonlinear phase cues is also decoded by the coin-

cidence counters, extending the dynamic range beyond that based on nonlinear gain alone.

However, performance based on the coincidence counters with the nonlinear AN model de-

grades above 80 dB SPL at low frequencies. At high frequencies, coincidence performance

is constant above 70 dB SPL when the nonlinear gain is included in the AN model, while

changes in level are not encoded above 70 dB SPL when the nonlinear gain is removed.

The contribution of each of the three SR groups to level-discrimination performance based

on the narrow range of CF’s is shown in Fig. 4-7 for both low- and high-frequency tones.

Performance based on each SR group individually is shown with performance based on the

optimal combination of all three SR groups (squares) for the AN model with nonlinear gain

and nonlinear phase. The rate-place predictions illustrate that the HSR and MSR fibers

are primarily responsible for performance at low levels, while the LSR fibers are responsible

for high levels (roughly above 50 dB SPL at both low and high frequencies). Performance

based on the combination of average-rate information in the three SR groups degrades by

an order of magnitude between 20 and 90 dB SPL at low frequency, and no changes in level

are encoded above 90 dB SPL. This finding is consistent with the predictions of Colburn

(1981) and Delgutte (1987), and indicates that changes in level are not encoded robustly in

average-rate information within a narrow CF region across a wide dynamic range. Changes

in level are encoded much more consistently across level at high frequencies, as a result of

the large cochlear amplifier gain at high frequencies.

The all-information predictions based on all three SR groups are roughly constant across a

dynamic range of 100 dB at low frequencies, unlike the rate-place predictions. Thus, Weber’s

Law is achieved based on information within a narrow range of CF’s at low frequencies only

when nonlinear phase information is included. Furthermore, performance based on the HSR

fibers is as good and often better than performance based on the MSR and LSR fibers for

low frequencies, especially at high levels. At high frequencies, the all-information predictions

are similar to the rate-place predictions due to the small amount of temporal information

available at high frequencies.

Performance at low frequencies based on the coincidence counters demonstrates roughly

the same pattern as the all-information predictions. Performance is roughly constant across
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Figure 4-7: Level-discrimination performance based on individual and combined spon-
taneous-rate groups in a narrow range of CF’s near the tone frequency (see text). The
just-noticeable difference ∆L for the nonlinear-gain, nonlinear-phase AN model is plotted as
a function of stimulus level for a 996 Hz (left column) and a 9874 Hz (right column) tone
(500-ms duration). Optimal performance based on average-rate and all information is shown
in the top and middle rows, respectively. Performance based on a set of monaural coinci-
dence counters is shown in the bottom row. [Note the scale difference between rows.] HSR:
high-spontaneous-rate; MSR: medium-spontaneous-rate; LSR: low-spontaneous-rate; TOT:
optimal combination of all three SR groups. Levels for which symbols are not shown repre-
sent conditions in which there is no information available (i.e., infinite JND). Human data
for level-discrimination of a 200-ms high-frequency noise band (6-14 kHz) in the presence of
a notched-noise is shown by the stars in the bottom right panel (Viemeister, 1983).
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a wide dynamic range, and is primarily determined by the HSR fibers. At high frequencies,

performance based on the coincidence counters is also roughly constant from 10 to 100 dB

SPL, and is determined by HSR at low levels, by MSR at medium levels, and by LSR

fibers at high levels. For comparison, human performance for level discrimination of a high-

frequency, bandpass noise (6-14 kHz) in a noise masker with a 6-14 kHz notch is shown

by the stars (Viemeister, 1983). Predicted performance based on the coincidence counters

within the narrow-frequency region matches the human performance very closely across the

entire range of levels, while optimal rate-place and all-information performance is roughly

an order of magnitude better than human performance.

4.4.3 Predicted performance based on all CF’s

The results presented above have focused on the ability of human listeners to perform level

discrimination in a notched-noise masker across a wide range of levels. Human performance

in this task was compared to model predictions from a narrow range of CF’s based on

the assumption that the notched-noise masker eliminates all information within the noise.

However, the effects of suppression and temporal information within the noise may affect

this simple assumption and are not included in the present model. The analytical AN

model describes responses to pure-tone stimuli, and thus it is most appropriate to compare

predicted performance based on the entire population of AN fibers to human performance

in a pure-tone level discrimination task in quiet. Level-discrimination performance (Eq. 4.4)

was predicted for a low- (996 Hz) and a high-frequency (9874 Hz) tone in quiet based on

the HSR, MSR, LSR, and total populations of AN fibers. Rate-place and all-information

predictions are based on the optimal combination of information from the 120 model CF’s.

Performance based on the monaural-coincidence scheme was calculated based on the same

number of total AN fibers as the rate-place and all-information predictions. The same four

coincidence counters were used as in the narrow-CF predictions described above (i.e., based

on seven model CF’s surrounding each coincidence CF. The total normalized sensitivity

squared was the sum of the individual normalized-sensitivities-squared from each of the four
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coincidence counters at each of the 120 model CF’s. 1 In this implementation, each AN fiber

innervates only one coincidence counter, and thus the normalized sensitivities squared can

be summed based on the assumption of independent AN fibers.

Predicted rate-place, all-information, and coincidence performance based on the entire

HSR population is shown in Fig. 4-8 for a low- and high-frequency, 500-ms tone. Performance

based on the four versions of the AN model are shown in each panel. Rate-place performance

based on the linear AN model is flat above 20 dB SPL for the low-frequency tone, consistent

with the predictions of Weber’s Law based on the spread of excitation (Siebert, 1968). For

the high-frequency tone, there is a small rise in ∆L above 60 dB SPL for the linear AN

model. This rise is due to the upper side of the excitation spreading beyond the highest CF,

and is consistent with the expected
√
2 reduction in ∆L due to the loss of one-half of the

information. There is only a small effect of nonlinear gain at 30 and 40 dB SPL for the low-

frequency tone; otherwise the cochlear amplifier does not influence rate-place performance

based on the population of CF’s. In contrast, there is a significant effect of nonlinear gain

for the high-frequency tone. Performance is nonmonotonic, with a higher ∆L for 30-50 dB

SPL than for 20 or 60 dB SPL. This degradation in performance at mid-levels results from

the large amount of compression at high frequencies, and thus is much less prevalent for the

low-frequency tone. The presence of a mid-level bump at high-, but not low-, frequencies is

consistent with human performance (Florentine et al., 1987).

The all-information predictions in Fig. 4-8 illustrate the contribution of synchrony and

nonlinear-phase information to level discrimination of tones in quiet. At low frequencies,

synchrony improves performance for the linear AN model by a factor of five at 0 dB SPL, and

by a factor slightly less than two for higher levels. Weber’s Law is again predicted above 20 dB

SPL based on the contributions of rate and synchrony information. The near-miss to Weber’s

Law is present in the low-frequency predictions when the nonlinear phase responses are

included in the AN model. This is consistent with the nonlinear phase responses producing

Weber’s Law within narrow-CF regions (Fig. 4-5), and the combination of information across

CF’s producing the near-miss to Weber’s Law. High-frequency performance predictions

1Coincidence counters for which one input fell outside the model CF range (300-20,000 Hz) were evaluated
by using the edge model CF as the input instead. This end effect is not significant for this study’s results.
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Figure 4-8: Level-discrimination performance based on the total population of high-
spontaneous-rate (HSR) fibers. Same symbols as Fig. 4-5.

110



for rate-place and all-information are essentially identical due to the very low synchrony

coefficient at 10 kHz [Fig. 4-1(e)]. Predicted trends based on the population of coincidence

counters (lower row) generally resemble the all-information predictions at both low and high

frequencies, except that the benefit from synchrony information at very low levels is not

observed. Overall performance based on the population of coincidence counters is more than

an order of magnitude worse than optimal performance, but is generally between 1 and 5

dB, which is roughly consistent with human performance levels (Florentine, et al., 1987).

Predictions based on the population of LSR fiber are shown in Fig. 4-9. The rate-place

predictions demonstrate a small effect of the nonlinear gain at low frequencies, and a larger

effect at high frequencies. The shallower slopes of the rate-level curves for LSR fibers in the

nonlinear model result in poorer performance at low- and mid-levels, where fibers for which

the tone is within the near-CF nonlinear region dominate performance. No mid-level bump is

observed in the LSR performance because changes in level below 30 dB SPL are not encoded

in LSR fibers. The general trends and absolute performance levels are similar between the

rate-place and all-information predictions at both low and high frequencies. The coincidence

predictions also match the general trends in the all-information predictions, but are again

more than an order of magnitude worse than optimal performance.

Predicted performance based on the three SR groups and on the total AN population

of the nonlinear AN model is shown in Fig. 4-10. The rate-place predictions for the low-

frequency tone demonstrate that each of the three SR groups contribute essentially equally

above 50 dB SPL. Performance based on the total population of AN fibers (squares) decreases

only slightly between 30 and 80 dB SPL. Rate-place predictions at high frequencies show

that both the HSR and MSR population have a mid-level bump, while the LSR population

does not. Performance below 70 dB SPL is determined primarily by the HSR and MSR

fibers, while the LSR fibers determine performance above 90 dB SPL.

The all-information predictions for the low-frequency tone demonstrate that performance

based on the HSR population is always better than performance based on the MSR or LSR

populations when synchrony and nonlinear-phase information are included. All-information

performance based on the total AN population shows a slightly larger decrease in ∆L across

level than the rate-place predictions based on the contributions of nonlinear phase informa-
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Figure 4-9: Level-discrimination performance based on the total population of low-
spontaneous-rate (LSR) fibers. Same symbols as Fig. 4-5.

112



0 20 40 60 80 100
10

−2

10
−1

10
0

996 Hz
Rate−Place

∆L
 (

dB
)

0 20 40 60 80 100
10

−2

10
−1

10
0

All−Information

∆L
 (

dB
)

HSR
MSR
LSR
TOT

0 20 40 60 80 100
10

−1

10
0

10
1

∆L
 (

dB
)

Coincidence

Level (dB SPL)

0 20 40 60 80 100
10

−2

10
−1

10
0

9874 Hz
Rate−Place

∆L
 (

dB
)

0 20 40 60 80 100
10

−2

10
−1

10
0

All−Information

∆L
 (

dB
)

0 20 40 60 80 100
10

−1

10
0

10
1

∆L
 (

dB
)

Coincidence

Level (dB SPL)

Human: Florentine et al. (1987)
Human: Viemeister (1983)       

Figure 4-10: Level-discrimination performance based on the total population of individual
and combined spontaneous-rate groups (same symbols as Fig. 4-7). Human data for level
discrimination of 500-ms tones measured as a function of sensation level is shown by the stars
in the bottom left and right panels (Florentine et al., 1987). Human level-discrimination data
for a 200-ms high-frequency noise band (6-14 kHz) in quiet is shown by the pluses in the
bottom right panel (Viemeister, 1983).
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tion. The all-information predictions at high frequencies essentially match the rate-place

predictions.

Predictions based on the coincidence counter populations are shown in the bottom row,

and are compared to human performance measured by Florentine et al. (1987) as a function

of sensation level for the same low- and high-frequency conditions.2 Human performance

measured by Viemeister (1983) for level discrimination of a high-frequency, narrowband

noise is also shown for comparison in the bottom right panel. At low frequency, performance

based on the HSR population is always better than performance based on the MSR and

LSR, similar to the all-information predictions. Above 90 dB SPL, all three SR groups

contribute essentially equally. Coincidence performance based on the total AN population

matches human performance very closely. Predicted performance is slightly better (within a

factor of two) than human performance at most levels. The slope of the near-miss to Weber’s

Law observed in the human performance is matched by the coincidence predictions for the

low-frequency tone, as well as the near-miss beginning at 30 dB SPL. The near-miss in the

coincidence predictions results primarily from the nonlinear phase cues (which begin at 30

dB SPL) on the HSR fibers, and is not influenced by the population of LSR fibers.

At high frequencies, coincidence performance based on the HSR fibers is best among the

three SR groups below 80 dB SPL, MSR performance is best at 90 dB SPL, and performance

based on the LSR population is best for levels of 100 dB SPL and above. Coincidence

performance based on the total AN population matches the human performance very closely,

and is within a factor of two of both data sets at all levels. The nonmonotonic dependence on

level (the “mid-level bump”) observed in the both sets of human data is also demonstrated

in the coincidence predictions. The level at which the bump occurs is well predicted by the

coincidence performance. The size of the bump in the coincidence performance matches the

data from Viemeister (1983), and is slightly smaller than the data from Florentine et al.

(1987). A slight rise in ∆L as level increases at high levels is present in the coincidence

performance, and is predicted based on the spread of the high-frequency information beyond

2The data plotted from Florentine et al. (1987) is their data as a function of sensation level (SL), which is
the most appropriate comparison to the predictions from the analytical AN model that has a fixed threshold
at 0 dB SPL. Some of the effects in the human data that occur at a particular sensation level are reduced
when the data is averaged across listeners as a function of SPL, rather than SL.
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the highest CF in the model. A slight rise is also often observed in human data when plotted

as a function of SPL (Florentine et al., 1987).

4.5 General Discussion

4.5.1 The benefit of the cochlear amplifier for extending the dy-

namic range of the auditory system

It has often been suggested that the cochlear amplifier is responsible for the extremely wide

dynamic range of the auditory system (e.g., Yates, 1995). However, this suggestion has

typically been based solely on the compressive magnitude response observed on the basilar

membrane, and has never been tested quantitatively by relating the physiological properties

associated with the cochlear amplifier to psychophysical performance. The present study

quantifies the information available for level discrimination in the auditory nerve (AN) with

and without the nonlinear gain and nonlinear phase responses that are associated with the

cochlear amplifier. The results from the present study compare the relative contributions of

nonlinear gain and nonlinear phase responses, as well as the relative contributions of high-,

medium-, and low-spontaneous-rate AN fibers to encoding sound level.

Nonlinear gain

The ability of humans to discriminate changes in level consistently across a wide range of

levels in Viemeister’s (1983) experiment has been interpreted as demonstrating that Weber’s

Law is achieved based on average-rate within a narrow range of CF’s (e.g., Delgutte, 1987).

The notched-noise masker is presumed to mask the CF’s away from the signal, and the

high-frequency signal is presumed to rule out temporal information. The present predictions

support this idea at high frequencies, where the cochlear amplifier gain is large enough

that the LSR fibers can encode changes in sound level at high levels (Fig. 4-7). Fig. 4-6

demonstrates that the ability of LSR fibers to encode changes in high sound levels is due

to the nonlinear gain associated with the cochlear amplifier. Changes in level of the high-

frequency tone were only encoded up to 70 dB SPL in the LSR fibers when the nonlinear
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gain response was removed from the AN model, but were encoded up to 100 dB SPL with

the nonlinear gain.

However, the idea that average-rate information accounts for Weber’s Law in a narrow-

CF region fails at low frequencies. There is not enough cochlear amplifier gain at low

frequencies to encode changes in level across the entire human dynamic range in the average

rate of any of the three SR groups (Fig. 4-7). The LSR fibers only encode changes in level of

the low-frequency tone up to 90 dB SPL based on average rate, and performance degrades

significantly above 50 dB SPL. Thus, while LSR fibers have been implicated in the encoding

of sound level at high levels, their usefulness at low frequencies is restricted. This result

is consistent with the lack of “straight” rate-level curves for LSR fibers at low frequencies

reported by Winter and Palmer (1991), and in cats at all frequencies (e.g., Sachs and Abbas,

1974; Winslow and Sachs, 1988).

Nonlinear phase

The nonlinear phase responses associated with the cochlear amplifier have rarely been con-

sidered for their ability to extend the dynamic range of the auditory system (Carney, 1994);

however, they are significant because the wide dynamic range of their information about

changes in level is present in all AN fibers, including the HSR fibers which comprise the

majority of the AN population. Such a representation of level is preferred to the combina-

tion schemes across SR groups that are required for average-rate information to account for

level discrimination across a wide range of levels. For example, an enhanced weighting of

the average-rate information provided by LSR fibers must be assumed in order to produce

Weber’s Law at high levels in single-CF regions (Delgutte, 1987). Winslow et al. (1987) have

suggested that level could be encoded based on average rate with a processor that relies on

HSR fibers at low sound levels and LSR fibers at high levels. Figure 4-7 demonstrates that

the nonlinear phase responses support Weber’s Law based on an optimal combination of the

three SR groups within a narrow range of CF’s at low frequencies. In fact, performance

based on the HSR fibers alone is relatively flat across the entire range of human hearing.

Carney (1994) has illustrated schematically how nonlinear phase shifts on single AN

fibers turn into systematic temporal patterns across CF (i.e., spatio temporal patterns). She
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showed responses for a bank of model AN fibers with different CF’s as a function of time

for several levels (her Fig. 5). The main feature is that as level increases, the trajectory

across CF of the peaks in the discharge probability as a function of time become steeper

(i.e., the responses across CF become more coincident). This motivated her to propose that

sound level may be encoded in the spatio-temporal discharge patterns of AN fibers, and

that an across-frequency coincidence mechanism could decode these level cues at medium to

high levels. Figure 4-7 demonstrates that a set of monaural, across-frequency coincidence

counters can encode sound level robustly across the entire range of human hearing based on

AN fibers within a narrow range of CF’s for both low- and high-frequency tones.

Because the cochlear amplifier acts most strongly in near-CF regions, the benefits from

both gain and phase cues in extending the dynamic range within narrow-CF regions are

particularly useful for complex stimuli such as speech, where spread of excitation is limited.

This suggestion is consistent with the general finding that hearing-impaired listeners have

the most difficulty with complex stimuli in difficult listening conditions where spread of ex-

citation may not be possible. Due to the rolloff in AN phase-locking above 2-3 kHz, the

greatest benefit from nonlinear phase cues is at low frequencies; however, the majority of im-

portant speech information is at low frequencies. The ability of nonlinear phase information

to account for Weber’s Law in narrow-CF regions at low frequencies (and the inability of

average-rate information to do so), suggests that nonlinear phase cues should be considered

in the encoding of complex stimuli at high levels. Loss of the cochlear amplifier would be

expected to degrade the representation of complex stimuli in impaired ears due to loss of

the nonlinear phase cues; however, this impairment would not be observed in physiological

studies that quantify the reduction of AN information in impaired animals based only on

average rate and synchronized rate responses (e.g., Miller et al., 1997, 1999). In contrast,

analyses of rate representations in the cochlear nucleus would be expected to demonstrate

an impairment in the encoding of complex stimuli at high levels in impaired animals. The

ability of monaural coincidence counters to encode changes in sound level at low frequencies

across a much wider dynamic range than average-rate information in the AN may provide

a basis for reports of enhanced rate representations in the cochlear nucleus. Blackburn and

Sachs (1990) and May et al. (1998) have reported that rate representations of speech sounds
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are enhanced in the ventral cochlear nucleus (chopper neurons) compared with the AN in

normal-hearing animals.

4.5.2 Pure-tone level discrimination in quiet

Near-miss to Weber’s Law at low frequencies

It has often been suggested that the near-miss to Weber’s Law results from the combination

of information across multiple CF’s that individually achieve Weber’s Law (e.g., Florentine

and Buus, 1981; Delgutte, 1987; Viemeister, 1988a,b). The predictions from the present

study are consistent with this idea; however, the contribution of nonlinear phase responses

is responsible for the robust encoding of level in narrow-CF regions at low frequencies,

rather than average-rate information in LSR fibers, which has been most often hypothesized

(Delgutte, 1987; Viemeister, 1988a,b; Winter and Palmer, 1991). Only a small improve-

ment in performance across level is predicted for a low-frequency tone based on average

rate information combined optimally across the three SR groups (Fig. 4-10). This small

improvement is consistent with predictions from Delgutte (1987), which were based on the

means and variances of physiologically measured discharge counts as a function of level. Al-

though performance improves slightly as level increases based on average discharge rate, the

improvement is too small to account for human performance at low frequencies where the

near-miss is observed (Florentine et al., 1987).

Thus, the present predictions suggest that the only effect of the nonlinear responses

associated with the cochlear amplifier for level discrimination of low frequency tones is that

the near-miss, rather than Weber’s Law, is predicted based on the nonlinear phase responses.

The degree of the near-miss in the all-information predictions is larger than in the rate-place

predictions, but is largest and matches human performance only when performance based

on coincidence is considered. Although there are many intuitive reasons to believe that

the cochlear amplifier would strongly influence level discrimination of tones, the predicted

effect is quite small. This nonintuitive finding results from the fact that at medium to high

sound levels, where cochlear compression has a strong effect on BM responses, the primary

information about changes in level is contributed by HSR fibers with CF’s away from the
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frequency of the tone. Thus, the CF’s that are dominating performance at medium and

high sound levels are responding linearly because the nonlinear effects associated with the

cochlear amplifier are restricted to near-CF frequencies.

Several other physiological models have produced a near-miss with only low-threshold,

HSR fibers. Teich and Lachs (1979) demonstrated the near-miss with a rate-place model

that had more rounded filter shapes than Siebert’s filters and that incorporated the effects

of refractoriness on AN discharge-count variance. Delgutte’s (1987) model included average

tuning-curve shaped filters and realistic AN-count variance. The results in Chapter 2 pre-

dicted a significant near-miss based on a computational AN model with gamma-tone filters

and Poisson discharge statistics. The ability of many models to predict the near-miss based

on different mechanisms supports the idea suggested by Viemeister (1988a) that the near-

miss to Weber’s Law is not a critical aspect of the dynamic-range problem, and that the

robust encoding of sound level in narrow-CF regions is the most important issue.

Mid-level bump at high frequencies

A puzzling detail of human level discrimination of tones in quiet is that performance is

nonmonotonic at high frequencies, in contrast to the slight improvement in performance

with level at low frequencies (e.g., Carlyon and Moore, 1984; Florentine, et al., 1987). Many

of the psychophysical experiments exploring the “mid-level bump” (or the “severe departure

from Weber’s Law”) have focused on short-duration signals in various noise maskers, because

the effect (when reported as ∆I/I) is generally larger for short-duration signals (e.g., Carlyon

and Moore, 1984), and can be enhanced or reduced by various configurations of notched-

noise maskers (e.g., Oxenham and Moore, 1995; Plack, 1998). However, the analytical AN

model used in the present study is only appropriate to compare to long duration conditions

because onset/offset responses and neural adaptation are not included in the model. In

addition, the effects of a notched-noise masker on the different types of AN information

must be considered quantitatively using methods that are beyond the present study, as

discussed below. Thus, the high-frequency mid-level bump reported by Florentine et al.

(1987) for level discrimination of 500-ms pure tones in quiet is an appropriate comparison

for the present predictions.
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Plack (1998) has discussed several explanations for the mid-level bump based on both

peripheral and central mechanisms; however, only those that are addressed by the present

predictions are discussed here. Carlyon and Moore (1984) have suggested that the mid-

level bump at high frequencies may be explained by two populations of AN fibers. Good

performance was suggested to be provided by the low-threshold, HSR fibers at low levels

and by the high-threshold, LSR fibers at high levels, with a degradation in performance at

mid levels resulting from neither population encoding changes in sound level. The absence of

the mid-level bump at low frequencies was suggested to result from synchrony information

providing good performance at mid levels. The present predictions do not support the

explanation by Carlyon and Moore (1984). For the high-frequency tone, the transition

between HSR and LSR fibers determining performance occurs near 80-90 dB SPL (Fig. 4-

10), and no degradation in performance occurs because of the contribution of the third SR

group (MSR) reported by Liberman (1978). The contribution of synchrony information at

low frequencies is restricted to levels below where HSR fibers contribute rate information

(Fig. 4-10), and thus cannot be responsible for good performance at mid levels. von Klitzing

and Kohlrausch (1994) have suggested that the mid-level bump can be explained based on

mid-level compression on the BM; however, their explanation requires that BM responses

become linear above roughly 50 dB SPL, which has been shown not to be true in healthy

cochleae (Ruggero et al., 1997).

The present predictions demonstrate that a mid-level bump that is consistent with human

data results from the large amount of cochlear amplifier gain at high frequencies (Figs 4-

8 and 4-10). The degradation in model performance at mid levels is due to the BM input-

output function becoming strongly compressed at 30 dB SPL (Fig. 4-8). As level increases

further, the spread of excitation goes beyond the near-CF nonlinear region, and performance

is dominated by HSR AN fibers that are responding linearly. Thus, the nonlinear AN model

predictions for the HSR fibers match those from the linear AN model at level above 60 dB

SPL. The lack of a mid-level bump at low frequencies in the model predictions is consistent

with the small cochlear-amplifier gain at low frequencies [Fig. 4-1(c)]. The presence of a

mid-level bump at high frequencies, but not at low frequencies, is consistent with human

performance (Florentine et al., 1987).
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Thus, the present predictions suggest that the main effect of the cochlear amplifier on

level discrimination of high-frequency tones in quiet is a degradation in performance at mid

levels. This hypothesis suggests that hearing-impaired listeners without a healthy cochlear

amplifier would not show a mid-level bump. However, this would be difficult to measure due

to the typically limited dynamic range in hearing-impaired listeners (Florentine et al., 1993).

4.5.3 Coincidence detection: A robust, physiologically realistic

neural mechanism

The predictions from the present study suggest that a set of monaural, across-frequency

coincidence counters that receive AN inputs from a narrow range of CF’s can account for

Weber’s Law across the dynamic range of human hearing, both at low and high frequen-

cies. This finding is significant because Weber’s Law in narrow-CF regions appears to be

required to account for human level-discrimination performance (Florentine and Buus, 1981;

Viemeister, 1983); however, an optimal combination of average-rate information across the

set of three SR groups in the AN does not produce Weber’s Law across a wide range of levels,

at least at low frequencies (Fig. 4-7; Colburn, 1981; Delgutte, 1987). While the predictions

in the present study suggest an important role for monaural, across-frequency coincidence

detection in the encoding of sound level, it is important to consider whether this mechanism

is likely to be present in the auditory system.

Coincidence detection is a physiologically realistic mechanism, because any neuron with

multiple sub-threshold inputs acts as a coincidence detector (i.e., several coincident dis-

charges across the inputs are required to produce an output discharge). There is strong

evidence that coincidence detection occurs in the binaural auditory system (Yin and Chan,

1990; Goldberg and Brown, 1969; Rose et al., 1966; Yin et al., 1987; Joris et al., 1998), and

coincidence detection forms the basis of most models of binaural processing (Colburn, 1996).

Carney (1990) showed that several cell types in the antero-ventral cochlear nucleus (AVCN),

primarily globular bushy cells, were sensitive to changes in the relative phase across their

inputs. Thus, there is physiological evidence for the existence of cells in the AVCN that have

responses that are consistent with a monaural, across-frequency coincidence mechanism.
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The simple coincidence-counting mechanism analyzed in the present analysis was shown

to decode the level-dependent phase cues associated with the cochlear amplifier, as suggested

by Carney (1994). However, the coincidence predictions in the present study demonstrate

similar trends to the all-information encoding scheme at both low and high frequencies and

for all sound levels. Thus, monaural, across-frequency coincidence detection is a robust

mechanism for encoding sound level in that both average rate and nonlinear phase informa-

tion from AN discharges is encoded in the coincidence counts, as well as some information

from synchrony cues.

