
ABSTRACT 
 
  

The ability of listeners with hearing loss to understand speech in noise is severely 

degraded compared to that of normal-hearing listeners.  While several physiological and 

psychophysical models exist to explain how normal-hearing listeners detect various 

stimuli in noise, few of these models have been used as the basis of any sort of corrective 

algorithms for use in hearing-aids or communication devices.  Here, a signal processing 

implementation of a physiological model was developed for the detection of tones in 

noise.  The performance of the detector was evaluated for conditions under which speech 

in noise commonly occurs, with the goal of using the detector as part of a larger noise-

reduction system.  The potential benefits of the general class of noise-reduction (NR) 

algorithms that perform time-frequency gain manipulation were examined through the 

use of the ideal binary mask, a tool used in automatic speech recognition.  By degrading 

the ideal binary mask, the detection parameters necessary to provide benefit were 

derived.  Lastly, a phase-opponent noise-reduction (PONR) algorithm was developed and 

tested.  Testing consisted of both an indirect measurement of intelligibility, as well as 

overall preference testing.  The PONR algorithm resulted in up to 10 dB improvement in 

the signal-to-noise ratio of the speech in noise; this improvement, however, did not result 

in an improvement in intelligibility.  This finding is consistent with the results from the 

binary mask experiments, as the PONR system was unable to detect the 90-95% of the 

speech energy necessary to show improvement in intelligibility. 
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Chapter 1 
 
 

Introduction 
 
1.1 Background 

1.1.1  Speech Intelligibility and Listeners with Hearing Loss 

 One of the greatest problems facing listeners with hearing-loss is the loss of the 

ability to understand speech-in-noise.   While this loss is known to be the result of the 

impairment of the listener’s auditory system, the exact physiological causes are unknown.  

Much of the current effort in hearing-aid research has been to develop new algorithms 

that can help with speech-in-noise; it is these algorithms that currently differentiate the 

various hearing-aids, which generally use the same hardware components. 

 The ability of a listener to understand speech in noise can be measured through the 

use of a reception threshold for speech (RTS).   This threshold measures the signal-to-

noise ratio (SNR) that is necessary for the listener to correctly identify a given percentage 

of the speech, usually 50 or 100%.  Under certain conditions, the RTS of normal-hearing 

listeners can be as low as -5 dB; this ability to understand speech-in-noise, even when the 

level of the noise is greater than the speech, exceeds the capabilities of any computer 

system or algorithm that currently exists.  When the auditory system is impaired, 

however, the RTS is increased.  When the noise has the same long-term spectral shape as 

speech, the increase is on the order of 2-5 dB (Plomp, 1994).  When the noise is 

amplitude-modulated (Eisenberg et al., 1995; Takahashi and Bacon, 1992), or is a 
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competing speaker (Carhart and Tillman, 1970), the RTS can increase by an even greater 

amount, 7-15 dB, for listeners with hearing loss.  

 While the most obvious symptom of hearing-loss is the increase in a listener’s 

threshold, the problems associated with hearing-loss are much greater, making the 

identification of the exact cause of increased reception thresholds difficult.  Amplification 

of the input signal to account for the increased thresholds can improve intelligibility, but 

does not completely restore the SRT (Peters et al., 1998; Bentler and Duve, 2000).  In 

addition to increased thresholds, listeners with hearing-loss also suffer from reduced 

spectral resolution (Glasberg and Moore, 1986), reduced temporal resolution, as well as 

abnormal growth-of-loudness (Fowler, 1936; Steinberg and Gardner, 1937).  All of these 

issues can potentially contribute to the increased SRTs. 

 Whether the loss of temporal resolution associated with hearing-loss is involved in 

the degraded SRTs is unknown.  Speech perception in noise has been shown to correlate 

with temporal gap detection in listeners with hearing-loss (Dreschler and Plomp, 1985; 

Noordhoek et al., 2001), suggesting a link between the two.  However, no relationship 

has been found between speech intelligibility and two other measures of temporal 

resolution: differences in masking of amplitude-modulated noise and forward/backward 

masking (Festen and Plomp, 1983) and temporal distortion introduced by wavelet 

transformations (van Schijndel, 2001).   

 Evidence suggests that reduced spectral resolution plays a larger role in the increased 

SRTs than does reduced temporal resolution.  Speech intelligibility has been shown to be 

correlated with spectral resolution (van Schijndel et al., 2001; Leek and Summers, 1996; 

Dreshcler and Plomp, 1985).  Decreased spectral resolution is the result of wider auditory 
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filters in listeners with hearing-loss; it is believed that these wider filters result in a 

decrease in the SNR of the internal auditory representation of the speech for listeners 

with hearing loss (Leek and Summers, 1996). 

1.1.2 Noise-Reduction Techniques – Single Channel 

 Because of the complex, non-linear nature of the auditory system, the introduction of 

any sort of correction to account for the loss of the cochlear amplifier is difficult.  The 

main attempt to correct the speech-in-noise problem has been the development of noise-

reduction (NR) algorithms that attempt to increase the SNR of the incoming signal.  

Unfortunately, while many NR algorithms exist, most are not able to show an 

improvement in intelligibility when tested on listeners with hearing loss (Dillon and 

Lovegrove, 1993; Levitt et al., 1993; Levitt, 2001; Moore, 2003). 

 One of the classical methods of reducing noise in a system is through the application 

of a Wiener filter (Wiener, 1949).  The Wiener filter is the optimal filter for a given noise 

and signal; to use this type of filtering, the statistics of both the signal and noise must be 

known, and both must be stationary.  Unfortunately, the statistics of the speech and noise 

are generally unknown, and both are non-stationary, making the use of  the Wiener filter 

difficult.  Nonetheless, when Wiener filtering is used on speech corrupted by a known 

noise, intelligibility does not always improve (Levitt et al., 1993).  A more generalized 

form of the Wiener filter is the Kalman filter (Kalman, 1960), which uses an adaptive 

system to allow for non-stationary signals and noise. 

 Most current NR algorithms employ spectral subtraction (Boll, 1979).  Classically, 

the short-term power spectrum of the noise, which is assumed to be additive and 

stationary, is estimated and removed from the short-term power spectrum of the incoming 
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signal by subtraction.   While the resulting signal has an increase in the SNR, the residual 

noise left by spectral subtraction has a “musical” quality.  This musical noise is the result 

of mismatches between the short-term estimates of the noise’s power spectrum and the 

instantaneous power spectrum of the noise.  When subtracted, the differences between the 

estimated and actual power spectrum results in sinusoids of short duration that are 

randomly distributed across frequency and time. 

 Much of the current research into NR algorithms focuses on the enhancement of the 

spectral-subtraction technique and the removal of the musical noise that results from its 

application.  To this end, NR algorithms have begun to incorporate perceptual properties 

of the human auditory system to aid in the removal of the musical noise (Tsoukalas et al., 

1997; Virage, 1999; Arehart et al., 2003).  These algorithms use auditory masking 

thresholds (AMT) to determine the parameters of the spectral subtraction.  The musical 

noise is reduced by attempting to mask it with the energy contained within the speech 

signal.  Of these studies, only Arehart et al. (2003) actually tested the NR algorithm on 

listeners, and obtained a small (2-8%) improvement in intelligibility.    

 Current hearing-aid technology allows for simple NR algorithms to be used.  Most 

perform a simple version of spectral subtraction, wherein the gains of the separate 

frequency bands of the hearing-aid are varied in time to attenuate bands that do not have 

speech present.   The absence or presence of speech is determined by examining each 

band for the amount of modulation  present (Kuk et al., 2002; Edwards et al., 1998) or by 

attempting to measure a SNR for that band (Phonak, 2000).  This type of NR is termed 

time-frequency gain manipulation, as the gains for each frequency band are changed with 

time.  Research has shown mixed results with these sorts of NR algorithms, with some 
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showing improvement (Stein and Dempesy-Hart, 1984; Rankovic et al, 1992) and others 

none (Klein, 1989; Fabry and Van Tasell, 1990). 

1.2 Objectives 

 The problem of understanding speech in noise is one that has received much 

attention, with very little progress made in improving the performance of listeners with 

hearing loss.  The introduction of perceptual ideas to a NR algorithm poses many 

interesting opportunities for the enhancement of the algorithms.    Current NR algorithms 

have begun to use the AMT to improve performance, but still rely on various statistical 

models for the separation of speech and noise.  Many models exist, both psychophysical 

and physiological, that attempt to describe how the normal human auditory system 

detects various stimuli in noise.   The overall objective of this thesis was to develop a NR 

algorithm using one of these models, the phase-opponency (PO) model (Carney et al., 

2002), as the basis for separation of speech from background noise.  The algorithm was 

then tested to determine whether it improved listeners’ ability to understand speech-in-

noise. 

The PO model attempts to explain human listeners’ ability to detect tones in noise; it 

uses the pattern of temporal information present in auditory neurons to perform this task.  

The second chapter of this thesis develops a simplified version of the PO model that 

captures the essential qualities of the model without use of the computationally expensive 

auditory-nerve model.   The resulting PO detector is then compared to several classical 

detectors to determine its overall performance, as well as to demonstrate its ability to 

detect tones in conditions that are detrimental to other detectors. 
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The PO detector developed in Chapter 2 was deemed a good fit with the time-

frequency gain manipulation strategy of NR.  However, previous results have shown that 

this NR strategy was not always capable of increasing the performance of listeners.   To 

examine whether this was the result of its implementation in previous studies, or a 

fundamental flaw of the strategy itself, experiments were performed to assess the 

maximum potential benefits that could be achieved using time-frequency gain 

manipulation.   Rather than use a real-world detector, the gains were changed based on 

the speech in quiet, thus representing the ideal condition.  Stimuli were processed using 

this ideal case, and presented to listeners to determine any benefit.   How the gains 

changed with time and frequency was then systematically varied to determine the 

necessary detection performance of a speech detector to achieve the performance 

improvements seen with the ideal condition. These results are presented in Chapter 3. 

In the fourth chapter, the previously developed PO detector was used in a complete 

NR algorithm referred to as the Phase-Opponent Noise-Reduction (PONR) algorithm.  

The results of testing the PONR algorithm on listeners with both normal hearing and 

hearing loss will be presented. 
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Chapter 2 
 
 
Evaluation of a Signal-Processing-Based Phase-Opponent 
Detector 
 
2.1 INTRODUCTION 

 The use of biologically motivated designs has become increasingly popular within the 

fields of engineering and computer science. Advances in computational power have 

allowed the creation of a wide variety of biologically based designs in areas such as 

neural networks, sensor design, and signal-processing algorithms. While detailed models 

of various biological systems exist, it is often possible to simplify these models to obtain 

a signal-processing algorithm that has many of the desired features of the original 

biological model. However, the detection of signals in noise is an area in which 

biological systems generally outperform current detection algorithms in adverse 

conditions. In this study, we implemented a signal-processing algorithm based on the 

mammalian auditory system. 

 Optimal solutions for the detection of a narrowband signal in noise have been known 

for some time (Kay, 1993; Van Trees, 1971; Whalen, 1971; Wiener, 1949; Hippenstiel, 

2002). However, due to the difficulties in implementing these optimal detectors, non-

optimal detectors are often used in practical applications. Non-optimal detectors are 

generally less complex than optimal detectors; the mathematical complexity of an 

optimal detector can require large amounts of computation for accurate detection [e.g., 

Kalman filtering requires several matrix inversions (Kalman, 1960)]. Non-optimal 
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detectors generally require less computational power yet often perform at levels 

comparable to those attained using optimal detectors. 

 To use an optimal detector under conditions of non-stationary noise, one must have 

either an accurate model or a priori knowledge of the noise statistics. In practical 

applications, a priori knowledge is not available, requiring the use of models and 

estimates of the noise. To obtain accurate noise estimates, however, the signal must be 

sampled for long periods of time, resulting in a system that can be sluggish. The 

requirement for noise estimation also increases the computational load for optimal 

detectors. 

 To contend with the problem of noise with fluctuating amplitudes or noise with 

unknown statistics, one can examine a system that handles it remarkably well: the human 

auditory system. Human listeners are able to detect narrowband signals in a vast array of 

noise conditions, including fluctuating noises (Kidd et al., 1989), and across a large 

dynamic range (Moore, 1997). While the exact physiological mechanisms behind the 

remarkable performance of the auditory system are unknown, many existing models can 

be used as the starting point for novel detectors that share some of the qualities of the 

auditory system. One such model is the phase-opponency (PO) model (Carney et al., 

2002), which has recently been shown to accurately predict human performance for 

detection of tones in wideband noise of unknown amplitudes. This model forms the basis 

of the PO detector proposed here.  

 The PO model (Carney et al., 2002) is a physiological model for the detection of 

tones in the presence of additive white noise. Unlike traditional models of detection in the 

auditory system, the PO model relies on the temporal information contained in the 
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discharge patterns of auditory neurons. The model consists of two auditory neurons that 

are tuned to overlapping regions of the auditory spectrum, with the frequency to be 

detected falling in this overlapping region. Because the tone is within both neurons’ 

frequency regions, both neurons synchronize their response to the tone. However, the two 

neurons are chosen such that the synchronization of their responses is 180° out-of-phase 

with each other, hence the name phase-opponency. When only noise is present, the 

outputs of the two neurons are partially correlated; the addition of a tonal signal results in 

the outputs becoming negatively correlated, as the two neurons synchronize to the signal. 

The PO model, because it relies on temporal information, is able to explain the robust 

performance of humans in detecting tones in noise of unknown amplitude.  

 The focus of previous work on the PO model was to explain human psychophysical 

performance. This study developed a signal-processing version of a PO detector and 

compared it to other detectors. The general form of a PO detector is shown in Fig. 2-1. 

The PO model is based on the phase-locking of auditory neurons, which rolls off at high 

frequencies (Johnson, 1980); the PO detector, however, is not limited in the frequencies it 

can handle. 

The first stage of the detector is a pair of band-pass filters, with one filter tuned 

higher than the frequency band of interest, and the other tuned lower. Similar to the PO 

model, the pass-bands of the two filters overlap in the frequency region of interest. The 

exact magnitude responses of the band-pass filters are less critical than their phase 

responses, which differ by 180° (i.e., are phase-opponent) in the narrowband frequency 
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Figure 2-1: General Phase-Opponent Detector 

The detector consists of two band-pass filters; one is tuned below the frequency of 

interest (FPO), while the other is tuned above it. The exact spacing of the filters is such 

that the two filters have a phase difference of 180º at POf. The outputs of the two 

filters are subject to a hard-saturating non-linearity (a signum function) to remove all 

effects of level, leaving only the temporal information contained in the zero-crossings 

of the filtered signal. A running cross-correlation is performed on these saturated filter 

outputs by multiplying them together and low-pass filtering the resulting waveform. 

When a narrowband signal is present at POf, the output of the system will be driven 

towards -1; the output will fluctuate between -1 and +1 when only noise is present. 
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Figure 2-2: Phase-Opponent Relation of Filters 

The two gammatone filters in the PO detector are arranged such that the difference in 

their phase functions is 180° at 1 kHz. The two filters’ magnitudes are shown in the 

top panel, phases are shown in the middle panel, and the difference between them is 

shown in the lower panel.  
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region of interest (Fig. 2-2). As long as the zero-crossings of the outputs of the two band-

pass filters are synchronized to the narrowband signal to be detected, the only important 

parameter of the two filters is their phase relationship at the signal frequency. 

The output of each band-pass filter is subject to a hard-saturating non-linearity 

(Fig. 2-1). The non-linearity minimizes the magnitude information in the filter outputs, 

forcing subsequent components of the PO detector to rely solely on temporal information. 

The band-pass filter followed by the saturating non-linearity is a simplified version of the 

auditory neuron in the PO model. 

The saturated outputs of the filters are multiplied together and low-pass filtered. 

The multiplication and low-pass filtering represent a running cross-correlation between 

the saturated outputs of the two band-pass filters. When only noise is present, the outputs 

are partially correlated because of the overlap between the two filters’ pass-bands. When 

a narrowband signal is present, however, the two outputs are negatively correlated.  

 The PO detector was compared to two other detectors (Fig. 2-3). The non-coherent 

quadrature detector is an optimal detector for sinusoids of unknown phase (Robertson, 

1967; Van Trees, 1971; Whalen, 1971; Kay, 1993). This detector is a generalization of a 

matched filter that attempts to detect the signal on the basis of the envelope of the 

sinusoid signal.  

 The energy detector is a simple detector that isolates a signal from noise by filtering 

the majority of the noise energy from the signal (Fletcher, 1940). The energy of the filter 

output is then used as a decision variable. To provide some robustness to detection in 

noise with unknown amplitude, the basic energy detector can be modified to include a 

mechanism for the estimation of the energy contained in the noise, which is then  
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Figure 2-3: Schematics of Proposed PO Detector and Common Detectors 

Schematic diagrams of the 3 detectors compared in this study. All detectors were 

designed to detect a 1-kHz tone pulse embedded in white Gaussian noise. The PO 

detector (A) consisted of two 4th-order gammatone filters with bandwidths of 80 Hz. 

The low-pass filter had a cut-off of 1 kHz and was implemented as a 4th-order 

Butterworth filter. The quadrature detector (B) was the optimal detector to which the 

PO detector was compared. Shown in (C) is an energy detector with constant-false-

alarm rate noise estimation. It consisted of a 4th-order gammatone filter with a 

bandwidth of 20 Hz, from which an estimate of the energy contained in the noise was 

subtracted. The estimate of the noise was obtained by taking the average energy of an 

independent noise that was matched to the input noise’s spectrum level and duration. 

The noise estimation was performed separately for each noise token used. 
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subtracted from the energy at the output of the filter (Boll, 1979). This modification 

assumes that an estimate can be made from a priori information about the noise or from 

time periods of the input when it is assumed there is no signal present (Boll, 1979). 

 The comparison to the quadrature detector and energy detector with spectral 

subtraction was valid, because the PO detector, similar to these two detectors, does not 

require detection of phase information related to the signal.  

2.2 METHODS 

2.2.1 Detector Implementation 

 All of the detectors were digitally implemented on a PC in MATLAB with a sampling 

rate of 100 kHz.  Block diagrams of the three detectors are shown in Fig. 2-3. In all 

detectors, the band-pass filters were based on 4th-order gammatone filters (Patterson et 

al., 1988) of the form: 
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where �0 is the center frequency of the filter and � determines the bandwidth of the filter. 

The filters were normalized to have 0 dB gain at �0. This general form was chosen 

because the filter’s response closely matches that of the auditory neuron, and the phase 

response of the filter is simply: 

)]([tan4)( 0
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All bandwidths specified for a given detector represent the bandwidth 3 dB down from 

the peak of the gammatone filter (located at �0.) 

 For detection of a 1-kHz tone, the center frequencies of the two band-pass filters in 

the PO detector were 966.2 Hz and 1033.8 Hz, which resulted in the two filters having 

180° of phase-difference at 1 kHz. The filter bandwidths were 80 Hz (� = 0.002 sec), 

which produced the best detection performance for a 50-ms tone. The hard saturating 

non-linearity was a signum function; the low-pass filter was a 4th-order Butterworth filter 

with a cut-off frequency of 1 kHz. The 1 kHz cut-off was chosen to remove the 2 kHz 

component that results from the multiplication of the two band-pass filter outputs while 

still allowing the output of the multiplication to change rapidly. The output of the low-

pass filter was integrated over 50 ms, which was the entire duration of the signal to be 

detected. 

 The energy detector with spectral subtraction consisted of a 4th-order gammatone 

filter centered at 1 kHz. The bandwidth was 20 Hz (� = 0.0078 sec). This bandwidth was 

chosen to capture the energy contained in the main lobe of a 50-ms tone burst (the signal 

that was most often used for analyzing performance). The energy detector with spectral 

subtraction simply squared the output of the band-pass filter and subtracted from it an 

estimate of the noise energy. This estimate was based on the mean energy in an 

independent sample of noise that was matched to the spectrum level and duration of the 

input noise. The estimation was performed for each token individually; a global estimate 

of the noise was not used.  

 The quadrature detector multiplied the input by sine and cosine waves of amplitude 1 

and frequency 1 kHz. The two separate branches were then integrated over 50 ms (the 
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duration of the signal to be detected), squared, and summed (Robertson, 1967; Whalen, 

1971). 

 For all three detectors, the decision variable was the last sample of the output of each 

detector. Because each detector integrated its output over the entire duration of the signal 

(50 ms), the last sample was all that was necessary. The criterion value was chosen based 

on the overall distributions of decision variables for each detector, and was different for 

each detector.  While the energy detector with spectral subtraction estimated the noise for 

each noise token, the criterion value to which the output was compared remained fixed 

for all noise tokens.  

The signal to be detected was a 1000-Hz sinewave, the amplitude of which was 

varied with respect to the noise amplitude to provide a given SNR. Noise spectrum levels 

ranged from 0 to 100 dB re 1 V, depending on the simulation. The duration for both 

signal and noise was 50 ms, gated with a rectangular window. Noise was generated using 

the Gaussian random number generator provided in MATLAB. 

2.2.2 ROC Curve Generation 

 To analyze the performance of the detectors, receiver-operator characteristic (ROC) 

curves were generated by simulation. While analytical expressions for the energy and 

quadrature detectors are known, the non-linearity in the PO detector hampers the 

determination of an analytical expression for its performance.  

 The responses of the detectors were simulated in response to 10,000 noise-only trials 

and 10,000 signal-plus-noise trials. The SNR for the signal-plus-noise trials was kept 

constant, and the same noise tokens were used for all three detectors. The probability of 

false alarm and probability of detection were determined as a function of the criterion for 
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detection. The probability of detection for a given criterion was the proportion of 

responses to the signal-plus-noise that were above the criterion. Similarly, the probability 

of false alarm was the proportion of responses to the noise alone that were above the 

criterion. By systematically varying the criterion across the entire distribution of detector 

outputs, a complete ROC curve was generated.  Under each simulation condition 

(described in the next section), ROC curves were generated for SNRs ranging from -5 dB 

to 25 dB in 1 dB steps. SNR was measured as the ratio of the energy of the signal to the 

spectrum level of the noise sample.  