It is generally accepted that there is far more information in AN responses than is used by

humans, and that an inefficient processor is needed to account for human level-discrimination

performance (e.g., Colburn, 1981; Delgutte, 1987). The coincidence-counting model pro-

cesses the AN discharge times inefficiently. Information is lost in the process of coincidence

detection because only the times of coincident AN discharges are considered. Additional

information is lost by basing performance only on the coincidence counts (i.e., by ignoring

the coincidence times). Even though the coincidence mechanism in the present study is far

from optimal, the coincidence-performance predictions are typically shifted upward roughly

in parallel from the all-information predictions. This uniform degradation in performance is

desirable because, while the trends in all-information performance often match the trends in

human performance, optimal performance is often at least an order of magnitude better than

human performance. Figure 4-7 and 4-10 illustrate that the degradation in performance that

occurs due to the coincidence mechanism results in absolute performance levels for level dis-

crimination that are very close to human performance. In addition, the monaural coincidence

mechanism eliminates the requirement of an inefficient processor that varies its inefficiency

as a function of level, which has been suggested to be required based on average-discharge

rate information in the AN (Colburn, 1981; Delgutte, 1987).

The derivations of performance based on a monaural, across-frequency coincidence coun-

ter described in the Appendix in Section 4.9 suggest an interesting property that could

be useful for physiological studies of neurons that are hypothesized to perform coincidence

detection. The ratio of the expected value of coincidence counts (Eq. 4.29) to the variance

of counts (Eq. 4.30) is dependent only on the properties of the temporal coincidence window
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f(x). This ratio would be expected to be independent of stimulus parameters, and therefore

the statistics of the observed discharge counts may be able to be used to make inferences

about the shape and size of the coincidence window of a given neuron.

4.5.4 Limitations of present study

Predictions in the present study were compared to human data for level discrimination in

a notched noise based on the common assumption that the only effect of the notched noise

is to eliminate spread of excitation of the tone. In order to accurately evaluate the validity

of this assumption, the effect of the noise masker on different types of information must

be quantified. This analysis requires two advances beyond the present study: (1) a more

complex AN model, and (2) an extension of the statistical decision theory (SDT) analysis.

In order to accurately evaluate complex stimuli, the AN model must include a description

of two-tone suppression properties (e.g., Sachs and Kiang, 1968; Delgutte, 1990b; Ruggero et

al., 1992). The AN response to a CF-tone in the presence of a notched-noise masker may be

suppressed by the noise, whereas the response of AN fibers with CF’s within the noise may

be suppressed by the tone. Such complex interactions between the tone and noise maskers

could contribute significant information to detection or discrimination of signals in noise,

and therefore need to be quantified.

An extension of the SDT analysis beyond the present study is required in order to quan-

tify the relative effects of physiological (internal) and stimulus (external) variation on psy-

chophysical performance. Chapter 3 described an extension of the SDT analysis to discrim-

ination tasks in which a single parameter is randomly varied (e.g., random-level variation).

A general theoretical analysis of detection or discrimination of a signal in random noise is

described in Chapter 5, and has been applied to the detection of tones in notched noise in

Chapter 6.

4.6 Conclusions

1. The cochlear amplifier benefits normal-hearing listeners by extending the dynamic

range within narrow frequency regions, e.g., for complex stimuli such as speech in
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noise for which hearing-impaired listeners have the most difficulty. Highly compressive

basilar-membrane responses at high frequencies allow for the robust encoding of level

based on average discharge rate; however, average rate does not robustly encode sound

level at low frequencies because the cochlear-amplifier gain is too small. Nonlinear

phase responses associated with the cochlear amplifier encode changes in level across

the entire dynamic range of hearing; however, the rolloff in phase locking reduces the

effectiveness of phase cues at high frequencies for simple stimuli.

2. The cochlear amplifier has only a small effect on level discrimination of pure tones in

quiet, consistent with the difficulty in measuring a deficit for hearing-impaired listeners

in simple tasks. The nonlinear phase cues produce the “near-miss” to Weber’s Law

at low frequencies, while the nonlinear gain responses account for the nonmonotonic

“mid-level bump” at high frequencies.

3. Coincidence detection is a physiologically realistic mechanism that can decode the

nonlinear gain and phase cues provided by the cochlear amplifier. Performance based

on a population of coincidence counters matches human performance across the entire

dynamic range of hearing at both low and high frequencies.
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4.8 Appendix: Nonlinear analytical auditory-nerve -

model

The analytical nonlinear auditory-nerve (AN) model used in the present study incorporates

the salient features of the cochlear amplifier. The assumptions and equations that specify

the analytical model are described in this appendix.

The discharge statistics of AN fibers are assumed to be well described by a non-stationary

Poisson process with a time-varying rate function r(t). Equation 4.1 describes the phase-

locked response of an AN fiber in response to a tone burst. The average discharge rate

r̄[Leff ] and the strength of phase locking g[Leff , f0] both depend on the effective level Leff

that drives each AN fiber.

The effective level for the ith AN fiber is determined by the tone level L and by the

nonlinear-filter magnitude response HNL for the characteristic frequency CFi and the tone

frequency f0, i.e.,

Leff (L, f0, CFi) = L+ 20 log10 [HNL (f0, CFi, L)] . (4.7)

The implementation of nonlinear-tuning in the present model [see Fig. 4-1(a)-(d)] represents

the idea that the cochlear amplifier produces high sensitivity and sharp tuning at low levels

by providing amplification to near-CF frequencies, and that the cochlear-amplifier gain is

reduced as level increases (Yates, 1995). At low levels, the magnitude response is described

by linear triangular filters that are consistent with those used by Siebert (1968, 1970) to

describe tuning curves in cat, i.e.,

HS

(
f0

CFi

)
=


(

f0
CFi

)10
, f0 ≤ CFi,(

f0
CFi

)−20
, f0 ≥ CFi.

(4.8)

Nonlinear compression is incorporated into the magnitude response HNL by multiplying the

triangular magnitude response HS by a level- and frequency-dependent attenuation factor,
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i.e.,

HNL (f0, CFi, L) =
(
10[γdB(f0,CFi,L)/20]

)
HS

(
f0

CFi

)
. (4.9)

The reduction in gain of the cochlear amplifier is specified based on several simple assump-

tions, consistent with physiological findings (e.g., Ruggero et al., 1997): (1) For a given CF,

the maximum gain G provided by the cochlear amplifier is produced for tones presented at

CF, and G increases with CF according to

G(CFi) =


Gmin, CFi ≤ 500 Hz,
Gmin + (Gmax −Gmin)

log10(CFi/500)
log10(8000/500)

, CFi ∈ [500, 8000] Hz,
Gmax, CFi ≥ 8000 Hz,

(4.10)

where Gmin = 20 dB, Gmax = 60 dB [see Fig. 4-1(c)]. (2) The cochlear amplifier provides

full gain for levels below LNLthr = 30 dB SPL, and the cochlear amplifier gain is systematically

reduced as level increases from LNLthr to L
NL
sat = 120 dB SPL [see Fig. 4-1(b)]. (3) The cochlear

amplifier only provides amplification for frequencies near-CF (i.e., f0 ∈ [fNLlf , fNLhf ], where

fNLlf = CFi
(
10

−Gmax
20·10

)
,

fNLhf = CFi
(
10

Gmax
20·20

)
, (4.11)

as shown in Fig. 4-1(a). This simple implementation of the nonlinear frequency region results

in a flat magnitude response between fNLlf and fNLhf at high levels (L ≥ LNLsat ) and high

frequencies (f ≥ 8000 Hz). Based on these assumptions, the level- and frequency-dependent
reduction in gain is given in dB by

γdB(f0, CFi, L) = βmag(L, f0)

{
−20 log10

[
HS

(
f0

CFi

)]
−Gmax

}[
G(CFi)

Gmax

]
, (4.12)

126



where

βmag(L, f0) =


0, L ≤ LNLthr or f0 �∈ [fNLlf , fNLhf ],(
L− LNLthr

)/ (
LNLsat − LNLthr

)
, L ∈ [LNLthr , LNLsat ] and f0 ∈ [fNLlf , fNLhf ],

1, L ≥ LNLsat and f0 ∈ [fNLlf , fNLhf ].

(4.13)

In order to evaluate the effect of the nonlinear magnitude response on predictions in the

present study, versions of the AN model with and without the nonlinear magnitude re-

sponses can be compared. The nonlinear magnitude responses can be turned off by setting

βmag(L, f0) = 0 for all levels and frequencies.

The dependence of average discharge rate r̄ on the effective level Leff of an AN-fiber is

specified in terms of a simple saturating nonlinearity (based on Colburn, 1981)

r̄[Leff ] =



SR, Leff ≤ Lthr − 5,
SR + 1

600
(Rsat − SR)(Leff − Lthr + 5)

2, Leff ∈ [Lthr − 5, Lthr + 5],
SR + 1

30
(Rsat − SR)(Leff − Lthr), Leff ∈ [Lthr + 5, Lthr + 30],

Rsat Leff ≥ Lthr + 30,

(4.14)

which depends on the spontaneous rate (SR), the saturated rate (Rsat), and the rate thresh-

old (Lthr). This saturating nonlinearity is shown by the HSR rate-level curves in Fig. 4-1(d)

and (f). The dependence of phase locking on effective level Leff is specified using the same

general form of saturating nonlinearity, i.e.,

g[Leff , f0] = gmax(f0)



0, Leff ≤ Lthr − 25,
1

600
(Leff − Lthr + 25)

2, Leff ∈ [Lthr − 25, Lthr − 15],
1
30
(Leff − Lthr + 20), Leff ∈ [Lthr − 15, Lthr + 10],

1 Leff ≥ Lthr + 10,

(4.15)

where the dependence of synchrony on frequency is matched to data from cat [see Fig. 4-1(e);
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Johnson, 1980], and is described by

gmax(f0) = 3.1


1, f0 ≤ 1200,
1200
f0

, f0 ∈ [1200, 2800],
1200∗28002

(f0)3
, f0 ≥ 2800.

(4.16)

The threshold for phase-locking is specified to be 20 dB below the average-rate threshold.

The implementation of the nonlinear-phase responses in the present study is based on

several simple assumptions: (1) The level-dependent phase responses are limited to the

same near-CF frequency region as the magnitude responses, f0 ∈ [fNLlf , fNLhf ]. (2) Phase

varies linearly with tone level. (3) The maximum phase changes occur half-way into the

near-CF nonlinear frequency region, i.e., at frequencies

fPHlf = 0.5(CFi + fNLlf ),

fPHhf = 0.5(CFi + fNLhf ). (4.17)

(4) The maximum phase shifts between low levels and 80 dB SPL are roughly π/2. (5)

The total traveling-wave delay at high levels (L > LNLsat ) is compensated for in each CF

with neural delays prior to innervation of the coincidence-detection population. This simple

assumption is based on the fact that onset responses to clicks are very strong for many cell

types in the cochlear nucleus that receive convergent inputs from a range of CF’s (Young,

1984; Rhode and Greenberg, 1992). Based on these simple assumptions, the nonlinear filter

phase response is specified by the equation

θ(f0, CFi, L) = βphase(L, f0) · 2∆θmax



0, f0 �∈ [fNLlf , fNLhf ],

(f0 − fNLlf )/(CFi − fNLlf ), f0 ∈ [fNLlf , fPHlf ],

(CFi − f0)/(CFi − fNLlf ), f0 ∈ [fPHlf , CFi],

(CFi − f0)/(f
NL
hf − CFi), f0 ∈ [CFi, fPHhf ],

(f0 − fNLhf )/(f
NL
hf − CFi), f0 ∈ [fPHhf , fNLhf ],

(4.18)

where ∆θmax =
6
5
π is the maximum phase change between LNLthr and L

NL
sat , and βphase(L, f0) =
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1 − βmag(L, f0), where βmag(L, f0) is specified by Eq. 4.13. Versions of the AN model with

and without the nonlinear phase changes can be compared in order to evaluate the effect of

nonlinear phase responses. The level-dependent phase changes can be turned off by setting

βphase(L, f0) = 1 for all levels and frequencies.

4.9 Appendix: Performance based on a monaural co-

incidence counter

This appendix presents derivations of the expected value and variance of the coincidence

counts Cij{T i, T j} (Eq. 4.2) that are needed to calculate the normalized sensitivity δ′ of

a monaural, across-frequency coincidence counter (Eq. 4.6). Similar equations and related

discussions are presented by Colburn (1969; 1977b) for a binaural coincidence counter, but

without derivations. The expected value and variance in Eq. 4.6 depend on the Poisson

statistics of the two sets of independent AN discharge times,T i and T j, and will be shown

to be given by

ET i,T j ,φ[Cij{T i, T j}] = Eφ

[∫ T

0

∫ T

0
f(x− y)ri(x;φ)rj(y;φ)dxdy

]
, (4.19)

V arT i,T j ,φ[Cij{T i, T j}] � Eφ

[∫ T

0

∫ T

0
f 2(x− y)ri(x;φ)rj(y;φ)dxdy

]
, (4.20)

where ri(t;φ) and rj(t;φ) represent the time-varying rate functions of the two AN inputs to

the coincidence counter, φ is a random phase imposed on every AN fiber, and f(x) is the

narrow temporal coincidence window.

The derivations of ET i,T j ,φ[Cij{T i, T j}] and V arT i,T j ,φ[Cij{T i, T j}] will rely on several
general results for decision variables of the form

Xi(T i) =
Ki∑
l=1

s(til), (4.21)

where s(til) is any function of the l
th discharge time til generated from a Poisson process with

rate function ri(t). It can be shown (e.g., Rieke et al., 1997) that the expected value and
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variance of Xi(T i) are given by

ET i

[
Xi(T i)

]
=

T∫
0

s(t)ri(t)dt, (4.22)

V arT i

[
Xi(T i)

]
=

T∫
0

s2(t)ri(t)dt, (4.23)

based on the probability density function for Poisson discharge times (see Parzen, 1962;

Snyder and Miller, 1991). Eqs. 4.22 and 4.23 imply that

ET i

{[
Xi(T i)

]2}
=

T∫
0

s2(t)ri(t)dt+

 T∫
0

s(t)ri(t)dt

2

. (4.24)

The expected value in Eq. 4.6 can be derived as follows

ET i,T j ,φ[Cij{T i, T j}] = ET i,T j ,φ

Ki∑
l=1

Kj∑
m=1

f(til − tjm)

 ,
= ET i,φ


Ki∑
l=1

ET j

 Kj∑
m=1

f(til − tjm)

∣∣∣∣∣∣ T i

 ,

= ET i,φ

Ki∑
l=1

∫ T

0
f(til − y)rj(y;φ)dy

 . (4.25)

Using Eq. 4.22 again, Eq. 4.19 is obtained. Similarly, the term ET i,T j ,φ[C2
ij{T i, T j}] can be

derived as follows

ET i,T j ,φ[C2
ij{T i, T j}] =

= ET i,φ

ET j




Kj∑
m=1

Ki∑
l=1

f(til − tjm)


2
∣∣∣∣∣∣∣ T i


 ,

= ET i,φ


∫ T

0

Ki∑
l=1

f(til − y)

2

rj(y;φ)dy +

Ki∑
l=1

∫ T

0
f(til − y)rj(y;φ)dy

2
 ,

= Eφ

{∫ T

0

∫ T

0
f 2(x− y)ri(x;φ)rj(y;φ)dxdy
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+
∫ T

0

∫ T

0

∫ T

0
f(x− y)f(u− y)ri(x;φ)ri(u;φ)rj(y;φ)dxdudy

+
∫ T

0

∫ T

0

∫ T

0
f(x− y)f(x− v)ri(x;φ)rj(v;φ)rj(y;φ)dxdvdy

+

[∫ T

0

∫ T

0
f(x− y)ri(x;φ)rj(y;φ)dxdy

]2
 . (4.26)

The variance in Eq. 4.6 is then equal to

V arT i,T j ,φ[Cij{T i, T j}] =

= ET i,T j ,φ[C2
ij{T i, T j}]−

(
ET i,T j ,φ[Cij{T i, T j}]

)2

= Eφ

{∫ T

0

∫ T

0
f 2(x− y)ri(x;φ)rj(y;φ)dxdy

+
∫ T

0

∫ T

0

∫ T

0
f(x− y)f(u− y)ri(x;φ)ri(u;φ)rj(y;φ)dxdudy

+
∫ T

0

∫ T

0

∫ T

0
f(x− y)f(x− v)ri(x;φ)rj(v;φ)rj(y;φ)dxdvdy

}
. (4.27)

The second and third terms in the right-hand side of Eq. 4.27 can be shown to be negligible

relative to the first term if (1) the coincidence window f(x) is much narrower than the period

of variation in discharge rate r(t), which is never less than about 0.5 ms given the rolloff in

phase locking of AN fibers above 2 kHz [Fig. 4-1(e); Johnson (1980)], and (2)

Rsat

[∫ ∞

−∞
f(x)dx

]2

�
∫ ∞

−∞
f 2(x)dx, (4.28)

where Rsat is the maximum discharge rate of an AN fiber. Both of these conditions are

satisfied for the 10-µs rectangular coincidence window in the present study, and thus Eq. 4.20

holds.

Note that Eqs. 4.19 and 4.20 can be used with either analytical or computational AN

models, because they are independent of the AN model used to produce the rate functions.

More informative expressions for the expected value and variance can be derived for the

present analytical AN model. The expected value (Eq. 4.19) and variance (Eq. 4.20) will be
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shown to be given by

E[Cij|L] � T r̄ir̄j
I0 [gi] I0 [gj]

I0

[√
g2
i + g2

j + 2gigj cos (θi − θj)
] ∫ ∞

∞
f(x)dx, (4.29)

V ar[Cij|L] � T r̄ir̄j
I0 [gi] I0 [gj]

I0

[√
g2
i + g2

j + 2gigj cos (θi − θj)
] ∫ ∞

∞
f 2(x)dx, (4.30)

where gi = g [Leff (L, f0, CFi), f0], r̄i = r̄ [Leff (L, f0, CFi)], and θi = θ(L, f0, CFi), and I0{g}
is the zeroth-order Bessel function.

The expected value can be derived by substituting the rate function r(t) from the ana-

lytical AN model (Eq. 4.1) into (Eq. 4.19), i.e.,

ET i,T j ,φ[Cij{T i, T j}] =

=
r̄ir̄j

I0 [gi] I0 [gj]

∫ T

0

∫ T

0
f(x− y)

× 1

2π

∫ 2π

0
exp [gi cos (2πf0x+ θi + φ) + gj cos (2πf0y + θj + φ)] dφdxdy,

=
r̄ir̄j

I0 [gi] I0 [gj]

∫ T

0

∫ T

0
f(x− y)

× 1

2π

∫ 2π

0
exp

(√
g2
i + g2

j + 2gigj cos [2πf0(x− y) + θi − θj]

× cos
{
φ+ tan−1

[
gi sin (2πf0x+ θi) + gj sin (2πf0y + θj)

gi cos (2πf0x+ θi) + gj cos (2πf0y + θj)

]})
dφdxdy,

=
r̄ir̄j

I0 [gi] I0 [gj]

∫ T

0

∫ T

0
f(x− y)

×I0

{√
g2
i + g2

j + 2gigj cos [2πf0(x− y) + θi − θj]
}
dxdy. (4.31)

Equation 4.29, and similarly Eq. 4.30, result from the assumption that the coincidence

window f(x) is narrow relative to the period of stimulus variation.
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Chapter 5

Quantifying the effects of noise

maskers on signal information in

auditory-nerve responses: I. General

theory and application to detection in

bandlimited noise

5.1 Abstract

Previous studies have evaluated psychophysical performance limits by combining auditory-
nerve (AN) models with methods from statistical decision theory (e.g., Siebert, 1970; Col-
burn, 1973; Chapter 2). This approach is extended in the present study to include the case
of stimuli with random noise maskers. Performance is evaluated for a general processor
that makes decisions by evaluating each AN discharge time in terms of a priori information
about the two alternatives in a discrimination (or detection) experiment. Different assump-
tions about the a priori information used by the processor are evaluated (e.g., information
about only the noise ensemble or about individual noise waveforms). Optimum performance
is obtained when the processor uses the exact rate waveforms for each noise waveform.
This general approach allows the relative contributions of inherent stimulus fluctuations (ex-
ternal noise) and physiological (internal) noise to be evaluated by comparing performance
for individual noises and for the random-noise ensemble. The nonlinear computational AN
model used in the present study included gamma-tone filters with compressive magnitude re-
sponses, two-tone suppression, saturating rate-level curves, low-threshold high-spontaneous-
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rate (HSR) fibers, rolloff in phase-locking, neural adaptation, and realistic onsets and offsets.
Conditionally independent Poisson processes are used to model the population of AN fibers
spaced according to a human cochlear frequency map. The theoretical analysis developed
is illustrated for the detection of tones in narrowband and broadband noise maskers. The
effect of noise maskers on predicted detection performance is compared for processors based
on AN discharge times and based only on AN discharge counts. The distribution of infor-
mation across the population of AN fibers and the types of temporal information available
for the detection of tones in noise are illustrated. The analysis techniques developed here
allow quantification of the influence of the correlation between the responses of AN fibers to
random-noise stimuli on the ability to combine information across AN fibers.

5.2 Introduction

Noise stimuli have a long history of use as maskers in tests of the signal processing capabilities

of the auditory system. Fletcher (1940) evaluated the frequency selectivity of the auditory

system by measuring detection thresholds for tones in the presence of band-limited noise as

a function of masker bandwidth. As masker bandwidth was increased, detection thresholds

increased until a “critical bandwidth” (CB) was reached, beyond which thresholds were

essentially constant. Fletcher interpreted these results as being consistent with the use of

a single filter to process the tone-in-noise signal, which led to the concept of the “auditory

filter.” Many well established theories of auditory processing are based on the idea that

the auditory system acts as a bank of overlapping filters, including the excitation-pattern

model (Zwicker, 1956, 1970; Florentine and Buus, 1981; Glasberg and Moore, 1990), and

the articulation-index model of speech perception developed by Fletcher (1953).

Much effort in psychophysics has gone into methods to measure the auditory filter; how-

ever, this measurement is difficult using simple stimuli such as single tones due to the presence

of many overlapping filters. Complex stimuli, such as noise, have been used in an attempt

to force the listener to rely on a single “auditory filter”. These experiments are typically

interpreted based on the power spectrum model of masking, which has several assumptions

including (1) the auditory system processes sounds with an array of overlapping linear filters,

(2) a single filter is used to detect signals in noise, typically the filter with the highest signal-

to-noise ratio, (3) only the noise that passes through this single filter affects the masking of a

tone, and (4) thresholds correspond to a fixed signal-to-noise ratio through the filter in terms
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of the long-term power spectra of the stimuli, i.e., the relative phases of components and

the short-term fluctuations in the masker are ignored (Moore, 1995a). Despite the fact that

none of these assumptions are entirely correct, this model is able to explain many masking

phenomena. Thus, the power spectrum model is the current basis for many researchers’ view

of the effects of noise stimuli on signal information in the auditory system.

Given that the power spectrum model is often used to interpret psychophysical experi-

ments designed to measure physiological frequency selectivity, it seems appropriate to eval-

uate its assumptions based on information contained in auditory-nerve discharge patterns.

Previous studies have evaluated psychophysical performance limits by combining auditory-

nerve (AN) models with methods from statistical decision theory (e.g., Siebert, 1965, 1968,

1970; Colburn, 1969, 1973, 1977a,b 1981; Delgutte, 1987; Chapter 2). However, these stud-

ies have typically only incorporated response variability due to the stochastic nature of AN

discharges, and thus have been limited to deterministic stimuli. The present study presents

a new theoretical analysis that extends this approach to include the case of stimuli with

random-noise maskers. Several examples of the application of the theory are presented for

the detection of tones in narrowband and broadband noise maskers. The predictions from

the present study address several assumptions of the power spectrum model by quantifying

the effect of noise stimuli on average discharge rate and temporal information in the AN.

5.3 General Theory

In this section, we discuss the application of statistical decision theory (SDT) to calculate

performance limits in a general discrimination task in the presence of random stimulus

noise. The following analysis describes a level-discrimination experiment in which two tones

with levels L1 and L2 are to be discriminated; however, this analysis is applicable to the

discrimination of any parameter in the presence of random noise. Detection of a signal

in random noise can be analyzed as a discrimination experiment between a signal of level

L1 = −∞ dB and one of level L2.
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5.3.1 Separation of stimulus variance from auditory-nerve vari-

ance

In a psychophysical experiment with random noise, variability in observer responses results

from both the random stimulus (external noise) and from the random auditory-nerve (AN)

responses (internal noise) (Colburn, 1969, 1977a,b; Siegel and Colburn, 1989). It is impor-

tant to separate the effects of these two noise sources for the interpretation of psychophysical

performance limits.

The observations of AN responses available to any processor Y (T ) are the collection of
Poisson discharge times from the M AN fibers, T = {t11, · · · , t1K1

, · · · , tij, · · · , tMKM
}, where tij

represents the jth discharge time on the ith AN fiber. Optimum performance based on the

processor Y (T ) can be evaluated in terms of a sensitivity metric Q given by

Q(L1, L2) =
{En,T [Y (T ) |L2]− En,T [Y (T ) |L1]}2

V arn,T [Y (T ) |L1]
, (5.1)

where the notation En,T indicates that the expected value is taken over both the stimulus

noise waveform n and the AN discharge times T . It is assumed that V arn,T [Y (T ) |L2] and

V arn,T [Y (T ) |L1] are approximately equal when L1 and L2 are just noticeably different,

which is defined as corresponding to Q(L1, L2) = 1. Note that the sensitivity index Q(L1, L2)

corresponds to the commonly used sensitivity index (d′)2 if Y (T ) has a Gaussian distribution.
For a given set of observations T , the decision variable Y (T ) is a random variable for

which the randomness comes from both the AN response and from the stimulus. The ex-

pectations and variance in Eq. 5.1 can be calculated using iterated expectations as

En,T [Y (T )] = En {ET [Y (T ) |n]} , (5.2)

V arn,T [Y (T )] = En {V arT [Y (T ) |n]}+ V arn {ET [Y (T ) |n]} , (5.3)

= V arAN + V arSTIM ,

where the first term on the right side of Eq. 5.3 represents the variability due to the Pois-

son properties of AN discharges, and the second term represents the variability due to the

stimulus (Colburn, 1969; 1977b). The ability to separate the contributions of AN and stim-
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ulus variability to the variance of a decision variable will be useful below for evaluating the

relative influence of each type of variability on psychophysical performance limits.

5.3.2 General form of optimum processor

The form of the optimum processor Yopt(T ) for discriminating between L1 and L2 in the

presence of a random noise is specified by a log-likelihood-ratio test,

Yopt(T ) = ln
p(T |L2)

p(T |L1)

L2

>

<

L1

0, (5.4)

where the threshold of 0 corresponds to the minimum-probability-of-error criterion with

equal a priori probabilities (van Trees, 1968, pp. 23-30). Equation 5.4 can be expanded to

show the influence of the random noise n

Yopt(T ) = ln
En [p(T |L2, n)]

En [p(T |L1, n)]

L2

>

<

L1

0,

= ln
En

[∏M
i=1 p(T i|L2, n)

]
En

[∏M
i=1 p(T i|L1, n)

]
L2

>

<

L1

0, (5.5)

where T i is the set of discharge times on the ith AN fiber, and Eq. 5.5 follows from the

assumption of conditionally independent AN fibers given the stimulus. Unfortunately, fur-

ther simplification of Yopt(T ) is prohibited by the expectation over the stimulus noise in the
numerator and the denominator of the likelihood ratio.

Further simplification of the optimum-processor form is possible if it is assumed that

the processor knows the individual noise waveforms n. This assumption is unrealistic for a
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human observer; however, it allows the processor to be specified in enough detail so that

insight can be gained as to how a smart processor uses knowledge about the AN responses

to each alternative in a discrimination task. This insight will be used below to derive the

performance of smart processors that only have knowledge of the ensemble properties of the

noise, rather than knowledge of the individual noise waveforms. The form of the optimum

processor, given that the individual noise waveforms n are known, is specified as

Yopt|n(T ) = ln
p(T |L2, n)

p(T |L1, n)
,

= ln

∏M
i=1 p(T i|L2, n)∏M
i=1 p(T i|L1, n)

,

=
M∑
i=1

ln
p(T i|L2, n)

p(T i|L1, n)
,

=
M∑
i=1

Yopt|n,i(T i). (5.6)

A nonstationary Poisson process can be used to describe the stochastic properties of AN

discharges (e.g., Siebert, 1970; Colburn, 1973). The joint probability density of the unordered

discharge times from a single AN fiber can therefore be described by

p(T i|L, n) =
∏Ki
j=1 ri(t

i
j|L, n)

Ki!
exp

− T∫
0

ri(t|L, n)dt
 , (5.7)

where ri(t|L, n) is the time-varying discharge rate of the ith fiber given the tone level L and
the noise waveform n (Parzen, 1962; Siebert, 1970; Snyder and Miller, 1991; Rieke et al.,

1997).

By substituting this expression for p(T i|L, n) into Eq. 5.6, the form of the optimum

processor Yopt|n,i(T i) can be evaluated as

Yopt|n,i(T i) = ln


[∏Ki

j=1 ri(t
i
j|L2, n)

/
Ki!

]
exp

[
−

T∫
0
ri(t|L2, n)dt

]
[∏Ki

j=1 ri(t
i
j|L1, n)

/
Ki!

]
exp

[
−

T∫
0
ri(t|L1, n)dt

]
 ,

= ln


 Ki∏
j=1

ri(t
i
j|L2, n)

ri(tij|L1, n)

 exp
 T∫

0

[ri(t|L1, n)− ri(t|L2, n)]dt

 ,
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=
Ki∑
j=1

ln
ri(t

i
j|L2, n)

ri(tij|L1, n)
+

T∫
0

[ri(t|L1, n)− ri(t|L2, n)]dt. (5.8)

Note that only the first term on the right side of Eq. 5.8 depends on the random obser-

vations T i, while the second term depends only on the random noise waveform n. Exam-

ination of Eq. 5.8 provides insight as to how the optimum processor for the ith AN fiber

uses the observed discharge times to decide between the two alternatives, L1 and L2. The

optimum processor Yopt|n,i(T i) evaluates each discharge time tij in terms of the likelihood

that it arose from L2 relative to the likelihood that it arose from L1 [i.e., by calculating

ln
[
ri(t

i
j|L2, n)

/
ri(t

i
j|L1, n)

]
in the first term of Eq. 5.8]. This quantity will be greater than

zero if the discharge rate at time tij was higher for L2 than for L1. The summation of these

terms for all observed discharge times thus will be likely to be greater than zero for the

stimulus L2 and less than zero for the stimulus L1. The second term in Eq. 5.8 represents

the expected difference in the number of discharges resulting from L1 and L2 for the noise

waveform n. This term serves as a correction term based on knowledge of the individual noise

waveforms. Thus, the optimum processor evaluates each discharge time based on knowledge

of the discharge rates for both alternatives for each noise waveform n [i.e., the processor is

assumed to know ri(t|L2, n) and ri(t|L1, n) for each n].

5.3.3 General form of a “smart” processor with limited knowledge

The rate waveforms ri(t|L2, n) and ri(t|L1, n) can be viewed as the optimum processor’s

a priori information about the AN responses for the two alternatives (i.e., the processor’s

expected AN responses). The assumption that a human listener knows the discharge rate

waveforms for each individual noise n is unrealistic; however, it is reasonable to assume that

the listener develops some sub-optimum a priori information about the AN responses for

each alternative. The form of the optimum processor in Eq. 5.8 will be referred to as a smart

way to process the observed AN discharge times T based on any two expected AN responses
for the two alternatives.
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Thus, performance is derived below for a general processor of the form

Y (T ) =
M∑
i=1

Yi(T i), (5.9)

where,

Yi(T i) =�
Ki∑
j=1

ln
xi(t

i
j|L2, n)

xi(tij|L1, n)
+

T∫
0

xi(t|L1, n)− xi(t|L2, n)dt, (5.10)

and xi(t|L2, n) and xi(t|L1, n) represent the processor’s expected AN responses for the two

alternatives. Note that the sum in Eq. 5.9 is an optimum way to combine information across

AN fibers if the fibers are independent (see Eq. 5.6); however, in the present analysis this is

generally a sub-optimum combination scheme because AN fibers may be correlated in their

responses to noise stimuli.

Figure 5-1 illustrates two different processors that will be evaluated in the analysis below.

The left column shows individual-noise responses to a noise alone (top row) and in the

presence of three tones of different levels. These AN responses represent the knowledge used

by the optimal processor for a tone detection in noise task. For example, the optimal model

would rely on information related to the presence of the tone in the narrow dips of the noise

response (e.g., near 13 ms and 35 ms). The presence of the tone at L2=20 dB SPL can be

seen in these dips, and thus the optimal processor would be able to detect this low-level tone

even though the overall shape of the tone-in-noise and noise-alone responses are very similar.

By varying the form of the expected-response waveforms, xi(t|L2, n) and xi(t|L1, n),

performance can be evaluated based on different assumptions of the knowledge used by the

processor about the AN responses for each alternative and for each noise waveform. For

example, we can remove the assumption that the processor uses the responses for individual

noise waveforms by using expected responses that do not depend on individual noises (e.g.,

by using the average AN response across all noises, or the AN responses for tones in quiet).

A more realistic processor that only uses the average properties of the noise-alone and tone-

in-noise responses is illustrated in the right column of Fig. 5-1. The average tone-in-noise

condition for L=20 dB SPL is indistinguishable from the noise-alone response. Only when
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Figure 5-1: Illustration of auditory-nerve responses used in the theoretical analysis. The
optimum processor uses knowledge of individual noise responses (shown in the left column)
to detect a tone in noise. A realistic processor is assumed to use only knowledge of the
average tone-in-noise response (shown in the right column as the average responses over 100
noises). The level of the 50-ms tone is given by L.
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the tone level is raised to 40 dB SPL is a significant difference observed between signal and

standard conditions, and thus the realistic processor would be expected to have a much

higher threshold than the optimum processor. In summary, the performance of a specific

processor that only uses knowledge of the noise ensemble can be evaluated; however, it has

not been shown that this processor is optimum given that only the ensemble properties of

the noise are known.

5.3.4 Performance of the general processor

In this section, several fundamental properties for decision variables of the form of interest

(Eq. 5.10) are used to specify the sensitivity index Q in terms of the discharge rates r(t) of

each AN fiber in response to the two stimulus alternatives. The sensitivity index Q (Eq. 5.1)

for the general processor (Eq. 5.9) is given by

Q(L1, L2) =
{En,T [Y (T ) |L2]− En,T [Y (T ) |L1]}2

V arn,T [Y (T ) |L1]
,

=

(
En

{
ET

[
M∑
i=1

Yi (T i)

∣∣∣∣∣L2, n

]}
− En

{
ET

[
M∑
i=1

Yi (T i)

∣∣∣∣∣L1, n

]})2

En

{
V arT

[
M∑
i=1

Yi (T i)

∣∣∣∣∣L1, n

]}
+ V arn

{
ET

[
M∑
i=1

Yi (T i)

∣∣∣∣∣L1, n

]} . (5.11)

Using the linearity of expected values and the assumption of conditionally independent AN

fibers given the stimulus, Eq. 5.11 can be simplified further to

Q(L1, L2) =

[
En

(
M∑
i=1

{ET [Yi (T i) |L2, n]− ET [Yi (T i) |L1, n]}
)]2

En

{
M∑
i=1

V arT [Yi (T i) |L1, n]

}
+ V arn

{
M∑
i=1

ET [Yi (T i) |L1, n]

} . (5.12)

The terms of the form ET [Yi (T i) |L, n] and V arT [Yi (T i) |L, n] in Eq. 5.12 can be sim-
plified using a general result for decision variables of the form

Xi(T i) =
Ki∑
j=1

g(tij), (5.13)

where g(tij) is any function of the discharge time t
i
j generated from a nonstationary Poisson
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process with time-varying rate function ri(t). It can be shown (e.g., Rieke et al., 1997) that

the expected value and variance of Xi(T i) are given by

ET
[
Xi(T i)

]
=

T∫
0

g(t)ri(t)dt, (5.14)

V arT
[
Xi(T i)

]
=

T∫
0

g2(t)ri(t)dt. (5.15)

Using the definition

gi(t)=
� ln

xi(t|L2, n)

xi(t|L1, n)
, (5.16)

the general processor Yi(T i) for the ith AN fiber given in Eq. 5.10 can be written as

Yi(T i) =
Ki∑
j=1

gi(t
i
j) +

T∫
0

xi(t|L1, n)− xi(t|L2, n)dt. (5.17)

The terms inside the summations in Eq. 5.12 can be simplified using Eqs. 5.14 and 5.15 as

ET
[
Yi
(
T i
)∣∣∣L2, n

]
− ET

[
Yi
(
T i
)∣∣∣L1, n

]
=

=

T∫
0

gi(t)ri(t|L2, n)dt+

T∫
0

xi(t|L1, n)− xi(t|L2, n)dt

−
 T∫

0

gi(t)ri(t|L1, n)dt+

T∫
0

xi(t|L1, n)− xi(t|L2, n)dt

 ,
=

T∫
0

gi(t) [ri(t|L2, n)− ri(t|L1, n)] dt. (5.18)

V arT
[
Yi
(
T i
)∣∣∣L1, n

]
= V arT

 Ki∑
j=1

gi(t
i
j)

∣∣∣∣∣∣L1, n

 ,
=

T∫
0

g2
i (t)ri(t|L1, n)dt. (5.19)
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ET
[
Yi
(
T i
)∣∣∣L1, n

]
=

T∫
0

gi(t)ri(t|L1, n)dt+

T∫
0

xi(t|L1, n)− xi(t|L2, n)dt. (5.20)

Thus, the sensitivity index Q for the general processor is given by

Q(L1, L2) =

En


M∑
i=1

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)] dt


2/

En


M∑
i=1

T∫
0

[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)dt

 (5.21)

+V arn

 M∑
i=1

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
ri(t|L1, n) + xi(t|L1, n)− xi(t|L2, n)dt

 .

The numerator of Eq. 5.21 represents the square of the expected value of the difference

between the decision variable for the two alternatives L1 and L2. The denominator of

Eq. 5.21 represents the variance of the decision variable as the sum of the AN variance (first

term) and the stimulus variance (second term).

Equation 5.21 represents the fundamental result of the present analysis, and can be

used to analyze several types of discrimination- or detection-in-noise experiments that are

commonly used in psychophysics. A random noise experiment uses independent noise wave-

forms in all observation intervals (e.g., in both intervals of a two-interval, two-alternative

forced-choice experiment). A fixed noise experiment uses the identical noise waveform in all

observation intervals, and thus the influence of stimulus variability on the observations is

removed.

For a fixed-noise experiment, Eq. 5.21 can be used to calculate the sensitivity metric for

each noise waveform n as

Q(L1, L2, n) =


M∑
i=1

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)] dt


2/


M∑
i=1

T∫
0

[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)dt

 . (5.22)
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The average sensitivity across noise waveforms is then given by

Q(L1, L2) = En {Q(L1, L2, n)} . (5.23)

Psychophysical performance has been shown to vary from noise waveform to noise waveform

in some conditions (e.g., Gilkey et al., 1985; Isabelle and Colburn, 1991; Siegel and Colburn,

1989), and thus Eq. 5.22 could be used to evaluate the peripheral contribution to the variation

in performance across noise waveforms.

5.3.5 Simplifications for suprathreshold conditions

The sensitivity metric Q derived in the previous section (Eq. 5.21) can be simplified for

suprathreshold discrimination conditions (i.e., most discrimination experiments excluding

detection). In suprathreshold conditions, it is reasonable to assume that ri(t|L, n) and
xi(t|L, n) vary linearly and slowly over the incremental range from L to L+∆L, where ∆L

is small (Colburn, 1981). Thus,

ri(t|L+∆L, n) � ri(t|L, n) + ṙi(t|L, n)∆L, (5.24)

where ṙi(t|L, n) =� ∂
∂L
ri(t|L, n), and similarly for xi(t|L, n). Several terms in Eq. 5.21 can be

simplified using this assumption including

ln
xi(t|L+∆L, n)

xi(t|L, n)
� ln

(
1 +

ẋi(t|L, n)∆L
xi(t|L, n)

)
,

� ẋi(t|L, n)∆L
xi(t|L, n)

, (5.25)

where the last step used the approximation ln(1 + x) � x for small x. Thus, the sensitivity

index Q in Eq. 5.21 is simplified in the suprathreshold case as

Q (L,∆L) =

En


M∑
i=1

T∫
0

[
ẋi(t|L, n)∆L
xi(t|L, n)

]
ṙi(t|L, n)∆Ldt


2/

En


M∑
i=1

T∫
0

[
ẋi(t|L, n)∆L
xi(t|L, n)

]2

ri(t|L, n)dt
 + (5.26)
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+V arn

 M∑
i=1

T∫
0

ẋi(t|L, n)∆L
xi(t|L, n)

ri(t|L, n)− ẋi(t|L, n)∆Ldt
 .

Characterization of processor performance can be simplified further by defining the nor-

malized sensitivity δ′(L) of the processor (see Durlach and Braida, 1969; Braida and Durlach,

1988; Chapter 2) to be given by

[δ′(L)]
2
=�
Q (L,∆L)

(∆L)2
. (5.27)

Thus, the normalized-sensitivity squared [δ′(L)]2 of the general processor is given by

[δ′(L)]
2
=

En


M∑
i=1

T∫
0

[
ẋi(t|L, n)
xi(t|L, n)

]
ṙi(t|L, n)dt


2/

En


M∑
i=1

T∫
0

[
ẋi(t|L, n)
xi(t|L, n)

]2

ri(t|L, n)dt
 (5.28)

+V arn

 M∑
i=1


T∫

0

[
ẋi(t|L, n)
xi(t|L, n)

]
ri(t|L, n)− ẋi(t|L, n)dt


 .

The partial derivatives with respect to level in Eq. 5.28 can be approximated by taking the

difference between the AN discharge rate waveforms r(t) at two incrementally different levels

and dividing by the level difference (see Chapter 2).

Theoretical predictions of normalized sensitivity can be related to psychophysical perfor-

mance in terms of ∆LJND, which is defined as corresponding to Q(L,∆LJND) = 1, and is

therefore related to δ′(L) by

∆LJND(L) = [δ
′(L)]

−1
. (5.29)

5.3.6 Specific processors

Several types of processors that are evaluated below are described in this section. Expressions

for the normalized sensitivity of these processors in the suprathreshold conditions are also

given to provide some insight into their performance.
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Optimum processor

It has been shown above that the optimum processor given knowledge of each noise waveform

corresponds to using expected responses that are equal to the rate waveforms for each noise

waveform for each alternative [i.e., xi(t|L1, n) = ri(t|L1, n) and xi(t|L2, n) = ri(t|L2, n)].

Evaluating Eq. 5.28 with the optimum expected responses, the normalized sensitivity squared

for the suprathreshold conditions is given by

[δ′(L)]
2
=

En


M∑
i=1

T∫
0

1

ri(t|L, n)
[ṙi(t|L, n)]2 dt


2/

En


M∑
i=1

T∫
0

1

ri(t|L, n)
[ṙi(t|L, n)]2 dt


+V arn


M∑
i=1

 T∫
0

ṙi(t|L, n)− ṙi(t|L, n)dt


 ,

= En


M∑
i=1

T∫
0

1

ri(t|L, n)
[ṙi(t|L, n)]2 dt

 ,

= En

{
M∑
i=1

[δ′i(L, n)]
2

}
,

= En

{
[δ′(L, n)]

2
}
, (5.30)

where [δ′i]
2 is the normalized sensitivity squared of the ith AN fiber, and [δ′]2 is the total

normalized sensitivity squared for each noise based on the population of M AN fibers. The

identical result can also be derived from the Cramér-Rao bound with a fixed noise waveform

n (Siebert, 1970; Chapter 2). Thus, the optimum processor is unaffected by the random

variation across noises (i.e., optimum performance in a random-noise experiment is the same

as optimum performance in a fixed-noise experiment). This finding results from the processor

using the AN responses to each noise individually. In the general discrimination experiment,

the sensitivity for the optimum processor is given by

Q(L1, L2) = En

{
M∑
i=1

Qi(L1, L2, n)

}
, (5.31)

where Qi is the sensitivity of the i
th AN fiber.
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Noise-independent processor

The assumption that a listener uses the discharge rate waveform for each individual noise

is unrealistic. In fact, it is unlikely that listeners changes their processors from noise to

noise in a single experiment. The general equation for normalized sensitivity (Eq. 5.28) can

be simplified based on the assumption that the processor uses the same expected responses

for all noise waveforms [i.e., xi(t|L1) and xi(t|L2) are independent of n]. In this case, the

normalized sensitivity squared is given by

[δ′(L)]
2
=


M∑
i=1

T∫
0

[
ẋi(t|L)
xi(t|L)

]
ṙi(t|L)dt


2/

(5.32)

 M∑
i=1

T∫
0

[
ẋi(t|L)
xi(t|L)

]2

ri(t|L)dt+ V arn


M∑
i=1

T∫
0

[
ẋi(t|L)
xi(t|L)

]
ri(t|L, n)dt


 ,

where ri(t|L)=�En[ri(t|L, n)] is the average rate waveform across all noises. For the fixed-noise
experiment, the normalized sensitivity squared for each noise is given by

[δ′(L, n)]
2
=


M∑
i=1

T∫
0

[
ẋi(t|L)
xi(t|L)

]
ṙi(t|L, n)dt


2/

M∑
i=1

T∫
0

[
ẋi(t|L)
xi(t|L)

]2

ri(t|L, n)dt
 . (5.33)

A specific noise-independent processor that is evaluated below is based on the assump-

tion that the processor uses the average rate waveform for each alternative across all noise

waveforms [i.e., that the processor uses xi(t|L1) = ri(t|L1) and xi(t|L2) = ri(t|L2)].
1 This

assumption states that the processor operates based on the common influence of the tone

on the rate waveforms, but does not use the individual rate waveforms for the tone in each

noise. In this case, the normalized sensitivity squared is given by

[δ′(L)]
2
=


M∑
i=1

T∫
0

1

ri(t|L)
[
ṙi(t|L)

]2
dt


2/

(5.34)

 M∑
i=1

T∫
0

1

ri(t|L)
[
ṙi(t|L)

]2
dt+ V arn


M∑
i=1

T∫
0

[
ṙi(t|L)
ri(t|L)

]
ri(t|L, n)dt


 .

1Pilot studies with other noise-independent processors, such as tone alone or supra-threshold tone in
noise, indicated that the primary results do not depend strongly on the exact choice of xi(t|L1) and xi(t|L2).
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Time-independent processor

Another class of sub-optimum processor that is evaluated below is one in which the processor

is assumed not to make use of any temporal information in the AN-discharge patterns. This

assumption corresponds to the use of time-independent expected responses [xi(L1, n) and

xi(L2, n)]. In this case, the general processor (Eqs. 5.9 and 5.10) is given by

Yi(T i) =�
Ki∑
j=1

ln
xi(L2, n)

xi(L1, n)
+

T∫
0

xi(L1, n)− xi(L2, n)dt,

=

[
ln

xi(L2, n)

xi(L1, n)

]
Ki + T [xi(L1, n)− xi(L2, n)] , (5.35)

and can be seen to only depend on the observed number of discharges Ki on each AN fiber.

For any time-independent expected response, the normalized sensitivity squared is given by,

[δ′(L)]
2
=

(
En

{
M∑
i=1

[
ẋi(L, n)

xi(L, n)

]
˙̃ri(L, n)

})2/
 1
T
En


M∑
i=1

[
ẋi(L, n)

xi(L, n)

]2

r̃i(L, n)

 (5.36)

+V arn

(
M∑
i=1

{[
ẋi(L, n)

xi(L, n)

]
r̃i(L, n)− ˙̃xi(L, n)

})]
,

where r̃i(L)=
� 1
T

T∫
0
ri(t|L)dt is the average discharge rate over time. For the fixed-noise case,

the normalized sensitivity for each noise is given by

[δ′(L, n)]
2
= T

{
M∑
i=1

[
ẋi(L, n)

xi(L, n)

]
˙̃ri(L, n)

}2/
M∑
i=1

[
ẋi(L, n)

xi(L, n)

]2

r̃i(L, n)

 . (5.37)

5.4 Application of Theory

5.4.1 Use of computational auditory-nerve models

The use of computational AN models, which are needed to describe the complex nonlinear

responses of AN fibers to noise stimuli, precludes the computation of discharge-rate wave-

forms r(t) for all M (roughly 30,000) AN fibers in Eq. 5.21. To reduce computation time, it
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is assumed that it is roughly equivalent to compute the rate waveforms for a limited number

(NCF ) of different model fibers, and to assume that there are Mi statistically identical, con-

ditionally independent AN fibers represented by each model fiber, such that M =
NCF∑
i=1

Mi.
2

Based on this assumption, Eq. 5.21 can be written as

Q(L1, L2) =

En


NCF∑
i=1

Mi

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)] dt


2/

En


NCF∑
i=1

Mi

T∫
0

[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)dt

 (5.38)

+V arn

NCF∑
i=1

Mi

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
ri(t|L1, n) + xi(t|L1, n)− xi(t|L2, n)dt

 .

For the simple case in which Mi = MCF for each i (a typical assumption when each

model fiber represents a different CF ), Eq. 5.38 simplifies to

Q(L1, L2) =

En


NCF∑
i=1

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)] dt


2/

 1

MCF

En


NCF∑
i=1

T∫
0

[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)dt

 (5.39)

+V arn

NCF∑
i=1

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
ri(t|L1, n) + xi(t|L1, n)− xi(t|L2, n)dt

 ,

for the random-noise experiment. In a fixed-noise experiment, the sensitivity is given by

Q(L1, L2, n) = MCF


NCF∑
i=1

T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)] dt


2/


NCF∑
i=1

T∫
0

[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)dt

 , (5.40)

2Note that this is also an interesting theoretical view of the population of AN fibers within the auditory
system. One can hypothesize that the auditory system benefits in two ways from the distribution of AN
fibers: (1) multiple AN fibers with different CF ’s, thresholds, and dynamic ranges allow the auditory system
to encode sound over a wide range of frequencies and levels, and (2) multiple conditionally independent
AN fibers with identical characteristics allow the auditory system to reduce the limitations imposed by
physiological response variability through redundancy.
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and the benefit from having MCF statistically identical AN fibers at each CF is to increase

the sensitivity Q by a factor of MCF . However, for the random-noise experiment (Eq. 5.39),

the benefit from having MCF statistically identical AN fibers at each CF can range from a

factor of MCF [when the AN variance dominates, i.e.,
1

MCF
En {· · ·} � V arn (· · ·)] to a factor

of 1 [when the stimulus variance dominates, i.e., 1
MCF

En {· · ·} � V arn (· · ·)]. Note that the
AN (internal) variance is reduced by a factor of 1

MCF
by combining over MCF fibers, while

no reduction in the stimulus (external) variance occurs from combining over multiple fibers.

An illustration of the use of a computational AN model to make predictions of sensitivity

for several of the models and experiments described above is shown in Fig. 5-2. The nonlinear

computational AN model used in the present study is described in Appendix A; however,

the basic implementation issues that are important for the present predictions are discussed

below. The predictions were made with 60 high-spontaneous-rate (HSR, 60 sp/sec) model

fibers that had characteristic frequencies (CF) ranging from 200 to 20,000 Hz.

Fig. 5-2 shows sensitivity Q for the detection of a 1049-Hz tone, which corresponds to

the model CF that was closest to 1 kHz. Sensitivity is shown for detection of the tone

in quiet and in the presence of noise maskers with 100-Hz and 10-kHz bandwidths. The

bandlimited maskers were centered geometrically at the tone frequency, and were presented

with a spectrum level ofN0=20 dB SPL and a duration of T=200 ms. The tone was presented

at a level of L =40 dB SPL, which roughly corresponds to human threshold (Q = 1) for both

masker bandwidths (Fletcher, 1940; Bos and de Boer, 1966), and a duration of T =200 ms.

The left column of Fig. 5-2 shows sensitivity based on MCF = 1 AN fiber at each model

CF , while the right column corresponds to MCF = 200. The human AN contains about

30,000 AN fibers (Rasmussen, 1940), with CF’s distributed close to logarithmically from 20-

20,000 Hz (Greenwood, 1990). Liberman (1978) has shown in cat that the HSR population

makes up roughly 60% of the total AN-fiber population. Thus, MCF = 200 statistically

identical AN fibers for each of the 60 model CF’s ranging from 200-20000 Hz was used to

represent the total population of HSR fibers in the human AN, given that CF’s below 200

Hz are not likely to respond to a 1-kHz, 40-dB SPL tone. Predictions are compared between

the all-information model (based on all AN discharge times) and the rate-place model (based

only on the set of AN discharge counts). For both maskers, predictions are made for the
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Figure 5-2: Sensitivity Q for detection of a 1049-Hz tone in quiet and in noise maskers
with narrow and broad bandwidths predicted using a computational AN model. The left
panel represents predictions based on MCF=1 high-spontaneous-rate (HSR: 60 sp/sec) AN
fiber for each model characteristic frequency (CF), while the right panel shows predictions
for MCF=200 statistically identical AN fibers for each CF, which represents the total HSR
fiber population (see text). Predictions are compared based on the set of AN discharge
times (all-information: AI) and based on the set of AN discharge counts (rate-place: RP).
Masking predictions are made for the realistic processor (Eqs. 5.9 and 5.10) and for the
optimum processor (Eqs. 5.6 and 5.8) based on 50 noise waveforms. The realistic-processor
predictions are made for a random-noise experiment (Eq. 5.39) and a fixed-noise experiment
(Eqs. 5.40 and 5.23). The tone was 1049 Hz, 40 dB SPL, 200 ms (20-ms rise/fall), which
corresponds roughly to human threshold for both bandwidths (Q = 1, solid line). The
AN response extended 25 ms after the stimulus offset to include the transient response (see
Chapter 2). The noise maskers had a spectrum level of 40 dB SPL, and a duration equal to
the tone.
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realistic processor (Eqs. 5.9 and 5.10) that only uses the average tone-in-noise response, and

for the optimum processor (Eqs. 5.6 and 5.8) that uses each noise waveform individually.