2.2.3 Simulations 

 To compare the performance of the PO detector to that of the energy and quadrature 

detectors, the performance of all three were measured under three noise conditions. The 

three conditions were known-level Gaussian noise, unknown-level Gaussian noise, and 

amplitude-modulated Gaussian noise. The detectors were compared, as a function of 

SNR, at a constant false-alarm rate (PFA = 0.01). The noise spectrum level was varied 

from 0 to 100 dB re 1 V in 10-dB steps to examine the effects of noise spectrum level on 

the criterion value needed to provide a constant PFA of 0.01 as a function of noise 

spectrum level. 

 For the known-level case, the noise was Gaussian white noise with a constant 

spectrum level.  The spectrum level of the noise was fixed at 50 dB re 1 V, and the 

amplitude of the 1-kHz tone was varied to achieve SNRs of -5 to +20 dB.  The criterion 

values used for each detector were chosen based on the distribution of the noise-only 

detector outputs to give a PFA of 0.01.   The criterion values chosen were specific to each 

detector. 
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 After baseline performance was established for the known-level case, the level of the 

noise was varied within the 10,000 tokens used to generate the ROC curve for the 

detectors. The level of each noise token was varied by randomly selecting a spectrum 

level for that particular token, unlike the known-level condition, which had a fixed 

spectrum level.  The spectrum level was altered by generating a Gaussian white noise 

with unity variance, and scaling it to achieve the desired spectrum level, which is related 

to the overall level. Because the spectrum level (and RMS) changed for each token, this 

represents the unknown-level condition. 

The amount of variation in the noise amplitude was determined by how the spectrum 

level was chosen for each noise-token. The spectrum level of each noise token was 

chosen from a uniform distribution centered around 50 dB re 1V. By changing the width 

of the uniform distribution, the amount of variation across tokens in the noise level could 

be varied .  Three distribution widths were used: 15 dB, 30 dB, and 45 dB. As an 

example, for the 30-dB width condition, the spectrum level of any individual noise token 

could vary between 35 and 65 dB re 1 V.  In all cases, the SNR for the 10,000 tokens was 

kept constant (i.e., once the noise spectrum level was chosen, the corresponding tone 

burst’s amplitude was adjusted to keep the same SNR). This unknown–level–with-

constant-SNR condition, though uncommon in detection literature, is a common 

psychophysical task known as a roving-level condition (Kidd et al., 1989). As in the 

known-level condition, the criterion value for each detector was specific to that detector, 

and held constant for that particular condition (i.e. each detector had a separate criterion 

for the 15, 30 and 45 dB level-range conditions).  In each case, the criterion value was 

chosen based on the noise-only distribution to achieve a PFA of 0.01. 
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 The last condition involved a known-level Gaussian white noise that was amplitude 

modulated by a low-frequency sine wave. Again, families of ROC curves were generated 

for each detector with a 50 dB re 1 V spectrum level Gaussian noise that was fully 

modulated.  Modulation frequency ranged from 0 Hz (no modulation) to 100 Hz in 5-Hz 

increments. Detectors were again compared for a constant PFA = 0.01. 

2.3 RESULTS 

2.3.1 PO Detector  

 An example of the time-varying output of a PO detector before integration is shown 

in Fig. 2-4. To demonstrate the response of the detector to both noise and signal plus 

noise, the illustration reflects an input consisting of a 100-ms, 1-kHz tone burst centered 

in 300 ms of Gaussian noise. When noise alone was present, the output of the detector 

fluctuated between the limits of the detector (+1 and -1), with both highly positively 

correlated outputs (when the detector output was near +1) and highly negatively 

correlated outputs (when the detector output was near -1). While the output of the 

detector fluctuates during the noise-only periods, the expected value of the output during 

these periods was close to zero. The expected value was determined by the correlation 

between the two filters used in the detector. For the gammatone filters implemented here, 

the expected value was computationally estimated to be 0.0048 V.  

 When the 1-kHz tone burst was present, it dominated the temporal properties of the 

two phase-opponent filters’ outputs. This resulted in a high negative correlation between 

the filter outputs, which resulted in a decrease in the average value of the PO detector’s 

output. This decrease can be seen in Fig. 2-4 as a saturation toward -1. Once the tone  
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Figure 2-4: Example Output of the PO Detector Before Integration 

When only noise was present, the output of the detector (before the integration) 

fluctuated across the entire range of the system (-1 to 1). The presence of the tone 

resulted in a saturation of the output toward -1, as the output of the two phase-

opponent filters was dominated by the tone, leading to a highly negative correlation 

between the filters. The sluggishness of the system was determined by the cut-off 

frequency of the low-pass filter at the output of the detector. Decreasing the cutoff 

frequency would result in a smoother output during the noise-only periods that would 

be slightly negative (see text). 
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burst ended, the output of the detector again began to fluctuate from -1 to 1, with an 

expected value of approximately 0. 

 From the PO detector responses, ROC curves were generated. Subsets of these curves 

are shown in Fig. 2-5 for a constant-level white Gaussian noise with varying SNRs. 

Although the PO detector contains non-linearities, the ROC curves follow the expected 

shape for a linear detector. The PO detector performed reasonable detection at adverse 

SNRs over the range of PFA simulated. ROC curves were also derived for the two other 

detectors, and had the same overall form as the ROC curves of the PO detector shown in 

Fig. 2-5.  It is from ROC curves such as these that the rest of the data shown for all 

detectors was derived. 

2.3.2 Known- and Unknown-level Gaussian Noise 

 The performance of the three detectors is shown for the known-level noise condition 

in Fig. 2-6(a). The probability of detection is plotted as a function of SNR for a constant 

PFA = 0.01. As expected, the performance of all of the detectors improved with increasing 

SNR, from chance at -5 dB to perfect detection at 15 dB. The quadrature detector’s 

performance was better than that of the energy detector with spectral subtraction and PO 

detectors for this condition; this was expected, as the quadrature detector is an optimal 

detector for a sinusoid of unknown phase in known-level noise. The PO detector, 

however, performs within 5 dB of the optimal quadrature detector and within 3 dB of the 

energy detector with spectral subtraction. The general trends of all detectors’ 

performance were similar, with the energy and PO detectors’ performance appearing to 

be a simple shift of the quadrature detector’s performance to slightly higher SNRs (3 dB 

for the energy detector with spectral subtraction, 5 dB for the PO detector).  The  
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Figure 2-5: PO Detector Receiver-Operator Characteristic (ROC) Curves 

These ROC curves are the result of MATLAB simulations of the PO detector. The 

curves range from chance (-5 dB) to perfect detection (above ~10 dB). Although the 

detector was non-linear, the ROC curves followed the expected shape for a linear 

detector. Performance in all noise cases was determined by taking a vertical cut at PFA 

= 0.01 and replotting PD as a function of SNR. 
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Figure 2-6: Effect of Known and Unknown Noise Spectrum Level on Detection 

The curves of (a) were generated with a fixed, known noise spectrum level of 50 dB re 

1 V. Panels (b-d) show the performance when the noise spectrum level was unknown 

and drawn from a rectangular distribution centered around 50 dB, with an increasing 

width (15 dB, 30 dB, and 45 dB for (b), (c), and (d), respectively). In all panels, the 

performance improved with increasing SNR. Comparing (a) to (b-d), it is obvious that 

the PO detector’s performance was unaffected by the unknown noise amplitude 

conditions.  
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performance of the simulated quadrature detector matches the analytical solution for a 

quadrature detector. 

 Introducing an unknown-level noise, in which case the spectrum level randomly 

varied from trial-to-trial, resulted in the performances shown in Fig. 2-6(b-d) for the three 

detectors. The criterion that was chosen to achieve a PFA equal to 0.01 for each detector 

was based on each detector’s output distributions.  This criterion was allowed to change 

for each distribution of noise levels (i.e. 15, 30, and 45 dB ranges of noise level). Again, 

all detectors’ performances improved with increasing SNR, as expected. However, the 

performances of both the quadrature detector and energy detector with spectral 

subtraction were affected by the wider distributions of noise level, while the PO detector 

was unaffected. As the width of the noise-level distribution increased (with a correlated 

increase in the signal-amplitude distribution due to the constant-SNR condition), the 

performances of the quadrature detector and energy detector with spectral subtraction 

degraded. While the SNR for which the probability of detection began to increase 

remained constant for all three detectors and all four conditions (~0 dB), the slopes of the 

PD vs. SNR functions for the quadrature detector and energy detector with spectral 

subtraction decreased as the width of the noise-level distribution increased (Fig. 2-

6b,c,d). For a known-level noise , the slope was 11.3 %/dB; the slope decreased to 6.8 

%/dB for a 15 dB range of levels, 3.4 %/dB for a 30 dB range, and 2.2 %/dB for a 45 dB 

range.  

Comparing the panels of Fig. 2-6, the performance of the PO detector was unaffected 

by the unknown-level conditions. The detector’s performance remained constant, with the 

detector showing improvement at 5 dB and reaching nearly perfect detection at 
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approximately 15 dB SNR. This robustness across different noise levels was the result of 

the PO detector’s reliance on temporal information; changing the overall level of the 

noise while keeping the SNR constant had no effect on this temporal information. 

2.3.3 Noise-Level Dependence of Criterion 

 Variations in noise level of the input had a profound effect on both the quadrature 

detector and energy detector with spectral subtraction, whereas the PO detector was 

unaffected (Fig. 2-6a-d). The effect can be examined by plotting the criterion value 

required for a constant PFA of 0.01 as a function of noise spectrum level (Fig. 2-7). The 

trend for both the quadrature detector and energy detector with spectral subtraction was 

for the criterion value to increase in proportion to the noise spectrum level, while the PO 

detector’s criterion value remained constant across noise levels. As expected, the 

criterion value for the energy detector with spectral subtraction grew in direct proportion 

to the energy in the noise (i.e., had a slope of 2 on a log-log axis), whereas the criterion 

value for the quadrature detector grew in direct proportion to the magnitude of the noise 

(i.e., had a slope of 1 on a log-log axis).  