Predictions for the realistic processor are made for the random-noise experiment (Eq. 5.39)

and for the fixed-noise experiment (Eqs. 5.40 and 5.23).

The predictions in Fig. 5-2 demonstrate several effects that are important for under-

standing the effect of noise maskers on psychophysical performance limits. In all cases, the

sensitivity Q decreased when a noise masker was presented. The sensitivity for the all-

information model was always higher than the corresponding rate-place sensitivity. Optimal

sensitivity was always greater than or equal to fixed-noise sensitivity, which was greater than

or equal to random-noise sensitivity.

For the MCF = 1 predictions shown in the left column, the optimal and fixed-noise

sensitivities were reduced for the 10-kHz masker compared with the 100-Hz masker, especially

for the rate-place model. For the all-information predictions, the reduction in sensitivity

that results from using random- instead of fixed-noise maskers was much larger for the

narrowband masker than for the broadband masker. This result is consistent with the large

random fluctuations associated with narrowband noise stimuli. The effect of random-noise

variation was minimal for both masker bandwidths for the rate-place model. The random-

noise sensitivity for the all-information model was essentially the same for both masker

bandwidths, consistent with equal human detection performance for both bandwidths for

this tone frequency (Fletcher, 1940; Bos and de Boer, 1966). In contrast, the rate-place

sensitivity was greatly reduced for the 10-kHz masker compared with the 100-Hz masker.

Both the all-information and rate-place models demonstrated greater sensitivity than humans

for the 100-Hz random noise, while only the all-information sensitivity was greater than

human sensitivity for the 10-kHz random noise.

The predictions with MCF = 200 statistically identical AN fibers for each model CF

represent the total HSR population of AN fibers. For independent AN fibers (such as are

assumed in the optimum model and in the fixed-noise and in-quiet experiments), the benefit

from having multiple AN fibers at each CF is to increase the sensitivity Q by a factor

of MCF=200 (Eq. 5.40). In contrast, the benefit in the random-noise experiment is less

than a factor of MCF=200 (Eq. 5.39). For the all-information model, the benefit is less
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than a factor of two for both masker bandwidths because the external stimulus variance is

dominating the denominator of Eq. 5.39. The benefit ofMCF=200 AN fibers for each model

CF in the rate-place model is a factor of six for the narrowband masker, and is a factor of

150 for the broadband masker. This difference in the benefit of adding multiple AN fibers

is consistent with a larger external stimulus variability for the narrowband masker than for

the broadband masker. Thus, the use of random-noise maskers has a strong and complex

effect on the benefit that can be achieved by combining information across AN fibers. The

reduced benefit results from the correlation of AN fibers due to the common influence of the

random stimulus noise.3

5.4.2 Distribution of information across characteristic frequency

The sensitivity evaluated for each model CF provides a rough estimate of the distribution of

information across the population of AN fibers. Note that this may not represent the total

amount of information, depending on the correlation across CF ’s. The total information

available is not simply the sum of the information across CF’s due to interactions between

CF’s resulting from the common source of variability from the noise stimulus. This distri-

bution of information simply represents the amount of information that each CF in isolation

could contribute to discrimination.

The sensitivity for the ith CF is given by

Qi(L1, L2) =

En


T∫

0

ln
xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)] dt


2/

 1

Mi

En


T∫

0

[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)dt

+ (5.41)

3Several pilot simulations were performed to investigate whether the small benefit from combining over
multiple AN fibers resulted from the assumption that the total HSR population could be represented by 200
statistically identical AN fibers at each model CF. In a suprathreshold discrimination in noise experiment,
model CF’s were spaced 0.1 mm apart on the BM to represent single inner-hair-cell (IHC) spacing, and
MCF = 10 AN fibers were assumed to be represented by each model CF. The predicted sensitivity for these
conditions was very similar to the sensitivity predicted based on MCF=200 AN fibers for each of the 60
model CF’s. Thus, the representation of the total AN population by 60 model CF’s spaced from 200-20,000
Hz appears to be a reasonable approximation given the computational time required to perform the accurate
1-IHC spacing of model CF’s.
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+V arn

 T∫
0

ln
xi(t|L2, n)

xi(t|L1, n)
ri(t|L1, n) + xi(t|L1, n)− xi(t|L2, n)dt

 .

In the fixed-noise case, the sensitivity of the ith CF and nth noise waveform is given by

Qi(L1, L2, n) = Mi


T∫

0

ln
xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)] dt


2/


T∫

0

[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)dt

 . (5.42)

Note that in a fixed-noise experiment, the total sensitivity for the general processor given in

Eq. 5.40 is not equal to the sum of the individual sensitivities on each fiber given in Eq. 5.42,

as might be expected for an experiment in which the stimulus variability was removed. This is

due to the fact that the average discharge rates in noise that are used by the processor provide

weights to apply to the temporal patterns of discharges, as well as to the contributions from

each fiber. For general expected-response waveforms, the weights assigned to each CF may

not be optimum, and therefore the familiar result that the sensitivities from independent

sources can be added does not hold in this case because the combination of information

across independent sources is non-optimal.

The distribution of information across the population of AN fibers can be used to evaluate

whether only the CF’s near the frequency of a tone contain useful information for detection

of the tone in noise, which is a common assumption in interpreting psychophysical masking

experiments (Moore, 1995a). Figure 5-3 shows the sensitivity Q for individual CF’s plotted

as a function of CF for the rate-place (top panel) and all-information (bottom panel) models.

Sensitivity of the realistic processor for detection in quiet (solid curve) is compared to de-

tection in a narrowband (100 Hz) random-noise masker and to detection in a broadband (10

kHz) noise masker based on Eq. 5.41. The left column shows predictions based on MCF=1

AN fiber for each model CF, while the right column represents MCF=200.

For detection in quiet, a broad range of CF’s contribute significant information, with the

CF equal to the tone frequency contributing the most significant information. The sensitivity

curve is shifted upward by a factor of 200 for the MCF=200 predictions, as expected. When
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Figure 5-3: Sensitivity Q for detection of a tone in quiet and in random-noise maskers with
bandwidths of 100 Hz and 10 kHz is plotted as a function of CF for the rate-place (top panel)
and all-information (bottom panel) models based on high-spontaneous-rate (60 sp/sec) AN
fibers. The tone was 1049 Hz, 40 dB SPL, 200 ms (20-ms rise/fall), which corresponds
roughly to human threshold for both bandwidths (Q = 1, solid line). The noise maskers
had a spectrum level of 40 dB SPL, and a duration equal to the tone. Masked detection
predictions are for the realistic processor that uses knowledge of the average tone-in-noise
responses over 50 noise waveforms.
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the random narrowband of noise is added to the tone, the rate-place information in the CF’s

near the tone frequency is most degraded due to saturation of the rate-level curve, while the

information at CF’s well above and below the tone frequency are typically unaffected. The

on-frequency CF is operating on a very shallow part of the rate-level curve in the presence

of the noise masker, while the CF’s near the edges of the noise are operating on a steeper

part of the rate-level curve, and thus provide more information. Thus, the situation arises

in which there is more rate-place information off-frequency than on-frequency for detection

of a tone in a narrowband of noise.

The all-information predictions for MCF = 1 are similar; however, there is less of a detri-

mental effect of saturation at CF, and thus the all-information profile is much flatter than the

rate-place information profile for detection in narrowband noise. The all-information profile

for MCF=200 is much broader than for MCF=1, with significant information contributed by

CF’s from 600 Hz to 20 kHz. The dramatic change in shape of the all-information profile

when multiple statistically identical AN fibers are added for each CF results from variation

in the correlation between same-CF fibers as a function of CF. For CF’s near the tone fre-

quency, the noise masker causes the same-CF fibers to be highly correlated, and thus there is

only a small benefit of adding additional fibers. For CF’s well away from the tone frequency,

the noise masker has a small effect and the AN randomness has a large effect, and thus there

is a large benefit from adding multiple same-CF AN fibers.

There is a small amount of rate-place information at the CF equal to the tone frequency

that remains in the presence of the broadband noise masker because the rate-level function

does not completely saturate in the presence of the noise. For the broadband noise, the

information off-frequency is greatly reduced, and thus the information at the CF equal to the

tone frequency is most dominant. The situation for the all-information model is similar, with

a slightly broader range of CF’s near the tone frequency contributing significant information.

Thus, for detection in broadband noise, detection is based primarily on information near the

CF equal to the tone-frequency (i.e., on-frequency information).
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5.4.3 Analyzing temporal information

Detection of tones in noise is often assumed to depend only on the long-term power spectra

of the signal and masker (Moore, 1995a). However, Fig. 5-2 demonstrated that temporal

information is available for the detection of low-frequency tones in noise. Similar predictions

for 8-kHz tones (not shown) indicate that there is also significant temporal information

available for the detection of high-frequency tones in noise, despite the lack of strong phase-

locking to the temporal fine-time structure above 2 kHz in the AN (Johnson, 1980; see

Appendix A). In order to visualize the type of temporal information available for a single

CF, Eq. 5.41 can be evaluated as a function of time as

Qi(t, L1, L2) =

(
En

{
ln

xi(t|L2, n)

xi(t|L1, n)
[ri(t|L2, n)− ri(t|L1, n)]

})2/
 1

Mi

En


[
ln

xi(t|L2, n)

xi(t|L1, n)

]2

ri(t|L1, n)

 (5.43)

+V arn

[
ln

xi(t|L2, n)

xi(t|L1, n)
ri(t|L1, n) + xi(t|L1, n)− xi(t|L2, n)

])
.

Equation 5.43 represents the sensitivity Q(t, L1, L2) of a processor that relies solely on a very

small temporal window (e.g., a single sample point in this illustration). However, the total

sensitivity based on the entire stimulus duration is not simply the integral of Q(t, L1, L2)

across time (Eq. 5.42) due to potential correlation between temporal segments.

The type of temporal information available to the realistic processor for the detection of a

low- or high-frequency tone in random noise is illustrated in Fig. 5-4. The average-noise-alone

response used by the realistic processor is shown in the top panel, while the average-tone-in-

noise response is shown in the middle panel. The resulting temporal information available

is shown in the bottom panel by plotting sensitivity Q as a function of time.

The tone level shown in Fig. 5-4 is L=60 dB SPL, while the noise masker spectrum level

is No=40 dB SPL. Thus, the 1010-Hz tone condition is near human threshold (Bos and de

Boer, 1966). A clear difference is seen between the average noise-alone and tone-in-noise

responses. The temporal information that is available for the low-frequency tone follows the

fine-time structure of the tone response due to strong AN phase-locking below 2 kHz. Both
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Figure 5-4: An illustration of the temporal information available to the realistic processor.
Average noise-alone (top panel) and tone-in-noise (middle panel) responses (based on 100
noise waveforms) are shown for detection of a low-frequency (1010 Hz,left column) and
high-frequency (7815 Hz, right column), 60-dB SPL tone presented at CF. The temporal
information for the high-spontaneous-rate (60 sp/sec) fiber is shown in the bottom panel by
plotting sensitivity Q as a function of time (Eq. 5.43).
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the upward- and downward-going portions of each tone-response period provide information.

The high-frequency condition (7815 Hz) shown in Fig. 5-4 is the same tone level (L=60 dB

SPL) as the low-frequency condition, and thus represents a sub-human-threshold condition,

due to larger filter bandwidths at high frequencies. The average-noise-alone and tone-in-noise

responses show very little fine-time phase locking due to very low synchrony coefficients for

the AN model at high frequencies. Each condition shows a large onset response, followed by

a relatively flat steady-state response with small envelope fluctuations. These slow fluctua-

tions differ between the signal and standard responses, and thus the temporal information

primarily represents envelope information for high frequency tones in noise. Note that the

high-frequency condition has much less total sensitivity Q than the low-frequency condition,

consistent with higher human thresholds at high frequencies.

5.4.4 Estimating psychophysical thresholds

In order to relate model predictions to psychophysical performance in a general discrimina-

tion task, threshold Lthr(L1) is defined as the value of L2 such that Q(L1, L2 = Lthr) = 1

for a given L1. Psychophysical discrimination performance is often reported in terms of the

just-noticeable difference (JND) in level, ∆LJND(L1) = Lthr−L1, or in terms of the detection

threshold Lthr with L1 = −∞. For a suprathreshold condition, Eq. 5.29 relates ∆LJND(L1)

to the normalized sensitivity δ′L(L1) predicted from the AN model using Eq. 5.28.

For a general discrimination experiment, threshold is more difficult to estimate using a

computational approach. The sensitivity Q(L1, L2) must be calculated (Eq. 5.39) for various

values of L2 to determine threshold Lthr. Figure 5-5 illustrates the estimation of thresholds

for a detection-in-noise task. The significant difference between the random- and fixed-

noise sensitivities for the realistic all-information processor observed in Fig. 5-2 results in a

much lower threshold for the fixed-noise experiment (0 dB SPL) than for the random-noise

condition (24 dB SPL). The optimum threshold (-6 dB SPL) is below the threshold for the

realistic processor based on restricted knowledge. Human threshold for this condition is

roughly 40 dB SPL, and thus the all-information threshold for the random-noise experiment

is well below human threshold, while the rate-place threshold (43 dB SPL) is only slightly

above human threshold.
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Figure 5-5: Method for determining detection threshold. The sensitivity Q is calculated
from Eq. 5.39 for the realistic processor in random- and fixed-noise experiments, as well as
for the optimal processor (based on 50 noise waveforms). Threshold is defined as the tone
level for which Q=1, and is indicated by the numbers next to the vertical lines for each
model. Thresholds are compared for the rate-place (top panel) and all-information (bottom
panel) models. MCF=200 high-spontaneous-rate (60 sp/sec) AN fibers for each of the 60
model CF’s ranging from 200 to 20,000 Hz. The tone signal was 1049 Hz and 200 ms (20-ms
rise/fall). The noise masker had a bandwidth of 10 kHz centered geometrically at the tone
frequency, a spectrum level of 20 dB SPL, and the same duration as the tone. The AN
response used in Eq. 5.39 included 25 ms after the nominal stimulus offset to include the
transient response (see Chapter 2).
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5.5 Discussion

The primary goal of this chapter of the dissertation was to describe and demonstrate the

theory developed for predicting psychophysical performance limits in experiments that use

noise maskers. This theory was based on separating the contribution of auditory-nerve re-

sponse variation (internal noise) and stimulus variation (external noise) to the variance in a

decision variable that can be calculated based only on the average tone-in-noise responses.

Predictions for this realistic processor were made for experiments in which the noise wave-

forms were randomly varied from interval to interval, as well as for experiments in which

the effect of external stimulus variation was removed by presenting the same noise waveform

in each observation interval. Predictions were compared for processors that rely on the set

of AN discharge times (all information) and for processors that rely only on the set of dis-

charge counts (rate place) in order to evaluate the significance of temporal information for

discrimination in noise. The sensitivity of individual model CF’s can be calculated in order

to examine the distribution of information across the AN population. The type of temporal

information available can be illustrated by evaluating the sensitivity for a processor that

relies only on information from a narrow temporal window. These types of analyses should

prove useful for quantifying the effects of noise maskers on the signal information encoded

in AN responses, and thus in evaluating the appropriateness of several assumptions that are

typically used in psychophysics to interpret masking experiments.

5.5.1 Auditory detection in noise

A secondary goal of the present chapter was to address several issues related to the assump-

tions in the power-spectrum model of masking (Moore, 1995a). While the present chapter

does not represent a thorough evaluation of these assumptions, the predictions described

above provide some useful insight into the AN information available for the detection of

tones in noise.

It is often assumed that detection in noise depends only on the long-term spectra of the

signal and masker (Moore, 1995a). Figure 5-3 demonstrates that there is significant temporal

information for detecting tones in noise within AN fibers for which rate-place information is
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“masked” (e.g., CF equal to the tone frequency). An illustration of the types of temporal

information available for detection of a tone in noise at both low and high frequencies is

provided in Fig. 5-4. Fine-time temporal information is available for detecting low-frequency

tones in noise, while temporal envelope information is available for detecting high-frequency

tones in noise.

Another common assumption is that useful information is limited to CF’s near the tone

frequency for detection of a tone centered spectrally within a noise masker. The information

profiles shown in Fig. 5-3 demonstrate that significant off-frequency information exists for

detection of tones in narrowband noise maskers. For the rate-place model, this off-frequency

information is much more significant than the on-frequency information. For detection of

tones in broadband noise, information within CF’s near the tone frequency dominates per-

formance.

The predictions in Fig. 5-2 suggest that the all-information performance based on the

total HSR population of AN fibers is consistent with human detection of a 1-kHz tone being

equal for 100-Hz and 10-kHz random noise maskers (Fletcher, 1940; Bos and de Boer, 1966).

However, all-information sensitivity Q is more than an order of magnitude greater than

human sensitivity. Rate-place sensitivity based on the total HSR population is an order of

magnitude greater than human sensitivity for the 100-Hz masker; however, it is a factor of

two less than human sensitivity for the 10-kHz masker. Thus, the large decrease in sensitivity

based on average-rate information in the HSR population of AN fibers is not consistent with

human performance. There is a small set of low-spontaneous-rate (LSR) AN fibers [roughly

16% of the total AN population (Liberman, 1978)] that have higher thresholds and larger

dynamic ranges than the HSR fibers. Thus, it has been suggested that the LSR fibers may

be used for detection in noise at high masker levels (Young and Barta, 1986).

Finally, the predictions in Figs. 5-2 and 5-3 demonstrate that correlation between AN-

fiber responses to random noise stimuli influence predictions of sensitivity in complex ways.

The information profiles in Fig. 5-3 change their shape when information is combined across

multiple statistically identical AN fibers at each model CF. The AN responses of same-CF

fibers are much more highly correlated for CF’s near the tone frequency than for off-frequency

fibers. Thus, the benefit from combining across multiple AN fibers is less near the tone
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frequency than for CF’s away from the tone frequency. Figures 5-2 and 5-3 both indicate

that the same-CF correlation has a much greater influence on the all-information model

than on the rate-place model. When the total HSR population of AN fibers is considered,

the difference between the random- and fixed-noise sensitivities is much larger for the all-

information model than for the rate-place model or for human performance. It is not clear

whether this difference results from the all-information model performing too poorly in the

random-noise experiment when the AN fibers are correlated or from the all-information

model performing much too well when AN fibers are independent. The fact that the random-

noise sensitivity for the all-information model is much closer to human sensitivity, both in

absolute value and in the trend across masker bandwidth, suggests the latter.

Thus, it appears that the correlation across AN fibers is important to consider for the

many psychophysical tasks in which random-noise stimuli are used. The ability to combine

information across multiple AN fibers depends strongly on this across-fiber correlation. This

is most certainly a significant issue for the peripheral auditory system that conveys sensory

information to the brain via 30,000 primary auditory-nerve fibers, and therefore deserves

future investigation. The influence of correlation most likely becomes even more complex at

higher levels of the auditory system, where several neurons may be innervated by the same

projecting neurons from other auditory centers (Jenison, 2000).

5.5.2 Limitations of analysis

Sub-optimum processor

The analysis presented here allows the prediction of performance for any discrimination

experiment based on a specific processor that only relies on the ensemble properties of

AN responses in the presence of random noise. Thus, the unrealistic assumption that the

processor uses each noise waveform individually is avoided. However, a limitation of this

approach is that we have not shown that this processor is the optimum processor, given that

only the first-order statistical properties (i.e., average) of the AN noise responses are known.

While the ability to specify the optimum processor is theoretically pleasing, evaluating the

changes in performance of this explicitly-stated smart processor as a function of stimulus
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parameters allows the issues of interest in this dissertation to be addressed.

Estimation of expected value and variance

The equations derived in the above analysis depend on the expected value En and variance

V arn of terms across the ensemble of noise waveforms. The present evaluation of these equa-

tions relies on approximating the ensemble expected values and variances from a finite set of

N noise waveforms (N is given in each figure caption). The accuracy of these approximations

improves with N ; however, the computation time required for the predictions also increases.

Thus, it is desired to use as small an N as provides reasonable estimates of En and V arn.

The masking predictions in the present study (Fig. 5-2) were made by approximating

the expected values and variances based on 50 noise waveforms. The same 50 noise wave-

forms were used to determine the a priori information used by the realistic processor [i.e.,

xi(t|L1) = ri(t|L1) and xi(t|L2) = ri(t|L2)] and to evaluate performance (Eq. 5.21).
4 While

calculating the AN responses to 50 noises for each alternative and for each of the 60 model

CF’s is reasonable for the few conditions examined in the present chapter, it is too large to

allow useful examination of entire psychophysical experiments, such as are addressed in the

following chapter.

The AN responses used for the predictions of sensitivity Q in Fig. 5-2 were examined in

order to evaluate whether 10 noise waveforms could be used to provide reasonably accurate

predictions. The 50 AN responses were divided into five sets of 10, and sensitivity Q was

calculated based on each set of 10 noise responses for both the 100-Hz and the 10-kHz noise

maskers. The standard deviation of Q across the sets of 10 noises and the slope of Q as a

function of tone level L (Fig. 5-5) were used to determine the error in the threshold estimate

that would result from values of Q that were one standard deviation away from the mean. It

was determined that all-information thresholds would be within ±2.3 dB of their true value
and rate-place thresholds would be within ±1.4 dB of their true value for both low and high
frequencies. Thus, the predictions in the following chapter were made based on 10 noise

waveforms; however, the use of 15 or 20 noise waveforms would result in significantly more

4It would be preferable in future studies to use a different set of noise waveforms to determine the
processor’s a priori information than the set of noises used to evaluate performance.
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accurate predictions, and thus may be warranted for future simulations.

Assumption of known tone phase

The analyses described above for level discrimination and detection of a tone in the presence

of a background noise assumed a fixed tone phase. While this assumption is not desired in

the long run, it is not likely to significantly affect the current performance predictions. In

addition, this assumption will likely be removed in future analyses (e.g., monaural, across-

frequency coincidence detection does not rely on knowledge of the tone phase on each trial,

see Chapter 4). Siebert (1970) evaluated the significance of assuming a fixed phase for

pure-tone frequency discrimination, and showed that performance was only degraded by a

factor of
√
2 when the tone phase was randomized from trial to trial. He described the small

effect as arising from the use of temporal comparisons that depend on either one or two

random (Poisson) discharge times. In the case of a fixed and known phase, the processor

has an absolute temporal reference, and thus the temporal precision of each discharge time

includes the variance of only a single Poisson event. In the random-phase case, the processor

must rely on relative temporal comparisons, such that the precision of any discharge time

includes the variance of two random variables. The decrease by factor of two in the variance

of temporal comparisons accounts for the decrease in performance by a factor of
√
2. The

known-phase assumption eliminates a large amount of computation time in the evaluation

of the equations described above, and is suggested to have minimal significance based on

Siebert’s (1970) analysis. However, the significance of this assumption should be evaluated

specifically for detection experiments in future studies.
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Chapter 6

The influence of the cochlear amplifier

on auditory-filter estimates using the

notched-noise method

6.1 Abstract

Many psychophysical methods estimate auditory tuning in human listeners by measuring
the detection of tones in various noise maskers. However, the cochlear amplifier dynamically
alters basilar-membrane tuning in the normal auditory system based on the spectral and
temporal configuration of the stimulus. The present study used several versions of a phe-
nomenological AN model to evaluate the effects of compression and suppression on estimates
of auditory filters using the notched-noise method (Patterson, 1976; Glasberg and Moore,
1990). The computational AN model included the effects of level-dependent tuning, level-
dependent phase, compression, suppression, and fast nonlinear dynamics on the responses of
high-, medium-, and low-spontaneous-rate AN fibers. Quantitative methods used statistical
decision theory to evaluate psychophysical performance limits imposed by the random nature
of AN discharges and random-noise stimuli. Performance was predicted based on AN infor-
mation in discharge counts and in discharge times for the detection of a tone in notched-noise
maskers. Standard methods based on the power-spectrum model of masking were used to
estimate auditory filters from the detection predictions. Both compression and suppression
are shown to influence psychophysical methods for estimating auditory frequency selectivity.
Implications of the dependence of auditory-nerve tuning on both the signal and masker are
discussed in terms of psychophysical methods for estimating auditory filters. These include
differences between simultaneous and nonsimultaneous masking, as well as the influence of
asymmetric suppression growth on the estimates of auditory-filter asymmetry.
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6.2 Introduction

The ability of the auditory system to partially resolve frequency components in a complex

stimulus has been widely used as the basis for many fundamental theories of auditory percep-

tion (e.g., von Helmholtz, 1863; Fletcher, 1940). Thus, much effort has gone into developing

techniques for the measurement of the frequency selectivity of the auditory system. Fletcher

(1940) observed that the detection threshold for a tone in band-limited noise increases as

the bandwidth of the noise increases until a “critical bandwidth”, beyond which detection

threshold was roughly constant. This observation led to the concept of the “auditory filter,”

which forms the basis for many modern psychophysical methods for estimating auditory

tuning (for a review see Moore, 1995a).

Most psychophysical methods for measuring auditory frequency selectivity are based

on the power-spectrum model of masking, which assumes that the detection of a tone in

noise is based on the signal and noise energy that passes through a single linear filter.

The notched-noise method is a common technique of estimating auditory filter shapes by

measuring detection thresholds for a tone in the presence of two bandlimited noise maskers

that are above and below the tone frequency (Patterson, 1976; Glasberg and Moore, 1990;

Rosen et al., 1998). Detection is measured as a function of the separation between the two

noise bands (i.e., the notch width), and the power-spectrum model is used to estimate a

filter shape that accounts for the rate of decrease in threshold as notch width is increased.

Asymmetric notches are often used to evaluate the upper and lower sides of the auditory

filter independently. Filter estimates based on the notched-noise method are successful in

predicting detection performance in a variety of masking conditions (e.g., Derleth and Dau,

2000). However, the observation that cochlear tuning becomes broader as stimulus level

increases in association with the cochlear amplifier (Rhode, 1971; Ruggero et al., 1997)

complicates the interpretation of filter estimates based on the power-spectrum model.

A consistent finding is that psychophysical estimates of auditory-filter bandwidth increase

as a function of level, primarily due to a decrease in the slope of the low-frequency side

as level is increased (Glasberg and Moore, 1990; Rosen et al., 1998). In addition, the

most consistent psychophysical finding related to hearing impairment, besides an increase in
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threshold, is broadened auditory filters for impaired subjects compared with normal-hearing

listeners (Moore, 1995b). This result is consistent with the cochlear amplifier being damaged

or absent in impaired ears. Moore et al. (1999b) have shown that estimates of equivalent-

rectangular bandwidth (ERB) using the notched-noise method are highly correlated with

several psychophysical measures of compression, which is also thought to be related to the

cochlear amplifier. Thus, it appears that psychophysical measures of auditory frequency

selectivity are related to the health of the cochlear amplifier; however, there is continued

debate as to the proper method for estimating auditory filter shapes as a function of level

(Lutfi and Patterson, 1984; Moore and Glasberg, 1987; Glasberg and Moore, 1990; Rosen

and Baker, 1994; Moore, 1995a; see Rosen et al., 1998 for a review). This debate is not

surprising given that current methods for estimating the nonlinear tuning of the auditory

system use the power-spectrum model, which is based on linear-filter theory. The central

issue in this debate has been whether the filter shape depends on the input to or the output

of the auditory filter. Glasberg and Moore (1990) suggest that the pre-filtered stimulus level

determines the filter shape, and thus they measure detection using a fixed noise spectrum

level. Rosen et al. suggest that the post-filtered stimulus determines the auditory tuning,

and thus estimate auditory filters using a fixed probe-tone level.