2.3.4 Amplitude-Modulated Gaussian Noise 

 Fig. 2-8 shows results for an additive noise that was sinusoidally amplitude-

modulated. The SNR was held constant at 10 dB, which represented a point on each 

detector’s PD vs. SNR curve at which the performance was changing as a function of 

SNR. When the Gaussian noise was modulated, the performance of the PO detector and 

energy detector with spectral subtraction changed from that shown in Fig. 2-6(a). The 

quadrature detector’s performance remained constant across modulation frequency. 
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Figure 2-7: Effect of Noise Spectrum Level on Detector Criterion 

The criterion levels to achieve a PFA of 0.01 are shown for all three detectors as a 

function of the noise spectrum level. The SNR was kept constant at 10 dB, a point 

that was within the transition range of all detectors. The PO detector, because of its 

reliance on temporal information, maintained a constant criterion across spectrum 

level. The quadrature and energy detectors’ criteria, as expected, increased in 

proportion to the noise spectrum level. 
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Figure 2-8: Conditions of Amplitude-Modulated Gaussian Noise 

The probability of detection is shown as a function of the modulation frequency for 

all detectors. The modulated noise was a 50 dB re 1 V Gaussian noise, and the SNR 

was kept constant at 10 dB. The PO detector demonstrated an improvement with 

modulation. This improvement decreased with increasing modulation frequency, as 

the sluggishness in the detector began to affect the detector’s ability to take 

advantage of the temporary increases in SNR caused by the modulation. The energy 

detector’s performance was degraded by the modulation, because the long noise 

estimation time did not allow it to take advantage of the SNR increases during dips 

in noise amplitude. The quadrature detector was unaffected by the modulation. In all 

cases, the PFA was kept constant at 0.01. 
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The PO detector’s performance improved with low modulation frequencies, reaching 

almost perfect detection at a modulation frequency of 25 Hz. As the modulation 

frequency increased, the performance of the PO detector gradually degraded. The PO 

detector was able to take advantage of the “dips” in the completely modulated noise to 

improve its performance. As the “dips” became more rapid (i.e., as modulation frequency 

increased), the sluggishness of the detector resulted in a return toward baseline 

performance. 

 Unlike the PO detector, the performance of the energy detector with spectral 

subtraction dropped when the noise was amplitude-modulated. Like the PO detector, 

however, the performance appeared to return to baseline with increasing modulation 

frequency.  Because it estimated the energy over a long period of time (50 ms), the 

energy detector with spectral subtraction was unable to take advantage of the short “dips” 

in the noise level caused by modulation. 

2.4 DISCUSSION 

2.4.1 Performance for Known- and Unknown-Noise Level 

 When compared to both the quadrature detector and an energy detector with spectral 

subtraction, the PO detector had better performance for the unknown-noise level 

condition and for low-frequency amplitude-modulated noise. These are the conditions in 

which the PO detector was designed to operate, as it uses the temporal information 

encoded within the incoming signal which is less affected by overall level than is the 

energy information. The PO detector was able to perform within 8 to 10 dB of the 

optimal detector for the known-level noise condition, even though the primary design 
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was for unknown level, and the model upon which it was based is non-optimal for these 

conditions. While the PO detector implemented here was optimized for detection by 

varying the bandwidth of its two gammatone filters, it is possible that the PO detector’s 

performance for the known-level noise condition could be further improved by 

optimizing the shape of the two band-pass filters. 

 The quadrature detector performed poorly under conditions of unknown noise level 

because it did not contain mechanisms for the estimation or removal of noise other than 

the narrowband filters in the detector. An unknown noise level resulted in wider 

distributions of detector responses for both the noise-only and signal-plus-noise 

distributions that were used to calculate the ROC curves; these wider distributions 

appeared in the PD vs. SNR plots as an increase in the range of SNRs over which the 

performance of the quadrature detector changed.  

 Unlike the quadrature detector, the energy detector with spectral subtraction included 

a simple mechanism for the estimation and removal of the noise. However, the 

performance of the energy detector with spectral subtraction still degraded when the 

noise level was unknown or fluctuating. While the detector’s decision-variable 

distribution for noise-only trials remained fairly constant because of the subtraction of the 

baseline noise energy, the standard deviation of the signal-plus-noise distribution 

increased. This increase was because the SNR was kept constant and the signal level was 

varied in proportion to the noise level [to match the psychophysical roving-level 

condition (Kidd et al., 1989)]. Increasing the width of the noise level distributions 

resulted in a larger range of signal amplitudes, resulting in a wider distribution of detector 

responses. 
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 The PO detector was unaffected by noise level. This result was expected, because the 

PO model upon which the detector was based is similarly unaffected by unknown-level 

noises. The temporal information used by the PO detector was encoded in the zero-

crossings of the outputs of its two filters. The locations of these zero-crossings were 

determined by the SNR of the input, not by the overall levels of the signal or noise. Thus, 

scaling the two in proportion resulted in no change in the zero-crossings.  

2.4.2 Performance with Amplitude Modulation 

 The PO detector’s performance improved with amplitude modulation because the 

detector was able to take advantage of the temporary increases in SNR during 

modulation. During the “dips” in the envelope, the zero-crossings were dominated by the 

signal, allowing the PO detector response to saturate at -1. The decrease back to baseline 

with increasing modulation frequency was due to the sluggishness of the PO detector’s 

low-pass filter. As the dips became smaller, the smoothing provided by the low-pass filter 

resulted in an inability to take advantage of the SNR increase. Increasing the cut-off 

frequency of the low-pass filter would result in a slower return to baseline, but would also 

allow the output to fluctuate more. An increase in the amount of fluctuations would result 

in a decrease in the probability of detection because detection is based on an estimate of 

the detector output’s expected value. 

 The performance of the energy detector with spectral subtraction was degraded by 

amplitude modulation because it estimated the noise energy over a 50-ms window, which 

was too long to take advantage of quick increases in the SNR. Decreasing the amount of 

time over which the detector estimated the noise would result in an improvement in 

performance for low-frequency modulated noise at the cost of degraded performance in 
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unknown-level noise.  The smaller estimation time would result in a less accurate noise 

estimate, which would change the distribution of the output for the energy detector with 

spectral subtraction in the unknown-level noise condition. 

2.4.3 PO Detector Performance 

 The PO detector’s criterion value was unaffected by the noise spectrum level. This 

allowed the specification of a criterion that provided a constant false-alarm rate for 

Gaussian noise. This is an important advantage, as the PO detector can act as a constant-

false-alarm detector without extensive design effort. The appropriate criterion value can 

be determined by calculating the correlation of the outputs of the two PO filters in 

response to a given noise or by simulation.  

 The PO detector, however, has some limitations in its detection ability as compared to 

an energy detector with spectral subtraction; the signal to be detected must have a clearly 

defined temporal structure for the PO detector to utilize in detection. An energy detector 

requires only that the energy of the signal be discernable. 

 The robustness of the PO detector to variations in input noise spectrum level and to 

amplitude modulation suggests its use in situations where these conditions occur. We are 

currently working on adapting the PO detector for the detection of low-frequency, 

narrowband components of speech. The level-invariance of the PO detector is ideal for 

speech, as the overall level can range over the entire dynamic range of the human 

auditory system. In addition, the PO detector is able to take advantage of the “dips” that 

occur in the natural fluctuations of noise that often accompany speech.  

 The performance of the PO detector suggests that mimicking the mechanisms of 

biological sensory systems can provide detectors that outperform classical detectors in 
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several ways. Sensory systems are generally well suited for detection of the many signals 

that are encountered in real life and have been fine-tuned by evolutionary forces into 

powerful detectors. Digital implementations of these detectors, and other biological 

processes, can lead to useful algorithms that provide many of the benefits of the 

biological system. While these implementations are often simplified versions of the 

biological system, they can provide the basic functionality of the system while at the 

same time overcoming some of the limitations faced in biological systems.  
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Chapter 3 
 
 
Determination of the Potential Benefit of Time-
Frequency Gain Manipulation 
 
3.1 INTRODUCTION 

 One of the greatest problems facing the listener with hearing loss is understanding 

speech in the presence of background noise.  While current hearing-aid technology has 

done much to improve the audibility and comfort in noisy backgrounds for listeners with 

a hearing loss, little has been done to increase the intelligibility of speech in a noisy 

environment.  The current study examined the potential benefits for intelligibility of a 

general noise-reduction (NR) strategy known as time-frequency gain reduction.  Studies 

using this strategy have shown mixed results in intelligibility, with some showing 

benefits (Stein and Dempesy-Hart, 1984; Rankovic et al, 1992), and others showing none 

(Klein, 1989; Fabry and Van Tasell, 1990).  The results of these studies, however, were 

based on different methods of adjusting the time-frequency gain profile.  The study 

performed here utilized an ideal binary mask to determine the maximum benefits that 

could be gained by varying the time-frequency gain profile.  The ideal binary mask is the 

time-frequency profile based only on the speech in quiet; it represents the output of an 

ideal detector of speech components.  The use of the ideal mask allows for the evaluation 

of the time-frequency gain manipulation strategy without the influence of the actual 

detectors that may have affected previous studies. 
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 Quantitatively, the performance of listeners in understanding speech in noise can be 

measured using a reception threshold for speech (RTS).  The RTS is a measure of the 

signal-to-noise ratio (SNR) that is required to achieve a preset level of intelligibility, 

generally 50 or 100 percent (Moore, 2003).  The RTSs of listeners with hearing loss are 

increased relative to normal listeners.  For speech-spectrum shaped noise, the increase is 

2-5 dB (Plomp, 1994), while the RTS increases 7-15 dB when the noise is amplitude 

modulated (Takahashi and Bacon, 1992; Eisenberg et al., 1995) or is a competing speaker 

(Carhart and Tillman, 1970).    

 A large amount of research has gone into the development of algorithms to perform 

noise-reduction, with the goal of restoring the RTSs of listeners with hearing loss to that 

of normal-hearing listeners.  This goal is two-fold:  to restore lost intelligibility and to 

improve the quality of noisy speech (Schum, 2003).   The general consensus as to the 

fulfillment of these goals is that single-microphone NR systems perform the second goal 

of improving quality, without an increase in intelligibility (Levitt, 2001; Chabries and 

Bray, 2002; Schum, 2003).  The only NR strategy that meets the first goal is that of 

directional microphones (Levitt, 2001; Schum, 2003, Chabries and Bray, 2002).  While 

directional microphones can create a large increase in intelligibility when examined in a 

laboratory setting, the presence of reverberation in real-world listening environments 

limits the RTS improvement to a few decibels (Hawkins and Yacullo, 1984; Ricketts, 

2000; Ricketts and Hornsby, 2003).  In addition, the directional microphone requires that 

the noise and speech be spatially separated to achieve an increase in RTS. 

 Single-microphone NR systems generally attempt to increase intelligibility by 

increasing the SNR of the speech that is presented to the listener.  Several general 
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strategies exist for doing this, such as Wiener filtering (Wiener, 1949), spectral 

subtraction (Boll, 1979), adaptive filtering (Graupe et al, 1987), speech synthesis 

(McAulay and Quatieri, 1986; Kates, 1994) and time-frequency gain manipulation (Ono 

et al, 1983; Dempsy, 1987; Klein, 1989; Fabry and Van Tassell, 1990; van Dijkhuizen et 

al, 1987, 1989, 1990, 1991; Rankovic et al, 1992).  Wiener filtering involves estimating 

the characteristics of the signal and the noise, and creating a filter that optimizes the SNR 

of the output based on these characteristics.  Under certain conditions, this filtering is 

similar to other single-microphone NR strategies.  In spectral subtraction, the spectrum of 

the noise is estimated and subtracted from the noisy signal, leaving only the spectrum of 

the speech (Boll, 1979).  Adaptive filtering is similar to Wiener filtering, but involves 

utilizing a time-varying filter that is varied based on the difference of the output and a 

noise-estimate. In speech synthesis, the signal is replaced by speech that has been 

synthesized based on the speech that is detected in the original signal, often by replacing 

the noisy frequency bands with sinewaves matched in amplitude and frequency 

(McAulay and Quatieri, 1986; Kates, 1994).  All of these strategies, however, rely on 

having an accurate model of the noise and/or speech.  These models are difficult to create 

or measure, as the type of noise in practical settings can vary greatly depending on the 

listening environment, and speech is a complex signal that varies with each individual 

speaker.  While the use of all of the above strategies has been shown to improve the SNR 

of the noisy signal, there is no increase in intelligibility because of the distortions that are 

added by the processing (Boll, 1979; McAulay and Quatieri, 1986; Kates, 1994; Levitt, 

2001, Schum, 2003). 



 

  

36 

 Time-frequency gain manipulations can increase the SNR and intelligibility in some, 

but not all, cases (van Dijkhuizen et al., 1989; van Dijkhuizen et al., 1990, Rankovic et 

al., 1992.  In this strategy, the gains of each frequency band are time-varying; when the 

SNR within the band is high, the gain is high, when the SNR is low, the gain for that 

frequency band is reduced.  This strategy has been shown to be effective when the noise 

is limited to one frequency band (Rankovic et al, 1992), but the results conflict when the 

noise is wideband (Ono et al, 1983; Klein, 1989; Fabry and Van Tasell, 1990).  However, 

the implementations of the strategies have been different, making comparison of the 

general strategy difficult.  It is here that the ideal binary mask becomes useful, as it is a 

time-frequency mask that is based on the clean speech, thus allowing evaluation of the 

general strategy without the influence of the actual detectors or SNR measures that may 

have limited previous studies. 

 The binary mask effectively separates the signal of interest from interfering signals by 

reducing the gains for frequency bands when only the interfering signal is present. As its 

name suggests, in a binary mask the gain of each frequency band is allowed to change 

between two states (an “on” and “off” state).   The ideal binary mask is based on the 

uncorrupted copy of the signal of interest; it represents an unrealistic condition, as the 

uncorrupted signal is generally not available.  However, the ideal binary mask allows 

evaluation of the general strategy, and represents the upper limit of noise reduction that 

the strategy can produce.  In addition, the time-frequency gain patterns produced by any 

system that attempts to detect the signal of interest can be compared to the ideal binary 

mask to allow a quantitative comparison. Binary masks have been shown to be effective 

in increasing the performance of automatic speech recognition in noise (Cooke et al., 



 

  

37 

2001; Srinivasan et al, 2004), as well as for separating acoustical sources (Roman et al, 

2003; Yilmaz and Rickard, 2004). 

 Application of the ideal binary mask results in several modifications of the stimulus 

properties that may lead to an improvement in intelligibility, depending on the parameters 

of the binary mask and the method of applying the time-varying gains.  If the frequency 

resolution of the binary mask is finer than that of the impaired auditory system, the SNR 

of each auditory band would be improved by the reduction of noise within the frequency 

bands of the binary mask.  For example, if the binary mask has two frequency bands per 

auditory band, the application of the ideal binary mask could improve the SNR by a 

factor of 2.  This SNR increase should improve intelligibility, provided that the 

distortions introduced by the binary mask are not detrimental.  If however, there is a 

match between the binary mask and auditory bandwidths, the instantaneous SNR of the 

auditory band would not be changed, as the binary mask does not change the frequency 

band when the signal is present.  Articulation index (AI) theory (French and Steinberg, 

1947; ANSI, 1969; Pavlovic, 1988; Mueller and Killion, 1990) would suggest that the 

SNR of each frequency band determines the intelligibility of the sentence;  if there is no 

change in the bands’ SNRs, there should be no increase in intelligibility. 

The reduction of gains in frequency bands in which there are no speech components 

would also lead to a decrease in the spread of masking in adjacent bands.  Listeners with 

hearing loss have been shown to have an increased upward spread of masking (Trees & 

Turner, 1986; Klein et al., 1990).  By reducing the amount of masking caused by adjacent 

frequency bands, the internal neural representation of the signal might show an effective 

increase in SNR. 
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The application of the binary mask may also enhance certain speech cues, such as the 

onset and offsets of speech components.  At adverse SNRs, the ideal binary mask acts to 

shape the noise that is present within each band with the envelope of the speech 

components within that band.  Provided there are greater than four frequency bands 

covering the range of speech, these envelope cues have been shown to be all that is 

necessary for comprehension of speech for normal-hearing listeners (Shannon et al., 

1995).   

The use of the ideal binary mask on noisy speech was hypothesized to lead to an 

improvement in intelligibility, as indirectly measurd using the Hearing-in-Noise Test 

(HINT) (Nilsson et al., 1994), compared to unprocessed stimuli.  The HINT provides an 

estimeate of the RTS, which is the SNR needed to for the listener to correctly identify 

50% of the words in a given sentence.  This hypothesis was shown to be valid, leading to 

a second experiment involving degraded versions of the ideal binary mask.    

The second experiment examined how the HINT RTSs changed as a function of the 

degradation of the ideal binary mask.  While the results of Experiment I showed that 

time-frequency gain manipulation improved the RTSs, Experiment II was designed to 

determine how well the detector must perform to realize the improvements shown in 

Experiment I.  These degraded versions of the ideal mask represent the performance of a 

real-world detector;  the real-world detectors are modeled as being able to detect only a 

fixed percentage of the total energy of the speech stimulus (as opposed to the ideal 

detector, which detected all of the energy).  With knowledge of how the detectors should 

perform, it is then a matter of choosing an appropriate detector that can produce a 
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detection pattern similar to the binary masks found in Experiment II that lead to an 

improvement in RTS. 

After performing these two experiments, a third experiment was performed that 

further analyzed the parameters of the binary mask necessary for improvement in RTS.  

The first two experiments had a fixed frequency- and time-resolution of the binary mask; 

in Experiment III, the resolution of the binary mask was altered to examine the effect of 

the frequency-resolution and temporal smearing on the results of Experiment I.  The 

hypothesis for Experiment III was that a reduction in the frequency-resolution or the 

temporal smearing of the binary mask would result in a reduction of the benefits of the 

ideal binary mask shown in Experiment I. 

3.2 METHODS 
3.2.1 Stimuli 

The stimuli consisted of 250 sentences and 250 noise samples that were obtained 

from the HINT (Nilsson et al., 1994).  The sentences and noise were combined at SNRs 

ranging from -10 dB to +7 dB and passed through one of the experimental noise-

reduction algorithms.  Noise-reduction was obtained by manipulating each band 

separately, and then combining the outputs of all bands to obtain the final output.  The 

gains were based on the ideal binary mask, which resulted in the gains being switched 

between two values based on whether or not a speech component was present; there was 

no smoothing of the gains or filtering to remove the sudden onsets and offsets of the 

changing gains.   

The algorithm made use of an analysis-synthesis Gammatone filterbank (Hohmann, 

2002) that separated the stimuli into frequency bands that were equally spaced on an 
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equivalent rectangular bandwidth (ERB) scale.  This scale is based on the frequency-

dependant bandwidths of auditory filters for human listeners (Glasberg and Moore, 

1990).  Filters were spaced at ½-ERB intervals over the range of 70-7000 Hz; the filters 

had a bandwidth of 1 ERB.   The filterbank and the noise-reduction algorithm were 

implemented using MATLAB (Mathworks, Natick, MA). 

 The noise-reduction algorithm consisted of a “perfect” detector that changed the 

gains of the individual frequency bands based on the presence of components of the 

sentence.  The perfect detector was based on the original, non-noisy samples of the 

sentences.  A spectrogram was computed, with the CFs of the frequency bands matched 

to those of the analysis-synthesis bank.  An example of this is shown in Fig. 3-1A for the 

sentence “Her shoes were very dirty”.  A single frequency band’s output is shown in Fig. 

3-1C, for a CF of 414 Hz (Fig. 3-1A, arrow).  The energy of each frequency band was 

computed by filtering the input with a 4th-order gammatone filter that had ½-ERB 

bandwidth and that was matched in center frequency to the corresponding band of the 

analysis-synthesis filterbank).   The ½-ERB bandwidth was used to create a spectrogram 

with finer frequency resolution. The output of the gammatone filterbank was then 

squared and low-passed filtered with a 4th-order Butterworth filter with a cut-off 

frequency of 300 Hz. Speech was considered to be present if the energy in the band 

exceeded a threshold (shown in Fig. 3-1C by the dashed line).  This threshold varied 

across sentences, and was chosen such that 99% of the total energy contained in the 

speech was above the threshold.  The 99% criterion was used only for Experiment I; by 

varying the threshold, the binary mask was degraded in Experiment II.  When the energy 

within a band was greater than the threshold, the gain was set to unity; otherwise the gain  
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Figure 3-1 Ideal Binary Mask Generation 

To generate the ideal binary mask, a spectrogram (A) of the clean speech ( “Her shoes 

were very dirty”) was produced by filtering the speech with a filterbank with center 

frequencies matched to the analysis filterbank of the NR algorithm, but with ½-ERB 

bandwidth to produce less overlap.  The filter output was then squared and filtered 

with a 300Hz low-pass filter.  An example for the frequency band with a center 

frequency of 414Hz (the arrow in A) is shown in C.  A global threshold for the 

sentence was then applied to each frequency band (the dotted line in C), with the gain 

for that frequency band set to unity when the energy within the band exceeded the 

threshold and 0.2 when below the threshold.   For the ideal binary mask, the threshold 

was individually set for each sentence such that 99% of the total energy in the signal 

was above the threshold used.  The entire ensemble of gains (the ideal binary mask) 

can be visualized in a manner similar to the spectrogram (B).  The dark areas represent 

when the gain is unity. 



 

  

42 

was set to 0.2.  While setting the gain to zero during noise-only time periods would result 

in a larger overall SNR improvement, limiting the attenuation to less than 20 dB results in 

reduced amounts of musical noise in time-frequency gain manipulation (Berouti et al., 

1979). 

The ideal binary mask is shown for the sentence of Fig. 3-1 in panel B.  The dark 

regions represent periods of time when the gain was set to unity; for all other regions, the 

gain was set to 0.2.  Comparing the ideal binary mask to the spectrogram, one can see 

that the ideal binary mask simply identified periods of time and frequency when energy 

was present.  The output of the analysis filterbank was multiplied by the binary mask; an 

example is shown in Fig. 3-2.  The top panel is the output of the analysis filterbank for 

the sentence of Fig. 3-1 with speech-spectrum noise added at a SNR of 0 dB.  The bottom 

panel had the ideal binary mask (Fig. 3-1B) applied to it. 