While no method based on linear-filter theory is appropriate for estimating nonlinear tun-

ing in all conditions, it is important to understand how to interpret psychophysical estimates

of auditory-filter shapes in relation to the many nonlinear response properties of the audi-

tory periphery. Basilar-membrane (BM) tuning has been shown to broaden with increases in

level, and to demonstrate compressive magnitude responses and nonlinear phase responses

(Ruggero et al., 1997). It was demonstrated in Chapter 4 that compression of magnitude re-

sponses and nonlinear phase responses are significant for the encoding of sound level within a

narrow range of characteristic frequencies (CF’s); however, the AN model that was used was

limited to pure-tone stimuli. Two-tone suppression is another nonlinear response property

of the auditory periphery, and refers to the ability of an off-frequency tone to suppress BM

and AN responses to CF-tones (Sachs and Kiang, 1968; Delgutte, 1990b; Ruggero et al.,

1992). Delgutte (1990a) demonstrated that AN suppression plays a large role in masking

of signals by off-frequency stimuli, a finding that was supported by similar psychophysical
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experiments (Oxenham and Plack, 1998). Suppression has been hypothesized to play a role

in auditory tuning based on sharper psychophysical estimates of frequency selectivity using

non-simultaneous masking compared to simultaneous masking (e.g., Houtgast, 1977; Moore,

1978; Moore and Glasberg, 1981,1986; Moore et al., 1987). The variation in dynamic range

of AN discharge rate across different spontaneous-rate populations has been hypothesized to

be related to compressive BM responses (Sachs and Abbas, 1974; Liberman, 1978; Winter

and Palmer, 1991).

These nonlinear physiological response properties have typically been studied in isolation,

e.g., it is not clear from physiological two-tone suppression studies alone that the ability of

an off-frequency, non-excitatory tone to suppress the response to a CF tone is related to

auditory tuning. However, much evidence has now been collected suggesting that many of

the observed nonlinear AN response properties are likely to result from the same mechanism,

the cochlear amplifier (Sachs and Abbas, 1974; Sewell, 1984; Patuzzi et al., 1989; Ruggero

and Rich, 1991; Ruggero et al., 1992). A phenomenological AN model with nonlinear tuning

(Zhang et al., 2000) is used in the present study to relate many of the response properties

associated with the cochlear amplifier to psychophysical estimates of auditory tuning.

Auditory filters are estimated using the notched-noise method by quantifying the infor-

mation available in average-rate and temporal discharge patterns in the population of AN

fibers. A theoretical approach developed in Chapter 5 is used to quantify the contributions of

the stochastic AN-discharge variation (internal noise) and stimulus variation (external noise)

on performance limits for the detection of tones in noise maskers. A major benefit of this ap-

proach for evaluating the notched-noise method is that the AN-fiber bandwidths in the model

are known, and can be compared directly to the auditory-filter estimates. Different versions

of the computational AN model are used to demonstrate the contributions of compression

and suppression to estimates of auditory tuning using the notched-noise method.
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6.3 Methods

6.3.1 Computational auditory-nerve model

The implementation and response properties of the computational auditory-nerve (AN)

model that are important for the present study are described in Appendix A, and the com-

plete model is described by Zhang et al. (2000). Predictions from four versions of the AN

model (Fig. 6-1) are compared below in order to evaluate the role of several response prop-

erties associated with the cochlear amplifier, including level-dependent tuning, compression,

and suppression (see Appendix A for details). The linear-sharp version of the AN model has

low thresholds and linear excitatory filters with narrow bandwidths. The impaired version of

the AN model has high thresholds and linear filters with broad bandwidths. Two nonlinear

versions of the AN model are used that have excitatory filters with tuning that matches the

linear-sharp model at low levels and the impaired model at high levels. The two nonlinear

models differ from one another in the spectral content of the stimulus that controls the

level-dependent tuning. The nonlinear AN model without suppression includes controls the

level-dependent gain and bandwidth by the stimulus energy within the low-level excitatory

filter, and thus demonstrates compression but not suppression. The nonlinear AN model

with suppression has level-dependent gain and bandwidth that are varied according to the

stimulus energy within a bandpass filter that is five times as broad as the low-level excita-

tory filter (e.g., Geisler and Sinex, 1980). Thus, this version of the model demonstrates both

compression (i.e., stimulus energy that passes through the excitatory filter acts to compress

the AN response by broadening the excitatory filter) and suppression (i.e., stimulus energy

that passes through the broadband filter but not the excitatory filter acts to suppress the

AN response by broadening the excitatory filter).

The computational AN model described in Appendix A was used to generate a population

response for each of the three spontaneous-rate (SR) groups described by Liberman (1978).

A set of 60 model characteristic frequencies (CF’s) were used, similar to Chapter 5. The

CF’s ranged from 200 Hz to 20 kHz, and were spaced according to a human cochlear map

(Greenwood, 1990). This spacing of fiber CF’s corresponds to roughly 0.5 mm separation on

BM, and is estimated as about one half of a human ERB (Glasberg and Moore, 1990). The
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NL w/ Compression
w/o Suppression

Linear BroadLinear Sharp NL w/ Compression
w/ Suppression

Figure 6-1: Four versions of the phenomenological AN model used to isolate the effects of
compression and suppression on tuning.

tone frequency was always chosen to be equal to one of the model CF’s, and thus can differ

slightly from the tone frequency used in the human data from previous studies. Populations

of high-, medium-, and low-SR fibers were simulated by assuming 200 HSR, 75 MSR, and

50 LSR fibers per CF. This represents all human AN fibers within the frequency range from

200 Hz to 20 kHz (Chapter 5), and is consistent with the 61%, 23%, and 16% distributions

reported by Liberman (1978). All AN fibers were assumed to have stochastic responses that

were conditionally independent Poisson processes given the stimulus.

6.3.2 Statistical decision theory

The present study uses the statistical-decision-theory (SDT) analysis developed in Chapter 5

to quantify performance limits due to both random variations in the noise stimuli and in

the AN responses. The effect of noise maskers on predicted performance is compared for

processors based on rate-place information and on all information (both temporal and average

rate), as shown in Fig. 2 of Chapter 2. In the rate-place analysis, the observations are the

population of spike counts {Ki}i=1,···,M produced by homogeneous Poisson processes with

rates equal to the average rates r̄i produced by the AN model. The all-information analysis

is based on observing the population of spike times {ti1, · · · , tiKi}i=1,···,M produced by non-

homogeneous Poisson processes with time- varying rate waveforms ri(t) produced by the AN

model. This section provides an overview of the detection-in-noise analysis that was used in

the current study, while the details of this approach are described in Chapter 5.
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The form of a general processor that evaluates each discharge time tij from the i
th AN

fiber based on a priori information that consists of the average signal-plus-noise x(t|SN)
and noise-alone x(t|N) responses was described in Chapter 5, and is given by

Yi(T ) =�
Ki∑
j=1

ln
xi(tj|SN)
xi(tj|N)

+

T∫
0

[xi(t|N)− xi(t|SN)]dt. (6.1)

The performance of this realistic (sub-optimal) processor based on all M AN fibers is given

by the sensitivity index [similar to (d′)2]

Q =

En


M∑
i=1

T∫
0

ln
xi(t|SN, n)

xi(t|N,n)
[ri(t|SN, n)− ri(t|N,n)] dt


2/

En


M∑
i=1

T∫
0

[
ln

xi(t|SN, n)

xi(t|N,n)

]2

ri(t|N,n)dt

 (6.2)

+V arn

 M∑
i=1

T∫
0

ln
xi(t|SN, n)

xi(t|N,n)
ri(t|N,n) + xi(t|N,n)− xi(t|SN, n)dt

 ,

where En and V arn represent the expected value and variance across the set of random noise

waveforms n, and the first term in the denominator of Eq. 6.2 represents the AN variance

and the second term represents the stimulus variance. Detection threshold is defined as the

signal level for which the sensitivity index Q = 1. Performance is compared for two types of

experiments using noise stimuli, as described in Chapter 5. A random noise experiment uses

different noise waveforms in each observation interval, while a fixed noise experiment uses

identical noise waveform in both observation intervals, and thus has no stimulus variance.

Performance was predicted based on the high-, medium-, and low-spontaneous-rate (SR)

populations of AN fibers individually, as well as based on the total AN-fiber population.

The predictions for the total AN population were made by including all AN fibers in the

summations in Eq. 6.2, which accounts for any potential correlation between AN fibers of

different SR. Note that the sensitivity indices Q for individual fibers cannot be simply added

to obtain the total sensitivity because the fibers’ responses are potentially correlated when

stimulated with random-noise stimuli. Also, the information from different AN fibers is not

necessarily combined optimally for the realistic (sub-optimal) processor used in the present
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predictions (see Chapter 5).

6.3.3 Notched-noise method for estimating auditory filters

The present study used the procedure described by Glasberg and Moore (1990) to esti-

mate auditory-filter shapes based on notched-noise stimuli and the power-spectrum model.

Thresholds were predicted for the detection of a f = 1049 Hz tone in the presence of two

noise bands that were above and below the tone frequency, and had bandwidths equal to

0.4f . The separation between the closest edge of each noise band and the tone frequency

is referred to in terms of the normalized frequency separation ∆f
f
. The tone was always

centered between the two noise bands, i.e., only symmetric notches were used in the present

study, and thus the total notch width of the noise masker was 2∆f . Detection thresholds

were measured for normalized frequency separations of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6.

A fixed noise spectrum level of N0 = 20 dB SPL was used for all conditions in the present

study. This spectrum level was chosen in order to evaluate whether compression and sup-

pression influence psychophysical estimates of auditory filters at a spectrum level near the

lowest levels that are typically used in the notched-noise method.

The method described by Glasberg and Moore (1990) was used to fit rounded-exponential

filters, roex(p,r), to the predicted detection thresholds in the present study, where p is a

parameter that describes the slope of the filter, and r is a parameter that determines the

dynamic range of the filter. The fitting procedure was used without the corrections described

by Glasberg and Moore (1990) for earphone frequency response or for the transmission

characteristics of the middle and external ear. The estimated auditory filters that result

from the fitting procedure are described in terms of the slope p, the dynamic range r, the

equivalent-rectangular bandwidth ERB, and a parameter K that represents the signal-to-

noise ratio at the output of the filter that results in detection threshold (i.e., K is inversely

related to the efficiency of the processor). The goodness of fit of the power-spectrum model

is quantified in terms of the root-mean-squared (rms) difference between the AN-model

detection thresholds and the predicted thresholds based on the auditory filter.
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6.4 Results

Detection thresholds were predicted for the rate-place and all-information models as a func-

tion of the notch width of the noise masker. This experiment is identical to the method

often used to estimate auditory-filter shapes (e.g., Glasberg and Moore, 1990). Insight into

the significance of several nonlinear physiological mechanisms associated with the cochlear

amplifier can be garnered by comparing estimated auditory filters for different versions of

the AN model to estimates from human data.

The simplest comparison is for versions of the AN model with linear tuning, because

the equivalent-rectangular bandwidths (ERB) used in the model are fixed and known, and

can be compared to the estimates of ERB from the notched-noise method. Predicted per-

formance for the linear-sharp version of the AN model are shown in Fig. 6-2 for the three

SR populations (open symbols) as well as for the total AN population (TOT: filled sym-

bols), and are based on a random-noise experiment. The rate-place detection thresholds for

the total-AN population do not correspond to one SR group for all notch widths. Rather,

rate-place performance is dependent on the LSR population for small notch widths and the

HSR population for large notch widths. All-information thresholds are always well below

the rate-place thresholds, especially for notch widths larger than ∆f/f=0.0. Human data

is shown for the normal ear of a unilaterally-impaired subject based on a noise spectrum

level of N0 = 50 dB SPL (Glasberg and Moore, 1986). The rate-place thresholds shown for

N0 = 20 dB SPL are roughly 40 dB less than the human thresholds, but match the general

shape of the dependence of human thresholds on notch width.

The power-spectrum model was used to fit auditory filters to the model predictions based

on the total AN population as well as to the human data. The fit of the power-spectrum

model to the rate-place predictions based on the notch widths ranging from 0.0 to 0.6 (solid

lines) is quite good, as is the fit to the human data. In contrast, the fit to the all-information

thresholds based on all notch widths is poor. The high predicted all-information threshold

for the 0.0 notch width is the primary cause of the poor fit, as demonstrated by the strong

improvement in the fit when the 0.0 notch width is excluded. The cause of the relatively

high all-information threshold at 0.0 notch width is discussed below. A summary of the
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Figure 6-2: Detection of a tone in random notched noise based on the linear AN model with
sharp tuning. Threshold is plotted as a function of normalized notch width, where ∆f is the
deviation of the closest edge of each noise band from the tone frequency (i.e., 2∆f is the
notch width). Predicted rate-place (RP) and all-information (AI) performance is shown for
each of the three spontaneous-rate (SR) populations, as well as for the combination of all
three SR groups (TOT). Model predictions are for a 1049-Hz, 200-ms (20-ms rise/fall) tone
presented simultaneously with noise bands that had a bandwidth of 0.4f and a spectrum
level of N0=20 dB SPL. Fitted thresholds (solid and dashed lines), equivalent-rectangular
bandwidth (ERB) estimates, and root-mean-squared (rms) errors from the power-spectrum
model are shown for the RP model and for the AI model based on all seven notch widths
(solid lines), and for the AI model based on the six notch widths excluding 0.0 (dashed line).
The ERB of the 1049-Hz CF in the AN model was 115 Hz. Human detection data and
power-spectrum-model predictions are shown for a 1-kHz, 200-ms (10-ms rise/fall) tone and
noise-spectrum level of N0 = 50 dB SPL (subject TD: Glasberg and Moore, 1986).
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parameters used by the power-spectrum model to fit the random-noise rate-place and all-

information predictions based on all notch widths is given in Table 6.1, while Table 6.2

provides a summary of the fits based on the exclusion of the 0.0 notch width.

The estimated equivalent-rectangular bandwidth (ERB) for the rate-place model was 136

Hz, which is only slightly larger than the ERB (115 Hz) used for the 1049-Hz CF in the model

[Glasberg and Moore’s (1990) low-level ERB]. The ERB for the all-information model was

73 Hz, and was very sharp due to the high threshold for the 0.0 notch width. When the 0.0

notch width was excluded, the all-information ERB was 149 Hz and was much closer to the

estimated rate-place ERB. The ERB for the human data shown was 152 Hz, which matched

well with the ERB of 155 Hz for a 1-kHz tone and a N0=50 dB SPL spectrum level obtained

from Glasberg and Moore’s (1990) description of the dependence of auditory-filter shape on

level. The human ERB for a 1-kHz tone and a spectrum level of N0=20 dB SPL obtained

from Glasberg and Moore’s (1990) equations was 125 Hz.

Predicted detection thresholds for the impaired version of the AN model are shown in

Fig. 6-3. This version of the AN model has linear filters with bandwidths that are broader

than the linear-sharp model by a factor that is related to the amount of cochlear-amplifier

gain at each CF (See Appendix A). The 1049-Hz CF filter in the impaired model has an

ERB of 248 Hz. The power-spectrum model fits to the rate-place thresholds based on the

total AN population are again quite good. The all-information fits are not as good, especially

when the 0.0 notch width is included. The ERB for the rate-place model was 227 Hz, which

is close to the model-filter ERB at 1049 Hz. The all-information ERB is much narrower

than the model ERB when all notch widths are included and when the 0.0 notch width is

excluded. Human data from the impaired ear of the listener shown in Fig. 6-2 are also shown

for comparison. The rate of decrease in threshold as notch width is increased is much slower

for the impaired rate-place and human thresholds, and is the cause of the broadened ERB

estimates.

The predicted thresholds for the nonlinear AN model with suppression are shown with

the fits from the power-spectrum model in Fig. 6-4. The human data from the normal ear

of the subject shown in Fig. 6-2 is shown for comparison. The fits from the power spectrum

model are not as good for the nonlinear version of the AN model as for the linear AN model.
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Table 6.1: Auditory-filter parameters estimated from the random-noise thresholds predicted
by the AN-model for notch widths from 0.0 to 0.6. The power-spectrum model was used to fit
a roex(p,r) filter to the AN thresholds. Estimates for both the rate-place and all-information
thresholds from the four versions of the AN model are shown. ERB: equivalent-rectangular
bandwidth; rms: root-mean-squared error; p: filter slope; r: filter dynamic range; K: signal-
to-noise at the filter output required for detection threshold.

Model
Filter

Model ERB (Hz) rms (dB) p r K (dB) ERB(Hz)

Rate-Place

Linear, Sharp 135.8 1.59 30.9 -52.3 -7.5 115

Nonlinear, wo/Suppression 160.2 1.49 26.2 -48.8 -8.1 115-248

Nonlinear, w/Suppression 254.7 2.62 16.5 -37.1 -13.3 115-248

Impaired 226.8 0.38 18.5 -35.5 -6.9 248

All-Information

Linear, Sharp 73.3 3.78 57.3 -60.2 -21.5 115

Nonlinear, wo/Suppression 85.8 5.03 48.9 -50.2 -20.5 115-248

Nonlinear, w/Suppression 272.3 4.84 15.4 -42.5 -31.4 115-248

Impaired 91.3 2.08 46.0 -44.6 -19.4 248
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Table 6.2: Auditory-filter parameters estimated from the random-noise thresholds predicted
by the AN-model for notch widths from 0.1 to 0.6. The power-spectrum model was used to fit
a roex(p,r) filter to the AN thresholds. Estimates for both the rate-place and all-information
thresholds from the four versions of the AN model are shown. ERB: equivalent-rectangular
bandwidth; rms: root-mean-squared error; p: filter slope; r: filter dynamic range; K: signal-
to-noise at the filter output required for detection threshold.

Model
Filter

Model ERB (Hz) rms (dB) p r K (dB) ERB(Hz)

Rate-Place

Linear, Sharp 156.8 0.85 26.8 -48.5 -12.0 115

Nonlinear, wo/Suppression 168.1 1.53 25.0 -47.6 -9.6 115-248

Nonlinear, w/Suppression 323.6 1.95 13.0 -86.9 -18.2 115-248

Impaired 233.0 0.35 18.1 -35.1 -7.5 248

All-Information

Linear, Sharp 148.6 0.72 28.3 -40.6 -42.6 115

Nonlinear, wo/Suppression 299.3 2.47 14.0 -72.9 -45.0 115-248

Nonlinear, w/Suppression 371.1 2.69 11.3 -142.4 -39.1 115-248

Impaired 162.8 0.92 26.0 -32.0 -32.9 248
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Figure 6-3: Detection of a tone in random notched noise based on the impaired AN model.
Same symbols as Fig. 6-2. The ERB of the 1049-Hz CF in the AN model was 248 Hz.
Impaired human detection data and power-spectrum-model predictions are shown for a 1-
kHz, 200-ms (10-ms rise/fall) tone and noise-spectrum level of N0 = 50 dB SPL (subject
TD, impaired ear: Glasberg and Moore, 1986).
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Figure 6-4: Detection of a tone in random notched noise based on the nonlinear AN model
with suppression. Same symbols as Fig. 6-2. The ERB of the 1049-Hz CF in the AN
model varied nonlinearly, and was between 115 and 248 Hz. Human detection data and
power-spectrum-model predictions are shown for a 1-kHz, 200-ms (10-ms rise/fall) tone and
noise-spectrum level of N0 = 50 dB SPL (subject TD: Glasberg and Moore, 1986).
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The estimated ERB’s for the rate-place (255 Hz) and all-information (272) models are much

broader than the ERB’s estimated from human data. The ERB for the listener shown

was 152 Hz (f =1 kHz and N0=50 dB SPL), while the ERB based on the level-dependent

estimates provided by Glasberg and Moore (1990) was 130 Hz (f = 1049Hz and N0=20 dB

SPL). The model-filter ERB for the 1049-Hz CF varies nonlinearly within the range from

115 Hz at low levels to 248 Hz at high levels. The rate-place predictions decrease at a rate

similar to the human data up to a notch width of 0.2; however, as notch width increases

further the rate-place thresholds decrease much more slowly than the human data. The poor

fit to the all-information thresholds is due to both the threshold at 0.0 notch width, which

is 20 dB higher than for the 0.1 notch width, and the roughly equal thresholds for notch

widths between 0.1 and 0.4.

Figure 6-5 shows the predicted thresholds and fits from the power-spectrum model for

the nonlinear AN model without suppression. The normal-hearing human data is shown

for comparison. The fit to the rate-place predictions is fairly good, especially for notch

widths smaller than 0.5. The estimated ERB for the rate-place model was 160 Hz, which

is significantly smaller than the ERB estimated from the AN model when suppression was

included. The fits to the all-information model are both poor, due primarily to the relatively

flat thresholds between notch widths of 0.2 to 0.4. The all-information ERB was 86 Hz when

all notch widths were included, and was much broader (299 Hz) when the 0.0 notch width

was excluded.

Predicted rate-place thresholds for the four versions of the AN model are compared in

Fig. 6-6 for the random-noise experiment. Both the normal and impaired human data are

shown for comparison. The fits from the power-spectrum model based on all notch widths are

shown as the lines in Fig. 6-6, and the estimated ERB’s are shown in the legend. Table 6.1

summarizes the estimates and parameters from the power-spectrum model fits to the four

versions of the AN model.

The highest predicted rate-place threshold for each notch width was for the impaired

version of the AN model, while the lowest threshold was for the linear-sharp AN model,

except for the 0.0 notch width (Fig. 6-6). Thresholds from the two nonlinear versions of

the AN model (with and without suppression) were essentially the same for notch widths
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Figure 6-5: Detection of a tone in random notched noise based on the nonlinear AN model
without suppression. Same symbols as Fig. 6-2. The ERB of the 1049-Hz CF in the AN
model varied nonlinearly, and was between 115 and 248 Hz. Human detection data and
power-spectrum-model predictions are shown for a 1-kHz, 200-ms (10-ms rise/fall) tone and
noise-spectrum level of N0 = 50 dB SPL (subject TD: Glasberg and Moore, 1986).
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Figure 6-6: Predicted tone detection in random notched noise based on rate-place (RP)
information for the four versions of the AN model. Predicted performance is based on the
combination of the three spontaneous-rate populations (TOT curves in Figs. 6-2-6-5. Model
predictions are for a 1049-Hz, 200-ms (20-ms rise/fall) tone presented simultaneously with
noise bands that had a bandwidth of 0.4f and a spectrum level of N0=20 dB SPL. Fitted
thresholds (solid and dashed lines) and equivalent-rectangular bandwidth (ERB) estimates
from the power-spectrum model are shown based on all seven notch widths. Human detection
data and power-spectrum-model predictions are shown for a 1-kHz, 200-ms (10-ms rise/fall)
tone and noise-spectrum level of N0 = 50 dB SPL (subject TD, normal and impaired ear:
Glasberg and Moore, 1986).
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of 0.2 and less, as expected for conditions in which the majority of the noise energy is

near the frequency of the tone. However, the thresholds for the nonlinear AN model with

suppression are up to 10 dB higher than the nonlinear model without suppression for broader

notch widths. Thus, suppression has a significant effect for broad notch widths, and acts to

increase the estimated ERB using the notched noise method.

The thresholds from the nonlinear AN model without suppression are consistently higher

than the linear-sharp model, except for the 0.0 notch width for which the linear-sharp thresh-

old is 2-dB higher than the nonlinear thresholds. The higher thresholds for the nonlinear

model without suppression at notch widths greater than 0.2 (i.e., notch widths for which the

tone level at threshold is less than 20 dB SPL) likely result from broader filters in the nonlin-

ear model. However, given that the tone level is below 20 dB SPL, which is the threshold for

at-CF compression in tone responses, the broadened tuning in the nonlinear model without

suppression must be due to the noise energy that passes through the excitatory filter. Thus,

compression of AN responses also acts to increase the estimated ERB compared with the

linear-sharp AN model.

The broader ERB estimated for the nonlinear AN model with suppression compared

with the impaired model results from the relatively flat thresholds for notch widths between

0.2 and 0.4, even though these thresholds are lower than the impaired thresholds for all

notch widths. For notch widths of 0.2 or less, thresholds from the nonlinear models were

significantly less than for the impaired model, suggesting that the excitatory filters in the

nonlinear models were significantly narrower than the impaired model for this noise spectrum

level. Thus, effects from off-frequency nonlinearities can produce ERB estimates that are

broader than the excitatory filters.

The predicted all-information thresholds from the four AN-model versions are compared

in Fig. 6-7. Several effects in the all-information predictions are similar to the rate-place

predictions. The lowest all-information thresholds for each notch width except 0.0 were from

the linear-sharp AN model. The thresholds for the nonlinear model with suppression were

always higher than the thresholds for the nonlinear model without suppression, which were

always higher than the linear-sharp thresholds. However, in contrast to the rate-place model,

the thresholds for the nonlinear model with suppression were higher than the thresholds for
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Figure 6-7: Predicted tone detection in random notched noise based on all-information (AI)
information for the four versions of the AN model. Same symbols as Fig. 6-6.
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the impaired model for notch widths between 0.2 and 0.5. Both of the linear versions of the

AN model had an orderly progression of thresholds as notch width increased. In contrast,

both nonlinear versions of the model demonstrated relatively flat thresholds between 0.2 and

0.4 notch widths, and a decrease in threshold for larger notch widths. The all-information

thresholds for the 0.0 notch width are essentially the same for all versions of the AN model,

consistent with external stimulus variability dominating all-information performance for this

notch width, as discussed below.

The effect of random- versus fixed-noise maskers on the predicted detection thresholds

is considered in Fig. 6-8. A summary of the power-spectrum-model fits to the fixed-noise

threshold predictions from the four AN-model versions is provided in Table 6.3 (based on

all notch widths) and in Table 6.4 (based on all notch width except 0.0). Rate-place and

all-information detection thresholds for the linear-sharp AN model are shown in Fig. 6-

8, in addition to the fits from the power-spectrum model. Predicted thresholds for the

random-noise experiment are always higher or equal to the thresholds for the fixed-noise

experiment, consistent with the potential detrimental effect of external stimulus variability

on performance. There is a significant, but small difference between random- and fixed-noise

thresholds for the rate-place model for notch widths less than 0.4. However, the estimated

ERB for the two experiments is essentially identical for the linear-sharp AN model. The

random-noise effect on estimate of ERB is much larger for the all-information model. The

random-noise threshold for the 0.0 notch width is more than 20 dB higher than for the fixed-

noise experiment, and thus the random-noise ERB for the all-information model is roughly

one-half of the ERB estimate for the fixed-noise experiment. The random- and fixed-noise

thresholds for the all-information model are very similar for all notch widths other than 0.0.
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Table 6.3: Auditory-filter parameters estimated from the fixed-noise thresholds predicted by
the AN-model for notch widths from 0.0 to 0.6. The power-spectrum model was used to fit a
roex(p,r) filter to the AN thresholds. Estimates for both the rate-place and all-information
thresholds from the four versions of the AN model are shown. ERB: equivalent-rectangular
bandwidth; rms: root-mean-squared error; p: filter slope; r: filter dynamic range; K: signal-
to-noise at the filter output required for detection threshold.

Model
Filter

Model ERB (Hz) rms (dB) p r K (dB) ERB(Hz)

Rate-Place

Linear, Sharp 133.0 1.16 31.5 -48.8 -11.3 115

Nonlinear, wo/Suppression 171.0 1.38 24.5 -46.9 -14.6 115-248

Nonlinear, w/Suppression 211.5 1.53 19.9 -38.2 -17.7 115-248

Impaired 247.5 0.25 17.1 -28.7 -13.6 248

All-Information

Linear, Sharp 149.2 0.70 28.2 -39.1 -44.2 115

Nonlinear, wo/Suppression 198.3 1.01 21.2 -36.5 -46.4 115-248

Nonlinear, w/Suppression 229.4 1.58 18.4 -30.9 -47.7 115-248

Impaired 334.3 0.23 13.4 -19.4 -46.8 248
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Table 6.4: Auditory-filter parameters estimated from the fixed-noise thresholds predicted by
the AN-model for notch widths from 0.1 to 0.6. The power-spectrum model was used to fit a
roex(p,r) filter to the AN thresholds. Estimates for both the rate-place and all-information
thresholds from the four versions of the AN model are shown. ERB: equivalent-rectangular
bandwidth; rms: root-mean-squared error; p: filter slope; r: filter dynamic range; K: signal-
to-noise at the filter output required for detection threshold.

Model
Filter

Model ERB (Hz) rms (dB) p r K (dB) ERB(Hz)

Rate-Place

Linear, Sharp 145.8 1.00 28.8 -46.4 -14.0 115

Nonlinear, wo/Suppression 154.6 1.00 27.1 -49.5 -11.5 115-248

Nonlinear, w/Suppression 200.2 1.61 21.0 -39.1 -16.5 115-248

Impaired 238.6 0.17 17.8 -29.3 -12.9 248

All-Information

Linear, Sharp 158.4 0.66 26.5 -37.8 -45.7 115

Nonlinear, wo/Suppression 207.9 0.21 20.2 -35.8 -47.4 115-248

Nonlinear, w/Suppression 275.1 1.47 15.4 -28.9 -50.9 115-248

Impaired 319.3 1.05 13.9 -19.9 -46.2 248
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6.5 Discussion

6.5.1 Detection in notched-noise based on auditory-nerve infor-

mation

Auditory frequency selectivity is typically evaluated in terms of the power-spectrum model of

masking, which is based on the signal and noise energy through a set of auditory filters. While

this interpretation is likely to represent a reasonable description of the overall processing of

the auditory system in certain situations, it may not be appropriate for individual auditory-

nerve fibers, which often have a limited dynamic range due several saturating nonlinearities

between the basilar membrane and the auditory nerve (Patuzzi and Robertson, 1988). It has

been hypothesized that the wide dynamic range of human hearing is encoded across different

spontaneous-rate (SR) populations of AN fibers (Delgutte, 1987; Winslow and Sachs, 1988;

Viemeister, 1988a,b; Winter and Palmer, 1991).

The present study predicted detection thresholds for a tone in a notched noise masker

based on the HSR, MSR, and LSR populations of AN fibers for the same conditions that are

typically used to estimate auditory frequency selectivity (e.g., Glasberg and Moore, 1990).

The predicted detection thresholds indicate that performance often varies across the different

SR populations (Figs. 6-2 - 6-5). For the model based on average discharge rate, different SR

populations can determine overall performance at different notch widths (e.g., LSR fibers for

small notch widths and HSR fibers at large notch widths in Fig. 6-2), even at the low noise

spectrum level used in the present study (N0 = 20 dB SP). The reliance of total rate-place

performance on the LSR population is stronger at higher noise spectrum levels and higher

signal frequencies (not shown). Thus, the detection thresholds that are used to estimate a

single auditory filter depend on different AN fibers as a function of notch width, and it is

unlikely that auditory filters based on individual AN fibers would consistently correspond

with those measured psychophysically.

The predicted thresholds for the rate-place model based on the total AN population are

well fit by the power-spectrum model. The rms errors for the fits to the rate-place thresholds

(Tables 6.1 - 6.4) are consistent with the range of rms errors reported for human listeners
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using the notched-noise method. Shailer et al. (1990) reported rms errors that were typically

between 0.9 and 2.2, and were always less than or equal to 2.7. The estimated equivalent-

rectangular bandwidths (ERBs) for the rate-place model are very close to the ERB used for

the 1049-Hz CF in the two linear versions of the AN model. This result is reassuring, given

that the notched-noise method was designed based on the assumption of linear filters.

In contrast to the rate-place model, the fits to the all-information predictions for the

random-noise experiment were poor. The rms errors for the all-information fits based on all

notch widths (Table 6.1) were larger than are typically reported for human listeners. The

primary source of error for the all-information fits came from the high threshold for the

0.0 notch width in the random-noise conditions, and when this notch width was excluded

(Table 6.2), the rms errors were much improved and within the range of human data. The all-

information threshold for the 0.0 notch width was much lower for the fixed-noise experiments,

while the thresholds for the other notch widths were typically reduced less in the fixed-noise

experiment. Thus, the fits to the fixed-noise all-information thresholds (Tables 6.3 and 6.4)

were much better than to the random-noise thresholds, with rms errors within the range of

human fits.

The high threshold for the 0.0 notch width in the random-noise conditions resulted in

much too narrow filter estimates for the all-information model. The estimated all-information

ERB was 73 Hz for the linear-sharp model that had a filter bandwidth of 115 Hz for the

1049-Hz CF, and 91 Hz for the impaired model that had an filter bandwidth of 248 Hz.

The estimated all-information ERB’s for the two linear versions of the AN model were much

broader when either the 0.0 notch width was excluded from the fits, or when the power-

spectrum model was fit to the fixed-noise thresholds.

The source of the high relative threshold for the 0.0 notch width is likely due to the

efficient use of fine-time information by the all-information model for notch widths other

than 0.0 (i.e., when there is no random noise energy at the tone frequency). It has been

demonstrated by Siebert (1970) and in Chapter 2 that the amount of information in the

fine-time patterns of AN discharges is much greater than is needed to explain performance

by human listeners. This is consistent with the extremely low all-information thresholds for

broad notch widths. When random noise energy exists at the tone frequency, the fine-time
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information about the tone is much less reliable, and the all-information threshold for the

0.0 notch width is 30 dB higher than the threshold for the 0.1 notch width (Fig. 6-8). In

the fixed-noise experiment where the external stimulus variability has been removed, the

all-information model is able to make use of the fine-time information about the presence of

the tone, and the threshold for the 0.0 notch width is less than 10 dB higher than the 0.1

notch width (Fig. 6-8). Thus, the transition between the less reliable fine-time information

for the 0.0 notch width and the more reliable fine-time information for the other notch

widths results in estimated ERB’s that are much too narrow for the all-information model.

A temporal model that did not process fine-time information efficiently would be expected

to be less influenced by random-noise variations, and would likely produce more realistic

detection thresholds and auditory-filter estimates.

Thus, the present analysis highlights the importance of considering the effect of external

stimulus variability on detection-in-noise performance, in addition to the effect from AN-

response variability. The present predictions for random- and fixed-noise experiments suggest

that fine-time information for detecting tones in noise is most reliable when there is no noise

energy in the same frequency region as the tone, or when the noise is not random; however,

fine-time information is much less reliable when random noise is present with energy at the

tone frequency. Thus, it is likely that human listeners do not make efficient use of fine time

information to detect a tone in noise, because the sharp decrease in predicted all-information

threshold between the 0.0 and 0.1 notch widths is not seen in human data.

6.5.2 The influence of cochlear nonlinearity on auditory-filter es-

timates

The computational AN model in the present study was used to quantitatively test the sig-

nificance of several nonlinear response properties associated with the cochlear amplifier for

estimates of auditory filters. The phenomenological model represents a unified view of how

each of these nonlinear response properties relates to the cochlear amplifier mechanism. The

model was implemented by matching the response properties of the model to measurements

of cochlear compression and two-tone suppression tuning curves from the available physio-
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logical data, often from different species. While the model response properties quantitatively

match the available physiological data fairly well, it should not be assumed that the model

represents the exact amount of compression or suppression in humans, which can not be

measured directly. Thus, the strength of the current model is in demonstrating the effects

of the presence or absence of these response properties, rather than predicting the exact size

of the effects. Based on the current model, the phenomenon of compression is discussed

as representing the property that stimulus energy that passes through the excitatory filter

acts to compress the AN response by broadening the excitatory filter. The phenomenon of

suppression is discussed as representing the property that stimulus energy well away from

the CF, which may not excite the AN fiber, can suppress the response of the AN fiber to

excitatory stimulus energy. The off-frequency stimulus energy acts to broaden the excitatory

filter in the same way as near-CF energy due to the breadth of the suppression filter in the

model control path.

The equivalent-rectangular bandwidths (ERB’s) estimated for the AN model with both

compression and suppression were always broader than for the model with only compression

(i.e., without suppression) (Tables 6.1 - 6.4). Similarly, the estimated ERB’s for the model

with only compression were always broader than the model with linear, sharp filters. These

relations were true for both random- and fixed-noise predictions, and for fits based on either

all of the notch widths or excluding the 0.0 notch width. While the size of the effect varied

across the conditions represented in Tables 6.1 - 6.4, the present predictions demonstrate

that both compression and suppression can influence estimates of auditory filters based on

the notched-noise method. The effects of both compression and suppression consistently

result in broader estimates of tuning than the low-level filters in the AN model. This

result is consistent with the finding that frequency selectivity measured psychophysically

using nonsimultaneous masking is typically sharper than when measured using simultaneous

masking (e.g., Houtgast, 1977; Moore, 1978; Moore and Glasberg, 1981,1986; Moore et al.,

1987). This finding has been interpreted as resulting from the lack of suppression from a

non-simultaneous masker (see Moore, 1995a for a review).

The ERB’s from the nonlinear AN model with suppression were always broader than

from the impaired model in random-noise conditions, even though the “actual” filters are
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narrower. This finding provides an example where it is not just the masking noise in the exci-

tatory bandwidth of the AN filter that determines the detection threshold, but that stimulus

energy below the CF can add additional excitatory masking energy in the form of nonlinear

distortion (i.e., that stimulus energy near 500 Hz creates masking energy at the 1000-Hz CF

due to distortion from rectifying nonlinearities in the control path). This distortion is present

in both nonlinear model versions, but not in either of the linear models. The nonlinear filters

are not broader than the impaired filters, but the detection of the tone is influenced by noise

away from CF. Distortion can result in flat thresholds for notch widths from roughly 0.2

to 0.4 (Figs. 6-4 and 6-5), because these are conditions in which there is significant masker

energy at 500 Hz. The effect is much stronger in the random-noise predictions, and is small

in the fixed-noise predictions. This suggests that the distortion provides masking primarily

when random distortion energy is produced at CF, and both rate-place and all-information

thresholds are not strongly masked by the distortion if the distortion energy is not random.

The effects of distortion are very strong for the all-information model, and have less influence

on the rate-place model. This result is due to the fact that the random distortion energy at

1000 Hz greatly reduces the reliability of the fine-time information that the all-information

model relies upon so strongly for notch widths greater than 0.0, i.e., conditions for which

there is no noise energy at 1 kHz. The presence of nonlinear distortion in the AN model is

an example of a case in which the notched-noise method is not measuring the actual filters,

since detection thresholds are increased due to distortion from off-frequency masking energy.

The AN model used in the present study was implemented based on physiological com-

pression and suppression data from chinchilla, guinea pig, and cat. The strength of the

nonlinear responses properties in the AN model, including compression, suppression, and

distortion, may not accurately represent the strength of human nonlinearity; however, the

main effects demonstrated by the present predictions depend primarily on the presence or

absence of these nonlinear properties. Future studies based on the present approach can

quantitatively evaluate the strength of human nonlinearity by relating physiological response

properties in the AN model to human psychophysical performance. The similar physiologi-

cal and psychophysical masking studies by Delgutte (1990a) and Oxenham and Plack (1998)

provide a good basis for relating the strength of compression and suppression in cats and
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humans. Physiological and psychophysical measures of basilar-membrane compression (e.g.,

Ruggero et al., 1997; Cooper and Rhode, 1997; Oxenham and Plack, 1997; Plack and Oxen-

ham, 1998) provide useful data for relating the strength of compression in chinchilla, guinea

pig, and humans.

6.5.3 Implications for the measurement of auditory tuning

It is not surprising that mechanisms that broaden the tuning of AN fibers would result

in broader auditory filter estimates. The present study demonstrates this quantitatively

by linking several physiological phenomena to psychophysically measured ERB’s that are

based on the detection of a tone in notched noise using a population of AN fibers. The

primary benefit of such a demonstration is to provide a quantitative framework in which to

discuss the significance of the cochlear amplifier on auditory tuning. This study also provides

insight into appropriate interpretations of results from current psychophysical methods for

estimating auditory filters.

The dependence of auditory tuning on stimulus configuration

In attempting to measure auditory tuning psychophysically, it is critical to understand how

tuning varies as a function of the spectral and temporal content of the stimulus. The present

predictions indicate that both the signal and masker influence the tuning of the auditory

system, and thus it is improper to discuss the tuning at a given CF without specifying

the stimulus configuration. This concept has been discussed previously in terms of the

broadening of auditory tuning with level; however, there is continued debate regarding how

to define level. Current psychophysical measurement techniques assume that tuning depends

on either the level of the stimulus prior to filtering (e.g., Moore and Glasberg, 1990) or on

the level of the filtered stimulus (e.g., Rosen and Baker, 1994; Rosen et al., 1998). The

current AN model based on physiological responses suggests that neither of these views are

correct, and that auditory tuning depends on both signal and masker energy that passes

through the suppression filter (i.e., both excitatory energy near CF and suppressive energy

well away from the signal frequency). Thus, psychophysical experiments that use noise to
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mask off-frequency information can change the tuning of the filter they are attempting to

measure based on their measurement technique. An example of this effect is the difference in

frequency selectivity measured using simultaneous masking (for which the signal and masker

energy influence the tuning of the filter used to process the signal) and nonsimultaneous

masking (for which only the signal energy influences BM tuning due to the fast dynamics of

the cochlear amplifier) (e.g., Houtgast, 1977; Moore, 1978; Moore and Glasberg, 1981,1986;

Moore et al., 1987).

Interpretation of current psychophysical methods

The dependence of auditory tuning of both signal and masker configuration has impor-

tant implications for comparing different methods of estimating auditory filters. Techniques

such as the critical-band method developed by Fletcher (1953) have been criticized based

on methodological issues, such as the varying influence of random-noise fluctuations as a

function of bandwidth (see Chapter 5), and the assumption of rectangular filters. However,

a more fundamental issue issue is whether the filter being estimated is the same in each

experiment, given that different methods use different stimulus configurations. The critical-

band method uses noise bands centered at the tone frequency and measures detection as a

function of bandwidth (Fletcher, 1940). The notched-noise methods uses noise bands that

surround the tone frequency, but only have masker energy at the tone frequency for one of

many notch widths measured. The critical-ratio method measures detection in broadband

noise. Each of these methods invoke the physiological mechanisms of compression and sup-

pression in vastly different ways. Given that compression and suppression have been shown

in the present study to alter auditory tuning, it is likely that these three common methods

for estimating auditory filters are not measuring the same filter. Thus, differences in filter

estimates across methods must be evaluated both in terms of methodological issues, but also

in terms of whether the tuning that is being measured is the same across methods (e.g.,

Lentz et al., 1999).

Beyond the issue of whether different methods are measuring the same filter, the present

study suggests that tuning is likely to vary across the different conditions used within a

single method to estimate auditory filter shapes (also see Sinex and Havey, 1986; Delgutte,
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1990a). For example, the notched noise method method fits detection thresholds as a func-

tion of notch width based on the power spectrum model, which assumes a single filter was

responsible for each detection threshold. However, given that the influence of compression

and suppression depends on the spectral content of the masker, it is likely that auditory

tuning varies across the notch widths used to measure a single auditory filter. Future studies

using the modeling approach presented here can evaluate the significance of this effect quan-

titatively by calculating the bandwidth (averaged across time) of the model CF at the tone

frequency as a function of the notch widths used in the notched-noise method. It is likely

that the estimated filter from the notched-noise method represents some sort of average filter

across notch width.

A consistent result from the notched-noise method is that estimated auditory filters

become more asymmetric as stimulus level increases (Moore and Glasberg, 1987; Moore

1995a). This conclusion is based on the use of asymmetric notched-noise maskers in order

to evaluate the relative contribution of masking energy above and below the tone frequency.

At high levels, detection thresholds decrease more slowly when the edge of the low-frequency

noise band is closer to the tone frequency than is the edge of the high-frequency noise

band. This result has been interpreted using the power-spectrum model of masking as

indicating that the auditory filter at high levels has a shallower slope on the low-frequency

side than on the high-frequency side. However, the results from the present study suggest

the influence of suppression above and below the tone frequency must also be considered.

Delgutte (1990b) systematically measured the growth of two-tone suppression in AN fibers as

a function of suppressor level, and found that suppression was asymmetric above and below

CF. Suppression thresholds were higher below CF than above CF, but more significantly,

the growth-rate of suppression was much higher below CF than above CF (up to a factor

of 10 in the same AN fiber). Thus, much stronger suppression was observed below CF than

above CF at high levels. This suggests that the asymmetric notched-noise maskers used to

evaluate the two sides of the auditory filter would produce more suppression, and thus a

broader filter, when the low-frequency noise band is closer to the tone frequency than when

the high-frequency noise band is closer. The same pattern of detection thresholds measured

for human listeners with asymmetric notched-noise maskers could result from symmetric
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excitatory filters and asymmetric growth of suppression, and thus the asymmetry of auditory

tuning can not be measured using the current notched-noise method. Thus, the reported

changes in auditory-filter asymmetry as a function of level may be due to the asymmetry in

the growth of suppression above and below CF, and not on actual changes in auditory-filter

asymmetry.

Despite the complications that cochlear nonlinearity place on the interpretation of psy-

chophysical measures of auditory tuning, the estimates derived from these methods have

proven to be useful in predicting a variety of masking conditions (Moore, 1995a). Derleth

and Dau (2000) successfully predicted masking patterns for mid-level tone and narrowband

signals and maskers using a modulation-filter-bank model (Dau et al., 1997a) that contained

a linear peripheral filter bank based on the notched noise method (Patterson et al., 1987).

Derleth and Dau suggested that a linear filter bank was successful in predicting masking

patterns at mid levels because the effects of cochlear nonlinearities were likely included in

the filter bandwidths estimated based on the notched-noise method, and that these filter

bandwidths can be considered to represent “effective” auditory filters. The present study

suggests that the auditory filters estimated from the notched-noise method may represent a

general approximation of the average tuning that results from a tone stimulus in the presence

of mid-level masking energy near (both above and below) the frequency of tone.

However, the present predictions suggest that the filter estimates from the notched-noise

method are significantly broader than the low-level tuning of AN fibers for two reasons:

1) the tone level is typically above the compression threshold, resulting in a broader filter,

and 2) the noise used to mask off-frequency information has broadened the filter through

suppression. Recent non-invasive measures of human cochlear tuning based on the phase

of stimulus-frequency otoacoustic emissions (Shera and Guinan, 2000) have also suggested

that psychophysical measures of auditory tuning overestimate filter bandwidths. The phe-

nomenological model used in the present study suggests that stimulus conditions for which

any of the noise-masker energy passes through the suppression filter result in auditory tuning

that is broader than the low level tuning. The threshold for compression of the response to a

CF-tone is about 20 dB SPL in the model, which is consistent with physiological measures of

basilar-membrane compression (Ruggero, et al., 1997). Thus, a noise masker that produces
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roughly 20 dB SPL or more of overall level through the suppression filter would be expected

to suppress the response to a CF-tone. If the suppression filter had a bandwidth that was

on the order of 100 Hz (likely to be an underestimate given that current estimates of the

auditory filter bandwidth at 1-kHz are between 100 and 150 Hz), then a noise spectrum

level greater than 0 dB SPL would produce more than 20 dB SPL overall level through the

suppression filter, and thus produce suppression. Even lower noise spectrum levels would

produce suppression at higher frequencies for which excitatory and suppressive tuning is

broader. Studies that estimate auditory-filter shapes are rarely based on masking conditions

that use noise spectrum levels less than 20 dB SPL. Thus, it is likely that most psychophys-

ical estimates of auditory filters include effects of suppression, and therefore overestimate

the bandwidths of AN threshold tuning curves. Psychophysical estimates of auditory tun-

ing typically demonstrate smaller changes in bandwidth with level than would be predicted

based on the amount of cochlear amplifier gain reported from measures of BM compression.

This effect may result because psychophysical measures of tuning are not made at levels low

enough to avoid the effects of compression and suppression. A consequence of this limitation

is that the difference between the frequency-selective capabilities of normal and impaired

listeners may be underestimated using current psychophysical methods. The largest differ-

ence between estimates of frequency selectivity for normal and impaired listeners would be

expected to occur for levels just above threshold, as suggested by Rosen et al. (1998).

Different methods are appropriate for difference stimulus conditions

The present study suggests that the most appropriate method for estimating auditory tuning

depends on the stimulus configuration of interest. Simultaneous masking methods such as

the notched-noise method may be appropriate for representing the average tuning of the

auditory system in the presence of both signal and masker. However, simultaneous masking

results in overestimates of filter bandwidth when tuning in the presence of the signal alone

is of interest, due to the effects of compression and suppression in response to the noise

masker. Nonsimultaneous masking can be used to estimate filters that represent the tuning in

response to the signal alone, and allow the masking noise to be used as purely as an excitatory

masker. However, the amount of excitatory masking produced by a nonsimultaneous masker
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is dependent on the tuning that results from the particular masker used, and thus may also

be influenced by the effects of compression and suppression in response to the noise masker

alone. A similar idea was used to model the additivity of nonsimultaneous masking based on

independent effects of compression for the signal and maskers (e.g., Oxenham and Moore,

1994). Thus, estimates of auditory tuning using nonsimultaneous masking represent filters

that depend primarily on the signal, but may be broader than low-level filters due to the

effects of compression in response to the signal.

6.6 Conclusions

1. The cochlear amplifier alters the tuning of the normal auditory system based on the

spectral and temporal configuration of the stimulus (e.g., both signal and masker).

Thus, no single set of linear filters derived from the power-spectrum model of masking

is appropriate to represent the frequency selectivity of the auditory system for all

stimulus conditions.

2. Estimates of auditory frequency selectivity using simultaneous masking represent some

sort of average tuning in the presence of both the signal and the masker, and likely

overestimate the bandwidth of tuning in response to the signal alone due to compression

and suppression.

3. Nonsimultaneous masking is likely to provide a more accurate estimate of tuning in

response to the signal alone. However, compression and suppression may affect the

signal and masker responses independently, and thus must be considered in interpreting

estimates of frequency selectivity based on nonsimultaneous-masking.

4. The typically reported increase in auditory-filter asymmetry as level is increased is

consistent with the asymmetric growth of suppression above and below CF. The use of

asymmetric notched-noise maskers to estimate auditory-filter asymmetry is likely too

be strongly biased by the effects of suppression, especially in simultaneous-masking

conditions.
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Chapter 7

Summary and Comments

The motivation for this dissertation was the fact that there are still many situations for which

hearing aids have a limited benefit, despite a rapidly advancing knowledge of peripheral

auditory processing. There is now strong evidence that many nonlinear response properties

observed in the normal auditory periphery originate from a single mechanism, referred to as

the cochlear amplifier, which is damaged or absent in many forms of sensorineural hearing

loss. Thus, the primary goal of this dissertation was to quantitatively relate physiological

response properties associated with the cochlear amplifier to psychophysical performance.

The observation that hearing-impaired listeners with amplification often demonstrate near-

normal performance in simple listening tasks necessitates the ability to quantitatively relate

physiological response properties to psychophysical performance in more complex tasks than

previous methods allowed. Thus, a main focus of this dissertation was generalizing methods

from statistical decision theory to allow current AN models that include the most significant

properties associated with the cochlear amplifier to be used to analyze a broader range of

psychophysical experiments.

The general modeling approach developed in this dissertation allows 1) any AN model

to be used, 2) optimal performance based on temporal and/or average rate information to

be predicted, 3) performance based on sub-optimal processors to be predicted, and 4) psy-

chophysical experiments that use random-noise stimuli to be analyzed. Two psychophysical

tasks were evaluated in this dissertation for which the cochlear amplifier is significant. To

evaluate differences between normal-hearing and hearing-impaired listeners, the set of phys-
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iological properties associated with the cochlear amplifier must be considered as a whole.

However, the modeling approach used in this dissertation allows additional insight to be

gained by parsing the relative contributions of individual response properties to psychophys-

ical performance. This general modeling approach is applicable to a wide range of issues

related to hearing, and can easily be used with future AN models that incorporate more de-

tailed descriptions of AN response properties. In addition, these methods are applicable to

any sensory system for which a description of the variation in neural discharge statistics with

stimulus parameters is available. The sections that follow discuss specific issues addressed

in this dissertation.

7.1 Separating the statistical decision theory analysis

from the AN model

Chapter 2 described a method for using an arbitrary AN model (i.e., computational or

analytical) with statistical decision theory (SDT) to analyze the temporal and average-rate

information available in the AN for any discrimination task in which a single parameter

is varied. Siebert (1965, 1968, 1970) and Colburn (1969, 1973, 1977a,b, 1981) analyzed

various discrimination experiments using SDT with analytical AN models; however, their

SDT analysis was tied directly to the specific AN models they used. Chapter 2 described the

parts of Siebert’s (1970) analysis using the Cramér-Rao bound that are independent of the

AN model when Poisson discharge statistics are assumed. The result was an expression that

related the time-varying discharge rates ri(t) provided by the AN model to the just-noticeable

difference in the stimulus parameter of interest for the psychophysical experiment. It was

also demonstrated in Chapter 2 that the same result is obtained using a likelihood-ratio test.

This analysis provided insight into the expression for the amount of information available in

each AN fiber, i.e., that this expression is closely related to the common sensitivity index d′.

The expression for the theoretical performance limits can be evaluated using computational

AN models by using a simple method for approximating the partial derivative of the discharge

rate with respect to the stimulus parameter of interest.
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The separation of the SDT analysis from the AN model makes this approach extremely

general in that it can be used with any AN model given that Poisson discharge statistics are

assumed. As future AN models are developed with more physiological detail, this approach

can be used without a rederivation of the SDT analysis. The ability to use computational

models allows AN responses to arbitrary stimuli to be predicted, and thus a much broader

range of psychophysical tasks to be evaluated. Computational AN models have been used

previously to develop theories for the psychophysical significance of complex physiological

phenomena; however, these models have typically only been tested against physiological

data. The current approach provides a link between complex physiological properties that

have been characterized in animals and psychophysical measures of performance in humans.

A specific benefit of using computational AN models is the ability to make performance-limit

predictions for short-duration stimuli because neural-adaptation and transient responses are

incorporated in the computational AN model. Chapter 2 highlighted several extensions

of the stimulus parameter space over which frequency- and level-discrimination predictions

could be made compared with Siebert’s (1968, 1970) analytical AN model.