To reconstruct the final signal, each frequency band was delayed and scaled such that 

the peaks of each band’s impulse response had a maximum at 4ms (Hohmann, 2002).  All 

of the frequency bands were then added together to obtain single waveform. 

3.2.1.1 Experiment I  

     Stimuli were processed for four conditions of noise-reduction.  In the first, the stimuli 

were simply passed through the analysis-synthesis bank without any manipulation of the 

frequency bands’ gains.  This condition served as a control, as the analysis-synthesis 

bank adds some minor distortions to the signals and band limits the signal (Hohmann, 

2002).  The three remaining conditions involved applying the ideal binary mask to 

varying frequency regions of the stimuli.  In the second condition, the algorithm was only 

applied to lower frequencies (from 70-1500 Hz), and the remaining frequency bands were  
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Figure 3-2 Application of the Ideal Binary Mask 

A spectrogram for the sentence of Figure 1 (“Her shoes were very dirty”) is shown 

(A) when speech-spectrum noise has been added at a SNR of 0 dB.  The ideal binary 

mask derived from this sentence (Fig. 3-1 B) was applied to the sentence, with the 

resulting spectrogram shown in (B).  Application of the ideal binary mask results in 

the noise between speech components being attenuated; because the binary mask is 

applied on a sample-by-sample basis (with 50 us sampling time), the reduction 

occurs both between words as well as within the words themselves. 
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passed without modification.  Similarly, in the third condition, the algorithm was only 

applied to higher frequencies (1.5-7 kHz), and the lower frequency bands were passed 

without modification.  In the last condition, the noise-reduction algorithm was applied to 

all frequency bands (70 Hz-7 kHz).  

     For all four conditions, the frequency resolution of the binary mask and 

analysis/synthesis filterbank was set at 2 filters per ERB.  The binary mask was applied 

on a sample-by-sample basis, as determined by the energy contained in the signal.  The 

time-constant of the low-pass filter used to determine the energy within each band was 

constant at 0.53 ms. 

3.2.1.2 Experiment II 

In the first experiment, the ideal binary mask was used with a threshold for each 

sentence set such that 99% of the total speech energy exceeded it.  In the second 

experiment, the threshold was systematically varied such that the binary mask was based 

on 75-95% of the sentence energy in steps of 5%, as well as a 99% condition comparable 

to Experiment 1.   All other aspects of processing were the same as in Experiment I.  An 

illustration of the effect of changing the threshold on the binary mask is shown in Fig. 3-3 

which shows the ideal binary mask, as well as binary masks based on 85% and 75% of 

the speech energy.  The thresholds used are shown in Fig. 3-3B, where the energy for a 

single frequency band (414 Hz CF; see arrow in Fig. 3-3A) is plotted as function of time.  

The threshold was determined for each sentence individually; this was done to ensure that 

the sentences used in each track were processed using binary masks based on an identical 

percentage of speech energy exceeding the threshold. 
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Figure 3-3 Degradation of the Ideal Binary Mask  
The ideal binary mask for the examples sentence is shown in (A).  The ideal binary 

mask was determined as in Experiment I, with the threshold shown by the dotted line in 

(B) for the frequency band with CF of 414 Hz (the arrow in A).  By varying the 

threshold used to determine the binary mask, the ideal mask was degraded to represent 

more realistic detectors.  When the threshold was adjusted such that 85% of the total 

speech energy was above it (the dot-dash line in B), the binary mask shown in (C) was 

produced.  This binary mask was more selective than the ideal mask, as can be seen by 

the narrower regions of unity gain.  When the threshold was raised further (dashed line 

in B., such that 75% of the total speech energy is above the threshold), the binary mask 

shown in (D) was produced.  With this higher threshold, many of the speech 

components that are visible in the ideal mask are missing; these missing regions would 

be periods when a realistic detector would miss the speech components in noise.  The 

thresholds used to determine the non-ideal binary masks were specific to each sentence; 

however, the amount of total speech energy above the thresholds was kept constant 

across sentences. 
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The binary mask was then applied to the stimuli as in Experiment I.   Based on the results 

of the first experiment, and because of the limited number of stimuli available and large 

number of different percentages used, the processing in Experiment II was performed 

only on the low-frequency bands (70-1500 Hz).  The frequency- and time-resolution of 

the binary mask was the same as in Experiment I. 

3.2.1.3 Experiment III 

The methods of Experiment III were similar to those of the low-frequency condition 

of Experiment I, with the difference being the frequency-resolution of the binary mask 

and the application of a temporal smearing to the binary mask.  In addition to the control 

condition, stimuli were produced for three separate conditions:  one with a reduced 

frequency resolution (1 filter per ERB), and two with temporally smeared binary masks.  

The temporal smearing of the binary mask was accomplished by varying the way in 

which the gains were applied to the analysis/synthesis bank.  While in Experiment I the 

gains were applied on a sample-by-sample basis, for Experiment III the gain was kept at 

unity for a set amount of time whenever the energy-threshold was exceeded for that band.    

This had the effect of removing some fast variations in the temporal patterns of the gain 

changes;  while the gains could rapidly change to unity, they returned to the 0.2 state 

slowly.  The temporal smearing was accomplished by convolving each frequency band of 

the ideal binary mask with a rectangular pulse.  The two pulse durations used were 15ms 

and 100ms. 
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3.2.2 Listeners 

Listeners for Experiment I consisted of 8 subjects, 3 normal-hearing listeners and 5 

listeners with sensorineural hearing loss.  Normal-hearing listeners had thresholds lower 

than 15 dB HLfrom 250-6000 Hz.  Listeners for Experiment II consisted of 10 subjects, 3 

normal-hearing listeners and 7 listeners with hearing loss. Normal-hearing listeners had 

thresholds as in Experiment I, and the listeners with hearing loss were also classified as 

having moderate sensorineural hearing losses.  Listeners for Experiment III consisted of 2 

subjects, both listeners with hearing loss.   Normal-hearing listeners were aged 21 to 27 

(mean: 23.8); listeners with hearing-loss were aged 68 to 88 (mean: 78.5). 

Individual audiograms for the listeners with hearing loss for all experiments are 

shown in Fig. 3-4.  All listeners with hearing loss had bilateral, symmetrical (less than 10 

dB difference between ears) sensorineural hearing losses. All but two of the listeners with 

hearing loss were experienced hearing-aid wearers.    All listening was performed 

unaided for the listeners with hearing-loss, with no spectral shaping performed.  All 

subjects were paid for their participation. 

3.2.3 Procedure 
Listeners were seated in a double-walled, sound-attenuating booth (IAC).    Stimuli 

were presented in the free-field by a speaker located 1 m in front of the listener.   Stimuli 

were presented through a TDT System II 16-bit D/A system and digital attenuator (TDT 

PA4), and amplified by a Crown D-75A power amplifier.   The level of the stimuli was 

adjusted for each subject to ensure that the stimuli were audible, yet remained 

comfortable for the listener.  Presentation levels varied from 77 dB (A) to 87 dB (A). 
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Figure 3-4  Listeners with Hearing Loss’ Audiograms 

Listeners audiograms are shown, with listeners used in Experiment I, II and III 

having solid, dashed, and dotted lines respectively. 
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The HINT procedure (Nilsson et al., 1994) was used to estimate the RTS of speech in 

speech-spectrum shaped noise.  Briefly, the subjects were presented with a sentence in 

speech-spectrum shaped noise, and asked to repeat back the sentence to the experimenter.   

The SNR of the sentences was varied in a track to determine the RTS, with each track 

consisting of a total of 20 sentences.  The initial sentence was repeated until the subject 

was able to correctly repeat the entire sentence; subsequent sentences were presented 

once, with the SNR varying depending on the subject’s response.  SNR was varied by 4 

dB for the first 4 sentences, and by 2 dB for the remainder of the track.  During each 

track, the SNR had a lower bound of -10 dB.  At the lower SNRs, application of the 

binary mask resulted in the noise present in each frequency band having an envelope that 

was equal to the speech within that band; preliminary testing showed that normal-hearing 

listeners could understand the speech when only these envelope cues were present (i.e., 

even when the speech was not actually present), thus a lower bound on the SNR was 

necessary.  Listeners are able to understand speech when noise is separated into 

frequency bands and amplitude-modulated with the speech’s envelopes, even when there 

is no speech actually present (Shannon et al., 1995). Each subject was presented each 

HINT track only once to minimize any learning effects on the RTS.   The final RTS was 

determined by taking the average of the SNRs of the final 16 sentences, as well as the 

SNR at which the 21st sentence would have been presented (Nilsson et al., 1994).  

Subjects were given 2 tracks of unprocessed HINT sentences to familiarize 

themselves with the testing procedure to ensure that the overall level was comfortable, 

and to ensure that subjects performed within normal bounds of the HINT.   After the 

initial familiarization, subjects were presented with the processed stimuli.  For each 
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condition, the RTS was the average of 2 HINT tracks, each of which consisted of 20 

sentences.  The order of presentation for the experimental tracks was randomized for each 

subject.  Subjects were allowed to take short breaks between tracks as necessary. 

3.3 RESULTS  

3.3.1 Experiment I 

Figure 3-5 shows the RTSs measured for individual listeners with hearing loss for all 

four conditions involving the ideal binary mask, along with a group average.  Individual 

subjects’ PTAs are indicated next to the subject identifier.  Individual normal-listener’s 

RTS are shown in Fig. 3-6.  For the unprocessed condition, the difference between the 

average listener with hearing loss and normal-hearing listener was 3.6 dB, matching 

previous work for long-term speech-spectrum shaped noise (Plomp, 1994).  Examining 

all subjects, the effect of the processing was a decrease in the RTS, indicating an 

improvement in the listener’s ability to understand speech in noise.  All of the listeners 

with hearing loss showed the greatest reduction in RTS for the combined condition, 

followed closely by the low-frequency condition.  The amount of reduction for the high-

frequency condition was smaller than for the low-frequency or combined conditions and 

had a greater variability between subjects.  Simple linear regression showed no 

significant relation between the RTS and PTAs of the listeners with hearing loss (R2 

ranged from 0.25 to0.56 with  p values from 0.15 to 0.40)  

Normal-hearing listeners also showed a decrease in RTS for all conditions of 

processing (Fig. 3-6).  For the combined condition, all normal-hearing listeners were 

operating near the minimum SNR that was used (-10 dB).  The arrows of Fig. 3-6  
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Figure 3-5 HINT Thresholds for Listeners with Hearing Loss 

Individual HINT thresholds are shown as a function of the processing condition, as 

well as an average RTS.  Listeners’ pure tone average (PTA) for 500, 1000 and 2000 

Hz tones are also shown. For the unprocessed condition, RTSs ranged from -0.6 dB 

to 2.6 dB.  For all conditions where the ideal binary mask was applied to the stimuli, 

the RTS improved for all subjects compared to the unprocessed condition.  The 

amount of decrease was greatest for the all-frequency condition and smallest for the 

high-frequency condition.  Subjects’ unprocessed RTSs were elevated compared to 

those obtained for normal listeners (Fig. 3-6).   
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Figure 3-6  HINT Thresholds for Normal Listeners 

The HINT thresholds are shown for all conditions for the normal subjects, as well as a 

group average.  All subject’s unprocessed RTSs fell within the norms for the HINT 

(Nilson et al, 1994).  Normal listeners had a large improvement for all conditions 

tested; for the all-frequency condition, both listeners performed at or near the limit of 

the SNRs used (-10 dB).  The arrows indicate that the subjects hit the floor of the 

processed SNRs, where only the temporal envelope cues were available (see text).  
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indicate that the results are based on tracks in which the listener reached the limit of 

SNRs used in the processing and their scores would have likely been lower if the SNR 

had not been limited to -10 dB.  Unlike the listeners with hearing loss, the normal-hearing 

listeners showed an improvement in RTS for the high-frequency condition. 

 Comparing the two subject groups, the listeners with hearing loss derived more 

benefit from the low-frequency and combined-frequency conditions than did the normal-

hearing listeners, with the latter showing a larger improvement in the high-frequency 

condition.  The large improvement for the listeners with hearing loss was due to their 

higher unprocessed RTSs; the improvement of normal-hearing listeners was also limited 

by minimum SNR used (-10 dB).  However, the listeners with hearing loss were not 

affected by the floor imposed by the processing. 

3.3.2 Experiment II 

 The results for Experiment II are summarized in Figs. 3-7 to 3-9.  The RTSs for 

listeners with hearing loss are plotted as a function of the amount of energy above the 

threshold of the degraded binary mask.  Individual subjects’ PTAs are shown in the 

legend.  As the binary mask approached the ideal mask, all subjects with hearing loss 

showed a decrease in RTS.  The RTSs obtained for the ideal mask (the rightmost point on 

the curves) matched the results found in Experiment I, which were obtained with a 

different set of listeners.   A weak, but not significant trend for the RTS to increase with 

increasing PTA was seen. 

The change in RTS for the listeners with hearing loss is shown in Fig. 3-8.  Here, the 

results of Fig. 3-7 are replotted by subtracting out each subject’s unprocessed score.  

While the absolute values of the scores for individual subjects varied (Fig. 3-7), when the  
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Figure 3-7 Effect of Degrading the Ideal Binary Mask on Listeners with Hearing Loss 

The ideal binary mask was degraded by increasing the threshold applied to the 

spectrogram of the clean speech when generating the binary mask (as shown in Fig. 3-3).  

This was done for each sentence, such that for each HINT track, the amount of speech 

energy above the threshold was constant.  Shown are subject’s HINT thresholds as a 

function of the amount of degradation, expressed as the percent speech energy above the 

threshold used.  All subjects showed a decreasing trend in RTS as the degraded mask 

approached the ideal binary mask.  Subjects’ performance for the ideal mask (the 

rightmost point of each line) matched the results found in Experiment I.   
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Figure 3-8 Change in HINT Score with Ideal Binary Mask Degradation 

Shown are the changes in HINT threshold for listeners with hearing loss as a 

function of the degree of processing.  The solid line represents the mean (± 1 s.d.) 

change for all listeners with hearing loss.  Listeners with hearing loss showed an 

improvement when the binary mask was based on greater than 90% of the speech 

energy;  below this level, there were either no changes from the unprocessed 

condition, or a slight increase in RTS.  A paired-t test was used to determine 

statistically significant differences from the unprocessed condition (p < 0.05, 

denoted by the asterisks). 
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Figure 3-9 Effect of Degrading the Ideal Binary Mask on Normal-Hearing 

Listeners 

Similar to the listeners with hearing loss, normal-hearing listeners’ HINT 

thresholds decrease as the binary mask approaches the ideal binary mask.  Unlike 

listeners with hearing loss, at the higher percentages of energy above the binary 

mask threshold, normal-hearing listeners reached the minimum SNR used in the 

study (-10 dB).   
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Figure 3-10 Change in HINT Threshold with Ideal Binary Mask Degradation 

The change in HINT threshold is shown for listeners with normal hearing as a 

function of the amount of speech energy used in the derivation of the binary mask.  

The solid line represents the mean (± 1 s.d.) change for all normal-hearing subjects.  

A paired-t test indicated that the only condition statistically different from the 

unprocessed condition was 99% (p < 0.05, denoted by the asterisk). 
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change in HINT score was examined, a clear trend appeared, with the change in RTS 

decreasing as the percentage of energy increased.  The heavy solid line shows the mean 

change for all subjects with hearing loss, with error bars denoting ±1 s.d..  While 

individual subjects showed improvement in RTS at each percentage, a paired-t test 

showed no significant difference (p < 0.05) until the percentage was equal to or greater 

than 95% (indicated by the asterisks in Fig. 3-8).  If the outlier from subject 10 was 

removed (the open circle of Fig. 3-8), the difference at 90% becomes significant (p = 

0.02). 

Similar to the listeners with hearing loss, normal-listeners’ RTSs improved as the 

binary mask became closer to the ideal binary mask (Fig. 3-9).  Normal-listeners had a 

lower RTS for the entire range of percentages, as expected.  The scores are replotted as a 

change in RTS, along with an average change, in Fig. 3-10.  A paired-t test between the 

processed and unprocessed conditions showed significant differences (p<.05) for the 

normal-hearing listeners only for the ideal binary-mask condition, although only a small 

number of normal-hearing listeners were tested.  

3.3.3 Experiment III 

The result of reducing the frequency-resolution and temporally smearing the ideal 

binary mask is shown in Fig. 3-11.  When the frequency resolution was decreased to 1 

filter per ERB, both subjects showed an improvement in RTS over the control condition.  

The magnitude of this improvement matched that found in Experiment I. 

The RTSs obtained for both subjects for the temporally smeared binary masks are 

also shown in Fig. 3-11.  The two conditions represent gains that are forced to slowly 

return back to their attenuating state, thus removing many of the fast variations in the  
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Figure 3-11 HINT Thresholds for Changing Frequency-Resolution and 

Temporal  Smearing 

The HINT thresholds for two additional subjects with hearing loss are shown after 

changing the frequency-resolution of the binary mask as well as temporally 

smearing the binary mask.  Both subjects showed an improvement for the conditions 

of Experiment I (2 filters/ERB).  When the frequency-resolution was decreased to 1 

filter/ERB, both subjects still showed an improvement in RTS.  When the binary 

mask was temporally smeared with a 15 ms rectangular window, the subjects 

showed different results; one subject showed an improvement similar to Experiment 

I, with the other showed a very variable response.  When the binary mask was 

smeared with a 100 ms rectangular window, both subjects RTSs returned to their 

control values. 
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temporal properties of the gain changes.  Here, the two subjects showed a similar pattern 

for the 100-ms condition, with little or no change from the control condition.  For the 15- 

ms condition, the first subject showed an improvement similar to that obtained in the one-

filter-per-ERB condition, which used a temporal-resolution matching Experiment I.  The 

change seen in the second subject was difficult to determine, as the subject’s variability 

was high; for the first track, the SNR improved to a level similar to the one-filter-per-

ERB condition, whereas the second track resulted in a RTS higher than that of the 

control. 

3.4 DISCUSSION 

The results of Experiment I demonstrated that the strategy of time-frequency gain 

manipulation could improve the RTS of speech in speech-spectrum noise, provided that 

the gains were manipulated based on the ideal detector.  This result is in contrast to some 

past studies that have shown no improvement using this technique (Klein, 1989; Fabry 

and Van Tasell, 1990).  There are three possible differences in past studies that may be 

the cause of this contrast (Ono et al, 1983; Dempsy, 1987; Klein, 1989; Fabry and Van 

Tassell, 1990; van Dijkhuizen et al, 1987, 1989, 1990, 1991; Rankovic et al, 1992):  

reliance on non-ideal detectors, usage of fewer frequency bands for their gain 

manipulations, and sluggish manipulation of the gains.   The combination of these 

differences may have led to the large improvements shown in the current study; 

replicating the current study with the frequency bands used in previous studies (or in 

current hearing aids) would enable a more direct comparison.   
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One of the interesting results of Experiment I was the difference for the ideal binary 

mask between normal-hearing listeners and those with hearing loss.  While the normal-

hearing listeners reached the limits of processing (-10 dB), listeners with hearing loss did 

not, even when the ideal binary mask was applied to the full frequency range of speech.  

At the lower levels of SNR, below about -6 dB, the output was dominated by the noise, 

which had been given a speech-like envelope by the manipulation of the gains.  The 

inability of the listeners with hearing loss to use this information suggests an impairment 

in their ability to process envelope cues compared to normal-hearing listeners.  While 

studies have shown that listeners with hearing loss generally perform similarly to normal-

hearing listeners in AM detection, it is possible that the wider tuning of the impaired 

auditory system could have a larger effect on the wide-band envelope cues that are 

contained in speech. 

Additionally, listeners with hearing loss did not show an improvement when the ideal 

binary mask was applied to the high-frequency (> 1500 Hz) region, unlike the normal-

hearing listeners.  The addition of higher-frequency components should have a large 

effect on the subjects’ scores;  that it did not suggests that the information contained in 

these regions was unavailable to the listeners with hearing loss. This lack of improvement 

for these listeners may have resulted from two factors:  that the processed speech was 

inaudible due to the listener’s hearing loss, or because of the increased amount of 

masking resulted from the hearing loss.  That all subjects show additional improvement 

when the ideal binary mask covers the entire frequency range suggests that the masking 

effect of the low-frequencies in the high-frequency-only condition is the explanation for 

the lack of improvement under this condition.    
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By degrading the ideal binary mask in Experiment II, it was found that over 90% of 

the energy must be detected in order to see an improvement in RTS.  To detect this high 

of a percentage, however, would require a very good detector that may not be realizable 

in the computationally-limited environment of a hearing-aid.  However, overall energy 

detected might not be the best cue.  Additional experiments should be done to examine 

the effect of detecting various other cues in speech, such as onsets and offsets, the 

transitions of formants, as well as envelope cues.  It is possible that a detector would not 

have to detect the high percentage of energy shown in Experiment II if it were to detect 

some of the salient cues mentioned above. 

The results of Experiment III, while based on a small number of subjects, help to 

further define the binary mask needed for improvement in RTS.  The frequency 

resolution results suggest that a lower frequency resolution can still provide an 

improvement in RTS; because the SNR within each band at a frequency-resolution of 1 

filter per ERB is not improved when speech is present within that band, the results 

suggest that improvement in the RTS is the result of other factors, such as a reduction in 

masking of adjacent bands 

The temporal smearing results of Experiment III suggest that any time-frequency gain 

manipulation must be relatively fast (15 ms or less) for there to be an improvement in the 

RTS.  This result may explain why many of the current time-frequency gain manipulation 

algorithms used in current hearing aids provide very little in the way of intelligibility 

increase, as these algorithms are typically slow-acting (~20ms to a few seconds). 