7.2 Analysis of psychophysical experiments with ran-

dom variation of a single parameter

The analysis developed in Chapter 3 represents a first step in extending the SDT analysis

used by Siebert and Colburn to include psychophysical tasks that use random stimuli. The

SDT analysis was extended to include one-parameter discrimination tasks in which another

single parameter is randomized. The randomization of certain stimulus parameters is often

used in psychophysical experiments to limit the cues available to the listener in order to test

theories of auditory processing [(e.g., profile-analysis experiments in which overall level is

randomized to test energy-detector models (Green, 1988)].

The primary theoretical result of this analysis was an intuitive equation that expressed the

information available in the presence of random stimulus variation as the difference between

the average fixed-stimulus information and the amount of information that was lost due
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to the random stimulus variation. This expression was used to relate optimal performance

based on temporal and/or average-rate information in the AN population to the time-varying

discharge rates provided by any AN model. The results in Chapter 3 show that frequency-

discrimination predictions from both the all-information (based on AN discharge times)

and the rate-place (based on AN discharge counts) models are unaffected by random level

variation, consistent with human performance. Significant temporal information exists in

individual AN fibers that is unaffected by random level variation. In contrast, the rate-

place model must rely on the AN population response to avoid the influence of random

level variation, i.e., by comparing AN fibers with characteristic frequencies (CF’s) above and

below the tone frequency. The results from Chapter 3 provide insight into the appropriate

interpretation of random-level frequency discrimination experiments, and provide additional

constraints on rate-place models of auditory encoding (discussed in further detail below).

7.3 Analysis of psychophysical experiments with ran-

dom-noise stimuli

Many influential psychophysical experiments that have been used to develop theories for

auditory processing have used random-noise stimuli. However, the interpretation of these

experiments is often based on assumptions about the effect of noise maskers on signal infor-

mation in the auditory system. One effect of noise maskers that is often not considered is

the influence of random stimulus variations, which can limit psychophysical performance by

contributing to the variance of AN discharge times and counts.

Previous psychophysical studies have evaluated the influence of random stimulus varia-

tions (external noise) by comparing performance with random- and fixed-noise maskers (de

Boer, 1966; Spiegel and Green, 1981; Siegel and Colburn, 1983, 1989; Buus, 1990; Dau et al.,

1996b). Fixed-noise performance is interpreted as representing only the influence of phys-

iological variations (internal noise), while the random-noise results represent the influence

of both internal and external noise. These results have been used with several additional

assumptions to estimate the ratio of internal and external variance in the listener’s decision
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process, without making any specific assumptions about the processor or the physiological

source of internal noise (e.g., Spiegel and Green, 1981; Siegel and Colburn, 1983, 1989).

Other psychophysical studies have evaluated external- and/or internal-noise effects on the

performance of specific decision models (e.g., de Boer, 1966; Dau et al., 1996b). In these stud-

ies, the internal noise is estimated by matching model and human performance in conditions

for which internal noise is assumed to dominate, but is never compared with known physio-

logical sources of internal noise. Colburn (1969, 1977a,b) and Siebert (1973) quantitatively

compared the effects of physiological internal noise from AN discharges and external stim-

ulus variations on psychophysical performance; however, their use of analytical AN models

required simplistic assumptions about AN responses to noise. The new theoretical approach

developed in Chapter 5 allows computational AN models to be used with statistical deci-

sion theory to quantify the effects of both internal and external noise on temporal and/or

average-rate information in the AN.

The fundamental theoretical result from Chapter 5 is an equation for the sensitivity of

a general processor that discriminates two stimulus alternatives in a psychophysical exper-

iment with random-noise stimuli based on the population of AN discharges. The equation

relates the time-varying discharge rates provided by the AN model to the sensitivity in terms

of the mean-difference between the decision variable in the two stimulus alternatives and the

variance. The total variance is separated into the contributions of the random nature of

AN discharges (internal noise) and the random stimulus fluctuations (external noise). This

separation allows predictions to be made for both random- and fixed-noise conditions. Per-

formance can be evaluated based on different assumptions about the a priori information

used by the processor, e.g., whether information about individual noise waveforms is used or

only information about the noise-ensemble properties (more realistic for human listeners).

In addition, Chapter 5 provides equations that quantify the total information available in

individual AN fibers, as well as the information available as a function of time.

Chapter 5 provided several examples of the application of this analysis to the detec-

tion of a tone in a bandlimited noise masker. The effect of external noise was shown to

be larger for a narrowband masker than for a broadband masker, as expected, for both the

all-information and rate-place models. The correlation across AN fibers that results from
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random-noise stimuli was shown to significantly decrease the benefit obtained by combining

temporal or average-rate information across the population of AN fibers in many conditions.

This strong effect of correlation occurs for conditions in which the external-noise variance is

similar to or larger than the internal-noise variance. An interesting example of this effect was

seen in the distribution of AN information across CF (information profile) for a narrowband

masker. The shape of the information profile changed dramatically based on the number of

AN fibers that were assumed to be represented by each model CF. The benefit of combining

across N AN fibers with CF’s well outside the noise spectrum (i.e., dominated by internal

noise) demonstrated an increase in sensitivity that was close to the expected factor of
√
N

that comes from independent fibers. A much smaller benefit was observed for CF’s within

the noise spectrum because the responses of these AN fibers were dominated by the external

noise. The complex effects of random-noise stimuli on temporal and average-rate information

in the AN warrant future study. This new theoretical approach represents a significant ex-

tension of previous approaches, and greatly expands the types of psychophysical experiments

that can be evaluated in terms of physiological response properties. In addition, the present

approach provides a method for evaluating many of the assumptions made in psychophysical

studies that estimate the relative amounts of internal and external noise because the effects

of internal and external noise on AN information can be quantified directly.

7.4 Signal processing capabilities of monaural coinci-

dence counters

Coincidence detection has long been considered to be important for binaural processing in

the auditory system (e.g., Jeffress, 1948; reviewed by Colburn, 1996). Recently, monaural,

across-frequency coincidence detection has been proposed by Carney (1994) as a physio-

logically realistic mechanism to decode the level-dependent spatio-temporal patterns in AN

discharges that result from nonlinear phase cues. Coincidence detection is a general neu-

ral mechanism in that any neuron that receives sub-threshold inputs and has a limited

integration window can be viewed as a coincidence detector. In addition, several neural
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response types in the antero-ventral cochlear nucleus have properties that are consistent

with monaural coincidence detection. Chapter 4 presented a simple monaural coincidence-

counting model that received two AN inputs, similar to the binaural coincidence model used

by Colburn (1969, 1977a,b). Expressions for the expected value and variance of the number

of coincidence counts were derived based on the Poisson statistics of the AN discharge times.

These expressions were given in terms of the time-varying discharge rates provided by the

AN model, and thus could be used with any AN model, i.e., analytical or computational.

Predicted performance based on a population of coincidence counters was derived in

Chapter 4 using an analytical AN model. Monaural coincidence detection was shown to

be a robust mechanism for decoding both temporal (nonlinear phase and synchrony) and

average-rate information. The coincidence-counting mechanism was shown to encode changes

in stimulus level over the entire dynamic range of hearing at both low and high frequencies,

and to provide a good match to the trends and absolute performance levels of human lis-

teners. A close match to human performance levels implies that all processing at higher

levels in the system must be optimal. However, the absolute performance levels based on

the implementation of the coincidence mechanism in this dissertation are likely to be con-

servative. Coincidence performance could be improved by assuming a coincidence window

that was wider than 10-µs; the analysis in Chapter 4 only requires the coincidence window

to be significantly narrower than the period of AN-response oscillation. In addition, coinci-

dence performance could be improved by increasing the number of coincidence counters by

assuming that each AN fiber innervates more than one coincidence counter. This assump-

tion would violate the independence assumption used to calculate coincidence performance,

but would increase the amount of information available in the coincidence population. The

present study provides quantitative support that coincidence detection is important for ro-

bust monaural encoding of sound level, and provides simple methods to analyze coincidence

performance for a wide variety of psychophysical tasks.
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7.5 Limitations of AN models used in this dissertation

The previous sections in this chapter have primarily focused on the significance of the

methodological issues addressed in this dissertation, and were essentially independent of

the details of the AN models used. The following sections of this chapter address issues that

do depend on the AN models, and thus it is appropriate to first discuss several limitations

of the AN models used in this dissertation.

The AN models are based on physiological data from various species by necessity, and

it is assumed that human physiological responses do not differ from these other species in

significant qualitative or quantitative ways. This assumption is typically difficult to test;

however, the general modeling approach used in this dissertation may provide new methods

for testing this assumption, as discussed in the future work section.

The strength of compression in the AN models at high frequencies was based on data

from guinea pig and chinchilla. The 60-dB of cochlear-amplifier gain produced “straight”

rate-level curves for the low-spontaneous-rate (LSR) AN fibers in the model, consistent with

their observation in guinea pig (Winter and Palmer, 1991). Straight rate-level curves have

not been observed in cat (Sachs and Abbas, 1974), consistent the inability of LSR fibers with

CF’s within 1% of 8 kHz to provide robust encoding of high sound levels in cat (Winslow

and Sachs, 1988). These results suggest that cats may have less gain from the cochlear

amplifier; however, large nonlinear phase shifts (up to π/2, and similar to high-CF BM

responses from other species) have been observed in low-CF AN fibers in cat (Anderson et

al., 1971). Results from human temporal bone studies suggest that OHC loss is correlated

with 50-60 dB increases in threshold (Schuknecht, 1994). Also, human psychophysical studies

have estimated BM compression similar to that observed in chinchilla (Oxenham and Plack,

1997). Thus, further studies are necessary to verify the appropriate strength of compression

at high frequencies to use in the human AN model; however, the decrease in strength of

compression with decreases in CF is supported by psychophysical studies (Hicks and Bacon,

1999a).

The two-tone suppression tuning curves of the computational AN model match well to

tuning curves from cat (Delgutte, 1990b). However, the growth of suppression in the model
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is symmetric above and below CF, in contrast to the steeper growth rate below CF observed

in cats (Delgutte, 1990b). Thus, while the qualitative effect of broadband suppression is

captured by the AN model, the strength of suppression effects predicted by the model should

be viewed with some caution.

Several response properties are not included in the AN models used in this dissertation.

The effects of external- and middle-ear filtering (see Rosowski, 1996 for a review) are not

considered. The AN models are primarily based on physiological data collected from animals

under anesthesia. Thus, the effects of the olivocochlear efferent system are not considered

in the AN models, but could potentially have played a role in the psychophysical data that

were compared to model predictions. While it is clear that the efferent system can modulate

the strength of the cochlear amplifier (Murugasu and Russell, 1996; see Guinan, 1996 for

a review), there is currently no model for how this system works as a function of arbitrary

stimuli that is sufficient to address the psychophysical significance of the efferent system.

Scharf et al., (1994) reported that a human patient with unilaterally sectioned olivocochlear

efferents demonstrated no effect of the efferent system on performance in experiments on

tone detection, level discrimination, and frequency discrimination in quiet and in noise (i.e.,

the experiments evaluated in this dissertation).

Several types of complex irregularities have been reported at high levels in AN responses

to tones (e.g., Kiang et al., 1969; Liberman and Kiang, 1984; Kiang, 1984, 1990; Ruggero

et al., 1996) and clicks (Lin and Guinan, 2000). These irregularities include sharp dips in

rate-level curves, rapid phase transitions, and bimodal times of excitation within a stimulus

period (i.e., peak splitting). These effects are typically concurrent, and occur most often

between 80-100 dB SPL. While there is now clear evidence that these complexities occur in

many species, the effects vary within and across species and there is currently no systematic

view of how these properties vary across CF (Ruggero et al., 1996) or in response to complex

stimuli. A two-drive model of tone response phase reversals has been developed by Goldstein

(1990, 1991, 1995), and extended to clicks by Lin and Goldstein (1995); however, this model

does not include level-dependent phase shifts associated with broadened tuning, and has not

been tested for arbitrary stimuli. The psychophysical consequences of these irregularities

have not been considered in detail; however, the general modeling approach developed in
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this dissertation provides a method to evaluate their significance. Depending on the assumed

processor, these complex response properties could potentially provide either a benefit or a

distraction for level encoding. The AN models used in this dissertation do not include

these irregularities, but do include many significant response properties associated with the

cochlear amplifier. The properties included in the AN models occur both below and above the

levels at which the complex behavior is observed. Thus, the sources of information predicted

by these models at high levels (e.g., relative phase cues across CF) are likely to be present in

the normal auditory system in addition to the irregularities. Human listeners demonstrate

roughly constant level-discrimination performance across the level range over which these

irregularities occur (Florentine et al., 1987). Thus, it is unclear whether these irregularities

in AN responses are psychophysically significant; however, future work with models that

better represent high-level AN responses is required to evaluate this issue quantitatively.

7.6 Effects of compression and suppression on psycho-

physical estimates of auditory filters

The theoretical approach developed in Chapter 5 was used to quantitatively relate phys-

iological response properties to a fundamental method used in psychophysics to estimate

auditory frequency selectivity, the notched-noise method. The computational AN model

used in Chapter 6 (Appendix A, and Zhang et al., 2000) provided a phenomenological tool

to evaluate the relative effects of compression and suppression on psychophysical estimates

of auditory filters. Auditory filters estimated from notched-noise detection thresholds were

compared from four versions of the AN model that differed in how their tuning characteristics

depended on the stimulus. It was consistently found that equivalent-rectangular bandwidths

(ERB’s) from the model with both compression and suppression were broader than ERB’s

from the model with compression and without suppression, which were broader than ERB’s

from the model with linear sharp tuning.

This result suggests that both compression and suppression play a role in the notched-

noise method, and that psychophysical estimates of human auditory filters are likely to

212



be broader than AN-threshold tuning. The increased strength of compression and sup-

pression with CF suggests that the degree to which AN-threshold tuning is overestimated

may be larger at high CF’s, consistent with results from recent measurements of otoacoustic-

emissions (Shera and Guinan, 1999b, 2000). The cochlear amplifier controls BM tuning based

on the spectral and temporal configuration of the stimulus (both signal and masker). This

physiological property suggests that the excitatory filter being estimated in the notched-noise

method is likely to be changing as the notch width of the masker is varied. Thus, auditory

filters estimated from simultaneous masking experiments (e.g., Glasberg and Moore, 1990;

Rosen et al., 1998) are likely to represent a measure of average tuning in the presence of

both the signal and masker, and likely overestimate the tuning bandwidth in response to the

signal alone. The fast dynamics of BM tuning suggest that suppression of the signal by the

masker does not occur in non-simultaneous masking experiments, consistent with sharper

frequency selectivity estimated in such conditions (e.g., Moore and Glasberg, 1986; Moore et

al,, 1987). This result suggests that estimates of frequency selectivity from non-simultaneous

masking experiments represent a measure of tuning in the presence of the signal alone. The

asymmetric growth of suppression in AN fibers (Delgutte, 1990b) suggests that the increase

in asymmetry of psychophysically estimated AN filters with level is, at least partially, due

to the effects of suppression rather than changes in asymmetry of the excitatory filter.

This analysis of the notched-noise method represents one example of the application of

the general modeling approach developed in this dissertation to psychophysical tasks that

use random-noise stimuli. While this experiment was chosen due to its relative simplicity,

it is clear that many complex issues influence basic psychophysical masking studies. This

modeling approach provides a quantitative method to investigate many of these issues in

future studies.
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7.7 Temporal and average-rate information in the au-

ditory nerve

A general approach used throughout this dissertation was to quantify the total information

from all AN fibers in a given population based on the set of discharge times (all-information

model) or the set of discharge counts (rate-place model). The ability of average-rate and

temporal information in the AN to account for human performance has been compared in

terms of both trends versus stimulus parameters and absolute performance levels.

Absolute performance levels based on rate-place information were typically closer to hu-

man performance than the all-information predictions. Rate-place performance for both

frequency discrimination and detection in noise was generally close to human performance,

while all-information performance was at least two orders of magnitude better. Level-

discrimination performance was generally more similar between the rate-place and all in-

formation models, and was roughly an order of magnitude better than human performance.

Despite the better match between rate-place and human absolute performance levels,

there were several discrepancies between the trends in human and rate-place performance

that are difficult to resolve. Rate-place predictions did not match the trend in human

frequency-discrimination performance as a function of frequency for frequencies above 2 kHz.

The small effect of random level variation on human frequency-discrimination performance

with a high-frequency noise masker was inconsistent with the large effect predicted for the

rate-place model when the noise was assumed to eliminate all of the information in CF’s

above the tone. This is a common assumption that is used to interpret noise-masking

experiments; however, this assumption should be tested in future studies with the theoretical

method developed in Chapter 5 for analyzing random-noise experiments. The trend in level-

discrimination performance based on rate-place information in AN fibers with a narrow range

of CF’s was inconsistent with robust human performance at low frequencies.

All-information performance was always predicted to be significantly better than human

performance, but often showed similar trends to human performance, especially in the condi-

tions where the rate-place trends were inconsistent with human performance. All-information

frequency-discrimination performance matched the trend in human performance as a func-
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tion of frequency up to 10 kHz, and was predicted to be unaffected by random level variation

in the presence of high-frequency noise. Similarly, all-information level-discrimination per-

formance based on a narrow range of CF’s matched the robust human performance at high

levels and low frequencies, because nonlinear phase cues were the only source of information

in the AN model about changes in level.

The trends in all-information performance that did not match human performance typi-

cally resulted from the assumption that the AN fine-time information is used optimally. The

much too rapid improvement in all-information frequency-discrimination performance as a

function of duration results from the ability of the optimal processor to make temporal com-

parisons between all AN discharges. The large difference between predicted all-information

performance in random- and fixed-noise maskers with energy at the tone frequency is incon-

sistent with human performance (e.g., both noise bandwidths considered in Chapter 5, and

the 0.0 notch-width condition in Chapter 6). There is a large amount of fine-time informa-

tion available in the absence of random-noise energy at the tone frequency (e.g., fixed-noise

or off-frequency masking conditions); however, the fine-time information is much less reli-

able in on-frequency masking conditions. However, significant temporal information exists in

the presence of random on-frequency maskers because all-information performance is always

significantly better than rate-place and human performance.

Thus, all predictions from this dissertation suggest that if monaural temporal informa-

tion is used to encode frequency or level, then the AN discharge times are processed by an

inefficient (sub-optimal) mechanism. Similar conclusions were reached by Siebert (1970) for

monaural frequency-discrimination at low-frequencies and by Colburn (1969, 1973, 1977a,b)

for the processing of interaural-time differences in the binaural auditory system. The predic-

tions in Chapter 4 demonstrated that a coincidence-counting mechanism uses the informa-

tion in the set of AN discharge times inefficiently, but maintains the trends in all-information

level-discrimination performance. Predicted performance based on this general, physiologi-

cally realistic processor was shown to match both the trends and absolute levels of human

level-discrimination performance as a function of stimulus level at both low and high fre-

quencies.

However, the coincidence-detection mechanism used in this dissertation could not ac-
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count for human frequency-discrimination performance as a function of both frequency and

duration (not shown). Predicted performance based on a population of coincidence counters

correctly matched the trends in human performance versus duration (similar to the rate-place

model), but demonstrated a much shallower U-shape dependence on frequency than human

performance. When performance was predicted based on the set of coincidence times, an ap-

propriate U-shaped frequency dependence was predicted; however, the improvement in per-

formance as a function of duration was much too steep (similar to the all-information model).

Thus, the same rate-place/all-information dilemma exists for frequency-discrimination per-

formance based on the information in a population of coincidence detectors as exists based on

the information in the AN population. It was suggested in Chapter 2 that a restricted tempo-

ral mechanism that made comparisons of all AN discharges within a narrow window (roughly

10-20 ms) might account for the dependence of frequency-discrimination performance as a

function of both frequency and duration. This type of restricted temporal mechanism is

slightly more general than a first-order-interval processor, which has been predicted to ac-

count for both the frequency and duration dependence of human frequency-discrimination

performance (Goldstein and Srulovicz, 1977).

Thus, the predictions from this dissertation suggest that temporal information is sig-

nificant for frequency-discrimination at both low and high frequencies, but only significant

for level-discrimination at low frequencies. This discrepancy raises the question of whether

the same mechanism is used to process AN discharge times for the encoding of both level

and frequency. Results from this dissertation suggest that different inefficient (sub-optimal)

processors of AN discharge times are required to account for both level and frequency discrim-

ination; however, future studies on the signal processing capabilities of inefficient temporal

processors are required to investigate this issue more thoroughly.
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7.8 Psychophysical significance of the cochlear ampli-

fier

The general modeling approach developed in this dissertation was applied to two psychophys-

ical tasks for which the cochlear amplifier is significant. These initial applications provide

some insight into benefits that the cochlear amplifier provides to normal-hearing listeners,

and the general difficulty in measuring significant deficits in performance of hearing-impaired

listeners on simple tasks. The discussion of hearing impairment in this dissertation is ap-

plicable to forms of sensorineural hearing loss that involve damage or loss of the cochlear

amplifier. While this type of loss is likely to be common in humans (Pickles, 1988; Patuzzi

et al., 1989; Ruggero and Rich, 1991; van Tasell, 1993; Moore, 1995b), there are many addi-

tional types of hearing loss (e.g., conductive, sensorineural based on IHC loss, retro-cochlear)

that may occur in isolation or in combination with damage to the cochlear-amplifier.

7.8.1 Normal hearing

Several potential benefits of the cochlear amplifier were apparent from the results of this

dissertation. The predictions from Chapter 4 suggest that the cochlear amplifier produces

a wide dynamic range in AN fibers with a narrow range of CF’s, a property that is useful

for wideband complex stimuli (e.g., speech) for which spread of excitation is not beneficial.

Both nonlinear gain and nonlinear phase cues from the cochlear amplifier are required for

the robust encoding of sound level within a narrow range of CF’s. Nonlinear phase cues

contributed the only useful information at high levels and low frequencies, and produced

robust level encoding at low frequencies. However, the nonlinear phase cues were not useful

for encoding tone level at high frequencies due to the decrease in AN phase-locking at

high frequencies. Nonlinear gain cues provided the only useful information at high levels

and high frequencies, and accounted for robust encoding of sound level at high frequencies.

However, the nonlinear gain cues do not encode high sound levels at low frequencies due

to the reduced cochlear-amplifier in the apex of the cochlea. The ability of a narrow-CF

region to produce Weber’s Law over the entire dynamic range of hearing is often assumed
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in psychophysical models that are successful in explaining many psychophysical phenomena

(e.g., Florentine and Buus, 1981; Dau et al., 1996a,b, 1997a,b). The present study provides

a physiological basis for this assumption based on the effects of the cochlear amplifier on

both the temporal and average-rate information in the AN. Loss of the benefit provided by

the cochlear amplifier for extending the dynamic range over which changes in sound level

can be encoded in a narrow range of CF’s may be related to the difficulties that hearing-

impaired listeners have in some complex environments. An additional potential benefit of

the cochlear amplifier is the dynamic variation in tuning at each CF, which may be related to

the severe difficulties hearing-impaired listeners have in understanding speech in temporally

and spectrally varying backgrounds (e.g., Moore, 1995b; Peters et al., 1998; Moore et al.,

1999a). This issue of dynamic tuning in the normal auditory system is discussed further

below.

Several conditions were evaluated in this dissertation for which the cochlear amplifier

provided little or no benefit to psychophysical performance. The predictions from Chapter 4

suggest that the cochlear amplifier has only a small effect on level-discrimination perfor-

mance in quiet, i.e., when AN information in the entire range of CF’s is considered. The

only effects of the cochlear amplifier on predicted performance were subtle, but were con-

sistent with significant effects often reported for human performance. The “near-miss” to

Weber’s Law reported in human data at low frequencies was only predicted by the AN-model

with nonlinear phase cues, while the linear AN model predicted Weber’s Law across a wide

level range. The nonmonotonic behavior of human level-discrimination performance at high

frequencies (i.e., the “mid-level bump”, Florentine et al., 1987) was only predicted by the

AN model with nonlinear gain responses. In addition, predictions from Chapter 6 (as well

as other predictions not shown) suggest that the cochlear amplifier may have little effect

on the detection of tones in broadband noise. These small predicted effects of the cochlear

amplifier are consistent with the lack of significant deficits in hearing-impaired performance

on simple tasks (e.g., Glasberg et al., 1987; Florentine, et al., 1993; Moore, 1995b).

While the cochlear amplifier is often viewed in terms of the potential benefit it pro-

vides, there are conditions for which the cochlear amplifier can diminish psychophysical

performance. The mid-level bump predicted in Chapter 4 represents diminished level-
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discrimination performance that results from the compressive BM magnitude responses as-

sociated with the cochlear amplifier. These predictions are consistent with reports that

hearing-impaired listeners can demonstrate better-than-normal performance in some condi-

tions when comparisons are made at equal-sensation-levels (e.g., Florentine et al., 1993).

7.8.2 Differences in normal and impaired auditory systems

Despite all that is known about the physiological mechanisms associated with hearing loss,

there is still not a thorough understanding of why hearing aids are of limited benefit to

persons with sensorineural hearing loss. Moore (1995b) has described two opposing views of

why hearing impaired listeners have difficulty understanding speech even with amplification.

Some researchers believe that audibility is the primary factor, while others believe that

deficits in supra-threshold discrimination play a major role. There are also strongly opposing

views of whether this problem can be solved. While new hearing-aid algorithms continue to

be developed, such as automatic gain control and frequency selective gain (Moore, 1995b),

Plomp (1978) has described a pessimistic view of the limited benefit of hearing aids due

to difficulty in correcting for distortion losses that can often accompany linear attenuation

losses. A more detailed understanding of the psychophysical significance of the physiological

differences between normal and impaired auditory systems will provide valuable guidance

for determining which approaches have the most potential to improve the ability of hearing-

impaired listeners.

The preliminary applications of the modeling approach developed in this dissertation

suggest a hypothesis for the significance of the cochlear amplifier in terms of comparing

normal-hearing and hearing-impaired performance on psychophysical tasks. The cochlear

amplifier appears to benefit normal-hearing listeners by enhancing the signal information in

local frequency (and temporal) regions of complex stimuli in several distinct ways. While

hearing-impaired listeners lose the benefit of these specific enhancements, they are often able

to perform at near-normal levels because significant signal information exists in forms that

are not degraded by hearing loss. Only in situations in which all forms of signal information

are degraded is there a measurable effect of hearing loss, e.g., with complex stimuli in noise.

The results from this dissertation suggest a more complex view of the differences be-
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tween normal-hearing and hearing-impaired auditory systems than is often used to interpret

psychophysical studies. The computational AN model used in Chapters 5 and 6 provided

an implementation of how the cochlear amplifier dynamically alters the tuning within the

normal peripheral auditory system based on the spectral and temporal configuration of the

stimulus. This phenomenological model highlights that the difference between a normal-

hearing listener with a cochlear amplifier and a hearing-impaired listener without a cochlear

amplifier is not simply a difference between one system in two states, i.e., with low or high

thresholds, narrow or broad tuning, or compressive or linear magnitude responses. Rather,

the difference is between two completely different systems, one that is static with insensitive

and broad tuning, and one that has fast, dynamic tuning that is continuously changing (cycle

by cycle at low frequencies) in response to the stimulus. This view is different than the view

that has arisen from the power-spectrum model of masking, i.e., that the primary differences

in the impaired system are higher thresholds and broader tuning.

The difference between these two views is likely to be most significant for rapidly changing

complex stimuli, and may be less significant for steady-state stimuli. Peters et al. (1998) and

Moore et al. (1999a) have reported that the difference between the ability of normal-hearing

and hearing-impaired listeners to understand speech is much larger in the presence of tempo-

rally and spectrally varying backgrounds than for stationary broadband backgrounds, even

when advanced amplification algorithms were provided to the hearing-impaired listeners.

This result has been interpreted as representing a deficit in the ability of hearing-impaired

listeners to “listen in the dips” (e.g., Peters et al., 1998; Moore et al., 1999a). This deficit

has been suggested to result from degraded frequency selectivity and reduced temporal reso-

lution, which have been accounted for in terms of broadened tuning and loss of compression,

respectively (see Moore, 1995b, and Moore and Oxenham, 1998, for reviews). Thus, the ab-

sence of the dynamic tuning provided by the cochlear amplifier appears to be significant for

stimulus conditions in which current amplification algorithms have the most limited benefit,

and the present modeling approach provides a method to investigate these effects further in

future studies.
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7.8.3 Implications for hearing-aid strategies

The present study provides some insight into the potential benefits and limitations of hear-

ing aids, which ideally would reproduce the normal information in the AN of an impaired

ear. The phenomenological models used in this dissertation suggest that it is impossible

to perfectly replicate the normal information in all AN fibers because the dynamic process-

ing of the cochlear amplifier depends on the CF in addition to the spectral and temporal

configuration of the stimulus. This suggestion is consistent with Plomp’s (1978) view of a

distortion loss that cannot be overcome by hearing aids. In terms of the cochlear amplifier,

Plomp’s distortion loss can be considered to correspond to an absence of nonlinearity in the

impaired ear, rather than an additional source of nonlinearity. A more optimistic view of the

potential benefit of hearing aids is suggested by the predictions from this dissertation that

there are many types of information in the AN that can produce near-normal performance

without the cochlear amplifier. Thus, even though much of the processing provided by the

cochlear amplifier to enhance local signal information in the normal auditory system cannot

be recreated exactly with preprocessing, the real requirement for a hearing-impaired listener

may be to enhance the local signal information to a significant level based on any form of

information, even if it is not the exact amount or type of signal information used by the

healthy ear.

The fast, stimulus-dependent tuning associated with the cochlear amplifier suggests that

preprocessors should also vary their processing based on the temporal and spectral configu-

ration of the stimulus. There are advanced hearing-aid algorithms that perform this type of

processing, e.g., fast-acting, multiple-band compression algorithms; however these algorithms

have a limited benefit for speech in temporally and spectrally varying backgrounds (e.g.,

Moore et al., 1999a; reviewed by Moore, 1995b). Compression has been used in hearing aid

algorithms to overcome the effect of loudness recruitment, which is thought to be associated

with the lack of compression in damaged cochleae (Moore, 1995b). However, the cochlear

amplifier performs compression in the normal auditory system through broadband-stimulus-

dependent changes in tuning that produce compression for near CF energy, level-dependent

phase shifts, and broadened tuning with increases in level. Thus, a large amount of poten-
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tially important processing that occurs in the normal auditory system is not provided by the

magnitude compression schemes that have been implemented so far, even the fast-acting,

multiple-band algorithms. For example, none of the hearing-aid algorithms to date attempt

to provide impaired listeners with the nonlinear phase cues that were predicted in Chapter 4

to be important for processing complex stimuli in the normal auditory system.

Hearing aid strategies that attempt to implement fast-acting, multi-band compression

using a scheme more similar to the cochlear amplifier, i.e., based on broadband-stimulus-

dependent tuning, have the potential to provide additional benefit to hearing-impaired lis-

teners beyond current magnitude compression algorithms. Much work is required to quantify

whether such processing strategies will prove useful given the physiological limitations of not

being able to access each CF directly based on acoustic hearing aids.

Methods for quantitatively relating physiological response properties to psychophysical

performance, such as those presented in this dissertation, will improve our understanding of

the processing of the cochlear amplifier in the normal ear and its relation to psychophysical

masking studies. This knowledge will be beneficial for identifying useful forms of signal

information that could be enhanced by preprocessing schemes to improve hearing-impaired

performance. There is great potential for digital-signal processing technology, which is now

being incorporated into hearing aids, to allow the types of dynamic algorithms that are

necessary to recreate some of the nonlinear cues provided by the cochlear amplifier.

7.9 Future Work

A general benefit of any model that was developed based on a set of data is the ability to

make predictions for new experiments. This benefit includes the ability to test quantitatively

current theories that have only been expressed qualitatively based on experimental results,

and to test new ideas that have not yet been tested experimentally. The current modeling

approach is particularly useful because of the ability to suggest useful psychophysical exper-

iments based on physiological data, and vice versa. There are several directions in which the

quantitative approach developed in this dissertation has the potential to improve the current

understanding of normal and impaired hearing.
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Physiological response properties that have been characterized in experimental animals

can be related to humans by using the approach developed in this dissertation to provide a

link between physiological and psychophysical studies of similar phenomena. As discussed in

Chapter 6, the physiological study of the effects of AN suppression in cat on psychophysical

masking by Delgutte (1990a) and the human psychophysical masking study by Oxenham

and Plack (1998) could be compared with the current approach to quantitatively relate the

strength of suppression in cats and in humans. Similarly, the strength of compression in

humans could be evaluated by using an AN model that matched physiological measurements

of BM compression in chinchilla (e.g., Ruggero et al., 1997; Cooper and Rhode, 1997) and

predicting performance based on AN information for psychophysical tasks that estimate

compression in human listeners (e.g., Oxenham and Plack, 1997; Plack and Oxenham, 1998).

Much discussion of the significance of hearing impairment on speech perception has fo-

cused on the predicted smearing of the internal representation of vowel spectra resulting from

broadened tuning. This idea has produced a wealth of studies (both psychophysical and phys-

iological) on steady-state vowel perception, or on discrimination using vowel-like harmonic

tone complexes, with normal and impaired subjects. Psychophysical studies using these rel-

atively simple stimuli generally show a significant difference between hearing-impaired and

normal listeners (e.g., Danaher et al., 1973; Danaher and Pickett, 1975; van Tasell, 1980;

Hannley and Dorman, 1983; Turner and van Tasell, 1984; Turner and Holte, 1987; Leek et

al., 1987; Leek and Summers, 1996). There have also been several physiological studies that

have examined the internal representation of vowel spectra or harmonic tone complexes in

AN fibers of normal and impaired ears (e.g., Sachs and Young, 1979,1980; Young and Sachs,

1979; Horst et al., 1990; Hienz et al., 1996; Miller et al., 1997,1999; Wong et al., 1998). While

many of these studies have focused on the effect of broadened filters, there are several reasons

that perception of changes in F2 or F3 would be expected to be impaired with the loss of the

cochlear amplifier. Suppression has been hypothesized to enhance the representation of spec-

tral peaks in complex sounds, such as steady-state vowels (Young and Sachs, 1979; Sachs and

Young, 1980). Synchrony capture, which refers to the nonlinear dominance of spectral peaks

near CF on AN responses to complex stimuli, appears to overcome the broadened tuning at

high stimulus levels (Horst et al., 1990; Miller et al., 1997,1999). Miller et al. (1997,1999)

223



have shown that responses to steady-state vowels in AN fibers that have CF’s near the F2

formant frequency are captured by the F2 stimulus component in normal cochleae, but that

impaired cochleae have AN responses that are much more significantly influenced by F1 and

other stimulus components. This finding correlates with psychophysical experiments that

demonstrate a much larger masking effect of F2 by F1 in hearing-impaired listeners than in

normal-hearing listeners (Danaher, 1973; Danaher and Pickett, 1975; Hannley and Dorman,

1983; Turner and Holte, 1987). The influence of suppression, synchrony capture, and the

other cochlear-amplifier properties on the AN information available for discrimination of

simple vowel-like stimuli in noise (e.g., Leek et al., 1987) could be evaluated with the present

approach. Comparisons between the model predictions and the wealth of physiological and

psychophysical data provide powerful tests for whether performance deficits in various tasks

should be expected due to peripheral impairment.

The present approach has the potential to suggest new physiological experiments or met-

rics that may be useful in studying the encoding of sound in the auditory periphery. For

example, the significant information contributed by nonlinear phase cues at low frequen-

cies (Chapter 4) is not apparent in current physiological metrics that are used to compare

the encoding of complex sounds in normal and impaired AN responses (e.g., Miller et al.,

1997,1999). Average-rate and synchronized-rate (the discharge rate associated with each

stimulus frequency component) metrics have typically been used to quantify AN information

in these studies. The present study suggests that the phase of synchronized-rate responses

would demonstrate a significant difference between the normal and impaired AN. The present

study also suggests that average-rate representations based on a population of coincidence

detectors would be enhanced compared with the AN-rate representation due to the process-

ing of nonlinear phase cues. Cochlear-nucleus neurons with several response types have been

shown to have responses consistent with a coincidence-detection mechanism (Carney, 1990;

Joris et al., 1994). Thus, the present study provides a potential basis for the observation of

enhanced rate representations of speech in the cochlear nucleus at high levels (Blackburn and

Sachs, 1990; May et al., 1998). A relation between the expected value and the variance of dis-

charge counts from a coincidence detector was described in Chapter 4, and depended on the

shape of the temporal coincidence window. This relation suggests physiological metrics that

224



may be useful in rate-based studies of neurons that are believed to operate as coincidence

detectors. It should be noted that temporal information is also enhanced in the cochlear

nucleus (Joris et al., 1994), perhaps based on coincidence detection, and may be processed

further to enhance representations at higher levels of the auditory system. Future theoretical

analyses of coincidence detection may suggest additional physiological metrics that would

be useful in studies of temporal information at higher levels of the auditory system.

As discussed above, restricted (sub-optimal) temporal processors are necessary to account

for human performance based on the information in AN discharge times. Coincidence de-

tection may be a robust mechanism for detecting tones in noise because the discharge times

on adjacent AN fibers will become more coincident as tone level is increased, independent of

whether the average discharge rate of the AN fibers is saturated by the noise. Thus, future

studies based on restricted temporal processors may provide better matches to the trends

and absolute performance levels of human listeners in psychophysical masking tasks than

the optimal performance quantified in the present study.

It is currently difficult to clinically identify the specific etiology of an impaired listener.

Future applications of the present approach with AN model versions that are impaired in

different ways (e.g., conductive loss, IHC loss, reduced OHC function) can suggest and

test hypotheses for potential audiological tests that could isolate specific types of hearing

loss. This knowledge is crucial to the proper applications of hearing aids for individual

listeners. The present approach can also be used in order to evaluate psychophysical tasks

that are used to simulate specific hearing losses. Frequency-shaped noise maskers are used

to reduce the audibility of stimuli for a normal-hearing subject to match the audiogram of

a hearing-impaired subject (e.g., Florentine and Buus, 1984; Florentine, 1992; Florentine

et al., 1993; Buus et al., 1995). This approach is typically successful in predicting many

aspects of hearing impairment; however, not all deficits demonstrated by impaired listeners

are predicted by the noise-masked normal listeners. The modeling approach could be used to

parse the physiological response properties that are responsible for the differences between

noise-masked-normal and impaired performance.

The present approach provides a quantitative framework that could be used for the

development and testing of hearing-aid algorithms. Predicted performance based on an
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impaired version of the AN model with and without the hearing aid could be compared

to demonstrate the potential usefulness of the algorithm for improving hearing-impaired

performance. Bruce et al. (1999,2000) are pursuing this idea by comparing physiological

metrics of AN information from normal and impaired versions of the computational model

used in Chapters 5 and 6 (Zhang et al., 2000) to data reported by Miller et al. (1997)

from normal and impaired AN responses in cat. The general approach developed in this

dissertation provides a quantitative method to relate normal and impaired physiological

responses to psychophysical performance.
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Appendix A

Nonlinear computational

auditory-nerve model

The computational auditory-nerve (AN) model used for the predictions in Chapters 5 and 6

is similar to the phenomenological model developed by Zhang et al. (2000). Thus, only the

implementation issues and response properties important for the present predictions are dis-

cussed below, while the details of the implementation are described by Zhang et al. (2000).

The computational model describes many of the important AN-response properties associ-

ated with the cochlear amplifier, including broadened tuning with increases in level and the

associated compressive-magnitude and nonlinear-phase responses, and two-tone suppression

properties. The present AN model is an improvement of the original Carney (1993) model,

with the major advance being the addition of two-tone suppression properties and different

spontaneous-rate fibers. The predictions in Chapters 5 and 6 use the computational model

to produce a population response; however, the description below is limited to a single

characteristic frequency (CF).

The block diagram in Fig. A-1 shows the basic implementation of the AN model. Level-

dependent tuning in the model is achieved with a third-order nonlinear narrowband filter

followed by a broader first-order linear narrowband filter, both of which have the same

CF. The bandwidth of the nonlinear filter is controlled via the time constant τ(t), which

is varied according to the output of a control path, and the linear-filter has a bandwidth

that is equal to the maximum bandwidth of the nonlinear filter (corresponding to τmin).
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Figure A-1: Block diagram of computational nonlinear auditory-nerve model.
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The control path has a third-order, linear wideband filter (discussed in more detail below),

followed by an asymmetric (7:1), saturating nonlinearity. The nonlinearity, which represents

the transduction properties of the outer-hair cells (OHC), is followed by a 5th-order lowpass

filter with an 800-Hz cutoff frequency. The lowpass filter determines the dynamics of the

cochlear amplifier, which appear to be extremely fast (time constant of roughly 200 µs)

based on BM responses to clicks (Recio et al., 1998). The output of the lowpass filter is

mapped into τ(t) according to a nonlinearity that equals τmax for zero input and equals

τmin for the maximum dc output of the OHC nonlinearity (Fig. A-1). The low-level time

constant τmax is specified according to psychophysical estimates of low-level human frequency

selectivity (described below), and the high-level time constant τmin is specified as a fraction

of τmax according to the cochlear-amplifier gain for the given CF (described below). Thus,

the control path acts to decrease τ(t) (i.e., to broaden the nonlinear filter) as the level

of the stimulus increases. This implementation produces the desired decrease in gain and

level-dependent phase shifts near CF associated with the broadening of the nonlinear filter.

Broadened model tuning with increases in stimulus level is illustrated in Fig. A-2 for a

1-kHz CF. Normalized magnitude response at the output of the linear, narrowband filter is

shown as a function of tone frequency for a range of stimulus levels. These responses are

consistent with basilar-membrane magnitude responses to tones (Ruggero et al., 1997). A

compressive magnitude response occurs near CF, with the maximum compression occurring

at CF and an essentially linear response well away from CF. Filter output at CF is shown

as a function of tone level for a range of CFs in the top panel of Fig. A-3. The compressive

response begins to occur at 20 dB SPL and is fully compressive by 40 dB SPL, consistent

with physiological data (Ruggero et al., 1997). The compression in the model response begins

to decrease above 80 dB SPL; however, filter responses are still slightly compressive up to

120 dB SPL. The amount of compression in filter responses is largest for high CFs. The

bottom panel of Fig. A-3 shows the cochlear amplifier gain in the model as a function of CF.

The cochlear-amplifier gain was calculated as the reduction in filter response at 120 dB SPL

relative to a linear response, consistent with the idea that full amplification occurs at low

levels, and the gain of the cochlear amplifier is reduced as stimulus level increases. There is

slightly more than 55 dB of gain at 8 kHz, and less than 20 dB of gain at 500 Hz, consistent
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Figure A-2: Nonlinear-filter responses as a function of level. Normalized filter output is
shown for a 1-kHz CF as a function of frequency for a range of stimulus levels. RMS Filter
output was calculated over 10 cycles beginning at 40 ms of the tone burst, and normalized
to the 10-dB SPL response.
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Figure A-3: Compressive magnitude responses of the nonlinear filter in the AN model for
CF’s ranging from 500 to 8000 Hz. The solid line represents a linear response, and the
amount of compression can be seen to increase with CF. The compressive gain, defined as
the difference between the linear and nonlinear responses in dB at 120 dB SPL, is shown in
the bottom panel as a function of CF. Output of the filter represents the average ac response
over 10 cycles of the stimulus beginning 40 ms after the onset of the tone stimulus.
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with BM data from the chinchilla basal (Ruggero et al., 1997) and apical turns (Cooper and

Rhode, 1997). The smooth transition between low and high frequencies is consistent with

several psychophysical measures of cochlear nonlinearity (Hicks and Bacon, 1999a), but has

not been demonstrated physiologically.

Nonlinear-phase responses associated with broadened cochlear tuning as stimulus level

increases are observed in AN responses (Anderson et al., 1971). The time-varying AN dis-

charge rate r(t) in the model is calculated by passing the output of the linear, narrowband

filter through an asymmetric (3:1) saturating nonlinearity, a lowpass filter, and a synapse

model (discussed in more detail below). Nonlinear-phase responses of AN fibers are shown

in Fig. A-4. The top row shows average discharge rate as a function of tone frequency for a

range of stimulus levels. Phase normalized to the phase at 90 dB SPL is shown in the bot-

tom panels as a function frequency for the same range of levels. The level-dependent phase

changes below and above CF at both low (left column) and high (right column) frequencies

are consistent with nonlinear phase responses observed in BM (Ruggero et al., 1997), IHC

(Cheatham and Dallos, 1998), and AN (Anderson et al., 1971) responses, as discussed in

Chapter 4).

The tuning of the model filters was specified according to psychophysical estimates of

human frequency selectivity determined from the notched-noise method of measuring audi-

tory filter shapes (see Chapter 6). The low-level bandwidths of the nonlinear filters were

specified by

τmax = 1.2{2π[1.019][24.7(4.37CF + 1)]}−1, (A.1)

where the expression 24.7(4.37CF+1) describes mid-level estimates of equivalent-rectangular

bandwidth (ERB) provided by Glasberg and Moore (1990), the factor of 1.019 represents a

conversion between gamma-tone-filter bandwidth and ERB (Patterson et al., 1987), and the

increase in τ by a factor of 1.2 is consistent with the ratio of low- to mid-level ERBs (Glasberg

and Moore, 1990). Threshold tuning-curves for the several versions of the AN model are

shown in Fig. A-5. The nonlinear AN model represents a healthy cochlea; the linear, broad,

low threshold version of the model corresponds to the AN model with τ(t) = τmin and
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Figure A-4: Rate- and phase-response areas of 2- and 8-kHz CF fibers in the nonlinear AN
model for a range of levels. The top row shows average rate as a function of frequency, where
the rate was calculated over 10 cycles beginning at 20 ms of a 50-ms (5-ms rise/fall) tone
burst. The bottom row shows phase as a function of frequency, where the phase has been
normalized to the phase at 90 dB SPL. Thus any difference from zero represents a phase
response that changes with level. Phase was calculated over one cycle of the tone burst
beginning at 40 ms.
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Figure A-5: Tuning Curves for the four versions of the AN model (upper-left: nonlinear AN
model; upper-right: linear, broad tuning, low thresholds; lower-left: linear, sharp tuning,
low thresholds; bottom-right: impaired). Stimuli were 50-ms (5-ms rise/fall) tone bursts,
the average-rate was taken between 1.25-51.25 ms, and the criterion for threshold was 10
sp/sec above spontaneous rate.
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full cochlear-amplifier gain, independent of stimulus level; the linear, sharp, low threshold

model corresponds to τ(t) = τmax and full cochlear-amplifier gain; and the impaired model

corresponds to τ(t) = τmin and no cochlear-amplifier gain. None of the effects of the external

and middle ear are considered, and thus all versions of the model except the impaired version

have thresholds for HSR fibers that are within a few dB of 0 dB SPL. The impaired AN

model represents a cochlea that has completely damaged OHC’s, but fully functioning IHC’s.

Note that loss of the gain provided by the cochlear amplifier results in the common sloping

high-frequency hearing loss, with roughly 10 dB of loss at low frequencies and almost 60 dB

of loss at high frequencies.

Two-tone suppression is another property of cochlear tuning that is associated with the

cochlear amplifier (Sachs and Kiang, 1968; Arthur et al., 1971; Delgutte, 1990b; Ruggero

et al., 1992). Tones of certain frequencies and levels that do not excite an AN fiber can

reduce the discharge rate in response to a CF tone. It is believed that the non-excitatory

stimulus acts to turn down the gain of the cochlear amplifier without exciting the AN fiber.

In order to incorporate this property into the nonlinear AN model, the control-path filter

(third-order) was made much wider than the excitatory filter (i.e., τwb = 0.2τmax, as indicated

by the dotted-lines shown with the control-path filter in Fig. A-1) (e.g., Geisler and Sinex,

1980). The active region of the cochlear amplifier is thought to be shifted basally on the

BM from the excitatory CF (Yates, 1995). The CF of the control-path filter was shifted

higher than the excitatory CF in the model by 1.2 mm on the BM, according to the human

cochlear map (Greenwood, 1990; described in Chapter 2). Two-tone suppression tuning

curves are often used to illustrate the frequency and level combinations for a suppressor tone

that reduce the discharge rate in response to a CF-tone by a certain criterion (e.g., Sachs

and Kiang, 1968; Arthur et al., 1971; Delgutte, 1990b). The basal shift of the active region

is consistent with the observation that the tip of two-tone suppression tuning curves often

lies higher in frequency than the excitatory CF (Sachs and Kiang, 1968; Arthur et al., 1971;

Delgutte, 1990b). Figure A-6 shows two-tone suppression tuning curves for model CF’s of

1- and 8-kHz, along with the excitatory tuning curves. Suppression is observed both below

and above CF for both CF’s, consistent with physiological data (Delgutte, 1990b). The

suppression thresholds below the 1-kHz CF are above the excitatory thresholds, consistent
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Figure A-6: Two-tone-suppression tuning curves for 1- and 8-kHz fibers in the nonlinear AN
model. The solid curve represents the excitatory tuning curve for a 50-ms (5-ms rise/fall) tone
burst, where average rate was calculated over the interval 1.25-51.25 ms, and the criterion for
threshold was 10 sp/sec above spontaneous rate. The stars represent suppression thresholds
(10 sp/sec criterion) when a second tone was presented in addition to a 24-dB SPL CF-tone
[this level corresponds to roughly 67% of the driven rate, as in Delgutte (1990b)].
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with the difficulty reported by Delgutte (1990b) in using a tuning-curve algorithm to measure

two-tone suppression at frequencies below CF for low CF’s. The growth of suppression is

illustrated in Fig. A-7, similarly to Delgutte (1990b). The level of the CF-tone required

to produce 67% of the driven discharge rate is plotted as a function of the suppressor-tone

level for several suppressor frequencies above and below CF. The present version of the AN

model shows similar growth rates above and below CF, inconsistent with physiological data

for which the below-CF suppression grows up to 6 times steeper than above CF (Delgutte,

1990b). This discrepancy is not viewed to be critical for the present study because the

conclusions in Chapters 5 and 6 only depend on the presence or absence of suppression

(represented by setting τwb = 0.2τmax or τwb = τmax, respectively). A more recent version of

the AN model has demonstrated asymmetric growth rates, consistent with the physiological

data, and will be useful for future studies (Zhang et al., 2000).

Rate-level curves for CF-tones are shown in Figs. A-8 and A-9 for 1- and 8-kHz CF’s,

respectively, for the four versions of the AN model. Each panel shows rate-level curves for

high- (60 sp/sec), medium- (5 sp/sec), and low-spontaneous-rate (1 sp/sec) AN fibers. A

soft-rectifying function is used to transform the output of the IHC lowpass filter into the

immediate permeability in the synapse model. The slope of this transformation was adjusted

as a function of spontaneous rate (SR) so that the rate-level curves had shapes and relative

thresholds that correspond well with those reported from physiological studies (e.g., Sachs

and Abbas, 1974; Winter and Palmer, 1991). The rate-level curves for HSR fibers have

thresholds near 0 dB SPL, and a dynamic range of about 30 dB SPL (Liberman, 1978;

May and Sachs, 1992). The MSR fibers have slightly higher thresholds and larger dynamic

ranges than the HSR fibers. The LSR fibers have the highest thresholds, and demonstrate

much larger dynamic ranges. The LSR rate-level curves for the nonlinear version of the AN

model have “sloping-saturation” shapes at 1 kHz, and “straight” shapes at 8 kHz, consistent

with the rate-level curves reported by Winter and Palmer (1991) for guinea pig. The linear

versions of the AN model have reduced dynamic ranges, especially at high CF’s, consistent

with physiological data from impaired animals (Evans, 1975a,b; Harrison and Evans, 1979;

Harrison, 1981; Liberman and Kiang, 1984).

The synapse stage of the model is similar to that described in Chapter 2, except for
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Figure A-8: Rate-level curves of 1-kHz fibers from the three spontaneous-rate (SR) groups
(HSR: high; MSR: medium; LSR: low) in the four versions of the AN model (upper-left:
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tone bursts, and the average-rate was taken between 40-240 ms.
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Figure A-9: Rate-level curves of 8-kHz fibers from the three spontaneous-rate (SR) groups
(HSR: 60 sp/sec; MSR: 5 sp/sec; LSR: 1 sp/sec) in the four versions of the AN model
(upper-left: nonlinear AN model; upper-right: linear, broad tuning, low thresholds; lower-
left: linear, sharp tuning, low thresholds; bottom-right: impaired). Stimuli were 250-ms
(10-ms rise/fall) tone bursts, and the average-rate was taken between 40-240 ms.
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the adjustment for the three SR groups. Time-varying discharge rate waveforms for at-CF

tones at three levels are shown in Fig. A-10 for a 1-kHz CF. The variation in the shape of

the rate waveform as stimulus level increases is due to the adaptation properties associated

with the neuro-transmitter release in the synapse. The onset response continues to increase

with level, while the sustained rate is saturated at lower levels, as shown in Fig. A-11. The

phase-locked response of AN fibers to low-frequency tones can be seen in Fig. A-10. The

synchrony coefficient (or vector strength, which varies from 0 to 1) is a measure of the

strength of phase-locking, and is shown in Fig. A-11 to increase with level over a narrow

dynamic range. Synchrony threshold is roughly 20 dB lower than the rate threshold, while

the peak synchrony coefficient occurs just above rate threshold. As level increases further,

the synchrony coefficient decreases slightly. The ability of AN fibers to phase-lock decreases

significantly above 2-3 kHz (Johnson, 1980), as shown in Fig. A-12. In the model, the rolloff

in phase-locking occurs due to the IHC lowpass filter, which is 7th order, and has a cutoff

frequency of 4500 Hz.
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Figure A-11: Average rate, synchrony coefficient, and onset-rate as a function of level for a 1-
kHz HSR (60 sp/sec) fiber for the nonlinear AN model. Stimuli were 250-ms (10-ms rise/fall)
tones at CF. Average rate was calculated over the interval from 40 to 240 ms. Synchrony
coefficient was calculated from one cycle beginning at 40 ms. Onset rate was calculated as
the maximum average rate over one cycle within the first 20 ms of the stimulus.
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