The results of the 3 experiments have practical application in the development of 

time-frequency gain algorithms for use in hearing applications.  The results of 
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Experiment I demonstrate that this sort of algorithm will work; these results also show 

that benefits to RTS can be achieved by processing only the low-frequency components 

(< 1.5 kHz) of speech.  This allows the use of simpler detectors, because the low-

frequency, narrowband components of speech are generally easier to detect than the 

noise-like, high frequency components.  The results of Experiment II set the guidelines 

for the performance of the detectors to be used in a real-world algorithm.   To show an 

improvement in RTS, the real-world detector would have to detect at least 90-95% of the 

energy of the speech.   Experiment III defines the necessary frequency-resolution of the 

overall system, as well as the temporal speed of the gain changes. 

Practically speaking, time-frequency gain manipulations often result in poorer sound 

quality of the output.  This degradation in quality was seen in the current study, with 

normal-hearing listeners often describing the stimuli as “machine-sounding” or 

artificially generated speech.  This “machine-like” quality is the result of the rapid 

transitions of the gains, as well as the low SNRs of the stimuli.  For the low SNRS (-10 to 

-6 dB) presented to the normal-hearing listeners, the output was dominated by the noise, 

which was roughly shaped by the gain manipulations to mimic speech; the resulting 

outputs were similar in quality to cochlear-implant demonstrations, in which noise is 

modulated with a speech envelope (Shannon et al., 1995).  Interestingly, the listeners 

with hearing loss were generally less sensitive to the quality of the stimuli; informal 

comments after listening did not often involve quality, unlike normal-hearing listeners’ 

comments.  This may have been because the stimuli were at a level where the actual 

speech still dominated the output, or because of the impairments associated with hearing 

loss.  However, the degradation of quality should not be an issue with a real-world 
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implementation, as the detectors used in such an algorithm would probably not reach the 

performance levels (i.e., ideal detection at -10 dB SNR) that the current study used.  At 

the SNRs that real-world detectors would probably achieve, the signal that remains in the 

output would dominate over the speech-envelope imposed on the noise.  Informal 

listening suggests that at these SNRs, the quality of the processed speech is at an 

acceptable level. 

The use of binary masks allow for the evaluation of important cues in understanding 

speech in noise, and provides a platform for the evaluation of NR algorithms.  The ideal 

binary mask provides for an absolute limit of benefit that can be achieved by 

manipulating the gains of frequency bands.  By systematically manipulating the binary 

mask, one can determine the necessary cues or regions of the stimulus that are needed for 

intelligibility.  Once these cues are determined, quantitative comparisons can be made to 

the detection patterns that are produced by experimental detectors, allowing for the 

design and testing of such detectors without having to perform intelligibility testing with 

them.  By simply comparing the detection patterns of the experimental detector to the 

binary masks that produce increases in intelligibility, one can make a prediction of how 

that detector would perform. 



 

  

65 

Chapter 4 

The Development and Testing of a Phase-Opponent 
Noise-Reduction Algorithm 
4.1 INTRODUCTION 
     Listeners often have difficulty understanding speech in a noisy environment.  This 

difficulty is exaggerated when the listener has some form of hearing loss. An increase of 

2-5 dB (Plomp, 1994) in signal-to-noise ratio (SNR) is required for listeners with hearing 

loss to achieve the same level of intelligibility as normal-hearing listeners.  This increase 

is partly due to the increased thresholds of the listener with hearing-loss, but even with 

sufficient amplification, the necessary SNR increase is reduced by only 1-2 dB (Peters et 

al., 1998; Bentler and Duve, 2000).   To help overcome this, modern hearing aids have 

begun to implement various noise-reduction (NR) algorithms to provide an increase in 

SNR in addition to amplification. 

     NR algorithms have been developed for many applications other than speech in noise; 

however, speech in noise represents a particularly difficult class of signals, as in most 

cases the spectral information of both the speech and the noise overlap.  In addition, the 

acoustical parameters of speech fluctuate depending on the physical characteristics of the 

speaker, as well as cultural factors.   The noises encountered in real life are also non-

stationary.  These factors rule out many traditional NR algorithms, such as Wiener 

filtering (Wiener, 1949). 

     NR algorithms that are suitable for hearing-aid use fall into two categories:  

directional microphone approaches or single-channel algorithms.  Current thinking holds 
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that only directional microphones can improve intelligibility (Levitt, 2001; Chabries and 

Bray, 2002; Schum, 2003), while both categories can improve the subjective quality or 

ease-of-listening (Schum, 2003).  To this end, the majority of research involving NR and 

hearing aids has been directed at improving directional microphones.   

     Directional microphones, in a laboratory setting, can provide substantial increases in 

signal-to-noise ratio (SNR) and the resulting increases in intelligibility for listeners with 

hearing loss (Mueller and Johnson, 1979; Soede et al., 1993; Valente et al., 1995).  

However, when taken outside of the laboratory setting, these increases diminish in size 

(although still present) due to real-world considerations such as reverberation (Hawkins 

and Yacullo, 1984; Ricketts, 2000; Ricketts and Hornsby, 2003).  In addition, for the 

directional microphone to provide any benefit at all, the speech source and noise must be 

spatially separated (Levitt, 2001). 

     Single-channel NR algorithms, though more difficult to implement, can be used when 

the speech and noise can not be spatially separated or when the physical size of the 

hearing aid prevents the use of directional microphones (i.e., in a completely in-the-canal 

hearing aid).   While single-channel NR algorithms can significantly improve the SNR of 

a noisy signal, when tested on listeners with hearing-loss, there are no improvements in 

intelligibility.   Most of the single-channel algorithms currently developed are intended 

for use in automatic-speech-recognition (ASR) systems, which also suffer from degraded 

performance in noise.  While these systems can improve SNR, a key difference between 

the ASR systems and listeners with hearing-loss is the SNRs that are needed for 

understanding.  While a listener with hearing-loss requires a SNR from 0 to 5 dB for 

understanding when the noise is speech spectrum shaped (Plomp, 1994), ASR systems 
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generally require SNRs in excess of 15 dB to perform adequately (Gong, 1995; 

Lippmann, 1997).  The difference in target SNRs for the two systems (hearing-aid and 

ASR) makes it difficult to compare across NR algorithms that are developed for ASR, as 

they generally do not perform well at the SNRs at which the hearing-aid must perform. 

     Most single-channel NR algorithms are based on spectral subtraction (Boll, 1979).  In 

spectral subtraction, the incoming signal is divided into segments and a short-term 

Fourier transform used to convert the segment to the frequency domain.  An estimate of 

the noise spectrum (generally obtained from a pause in the speech) is then subtracted 

from the segment’s spectrum.  The remaining spectrum is then combined with the phase 

information from the noisy signal and an inverse FFT applied to obtain a noise-reduced 

signal.  The resulting signal, while having less noise than the original, does have some 

residual noise left because of differences between the estimate of the noise-spectrum and 

the instantaneous spectrum of the noise.  This residual noise is often described as 

“musical noise” because of its sound quality.   This musical noise can often be more 

distracting than the original noise, which is a possible reason that this NR algorithm 

results in no improvement in intelligibility (Cappa, 1994). 

     Improvements to the basic spectral subtraction algorithm outlined above attempt to 

improve the subtraction by using models of speech (Ephraim & Malah, 1984).  Here, a 

statistical model of the speech is used to calculate the spectrum of the speech in each 

segment of the signal.  The estimate of the speech spectrum is then compared to the 

segment, and those frequency bands that are dominated by the noise are attenuated.  The 

segment is then subject to an inverse fast-Fourier transform (IFFT).  By using a 
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minimum-squared-error estimator for the estimation of the SNR of each frequency band, 

this NR algorithm can show an improvement in the amount of noise removed. 

     Most current NR algorithms are derivatives of spectral subtraction; the improvements 

made by these algorithms generally involve reducing the musical noise.   Current 

research involves a more psychophysical approach, with the consideration of perceptual 

masking of the musical noise (Tsoukalas et al., 1997; Arehart et al, 2003).   

     Tsoukalas et al. (1997) have demonstrated a single-channel NR algorithm that can 

result in an improvement in the intelligibility for normal-hearing listeners.  Arehart et al.  

(2003) extended this work to show that a similar algorithm can also show small 

improvements (2-8%) for listeners with hearing-loss.  These algorithms work by using 

auditory masked thresholds (AMT) to determine the frequency bands that are suppressed 

by a spectral-subtraction-type algorithm.   Those frequency bands that are not already 

masked by the speech are suppressed. 

     The current study also used a variant on spectral subtraction.   The phase-opponent 

(PO) NR algorithm performs spectral subtraction by splitting the incoming signal into 

frequency bands and attenuating bands believed to contain only noise.   Unlike traditional 

spectral subtraction, PONR does not use a direct estimate of the SNR to determine the 

gain of each frequency band; instead, a physiologically inspired detector is used to 

determine the presence or absence of speech.   The use of the PO detector is similar to the 

AMT-NR algorithms, in that the decision to attenuate any given frequency band is 

determined by a variable that is more closely related to the human auditory system than a 

measurement of the SNR of that band.   By using a detector that matches the physiology, 
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the hypothesis is that the output of the PONR algorithm will result in an improvement in 

intelligibility and quality of speech in noise for listeners with hearing-loss. 

4.2 METHODS 

4.2.1 Phase-Opponent Noise-Reduction (PONR) Algorithm 

     The PONR algorithm was based on time-frequency gain manipulation, which is a 

form of spectral subtraction.  The algorithm divided the incoming signal into separate 

frequency bands, and varied the gain of each frequency band depending on the presence 

of speech components within that band.  The presence of speech components was 

determined by PO detectors.  The PO detector is an ideal match for a speech detector, as 

it is a narrowband detector that uses the temporal information to detect the speech; this 

allows the detector to be used under a wide range of noise levels and conditions without 

having to determine a spectral estimate of the noise.  A flow chart of the PONR algorithm 

is shown in Fig. 4-1.   The algorithm contained three main parts:  an analysis filterbank, a 

bank of phase-opponent (PO) detectors, and a synthesis stage.     

4.2.1.1 Analysis Stage 

     The analysis stage of the PONR algorithm was based on that of Hohmann (2002).   

This stage separated the incoming waveform into separate frequency bands that could 

then be individually manipulated to achieve an improvement in the SNR of the overall 

signal.   

     The analysis filterbank consisted of 59, 4th-order gammatone filters that covered a 

frequency range of 100-7000Hz.  The filters bandwidths changed according to the 

equivalent rectangular bandwidth (ERB) of the human ear, a logarithmic scale that results  
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Figure 4-1 Flow Diagram of the Phase-Opponent Noise Reduction Algorithm 

The PONR algorithm consisted of three stages:  the analysis filterbank, a bank of PO 

detectors, and a synthesis stage.  The analysis stage consisted of a bank of 59 

gammatone filters that separated the incoming signal into separate frequency bands.  

These bands covered the frequency range of 100Hz-7000Hz in ½ ERB increments.  

Bands below 2.5kHz (#1-40) had their own PO detector that attempted to detect any 

speech components that fell within that band.  The PO detectors controlled the gains of 

the individual bands; bands without a PO detector (#41-59) had a static gain of unity.   

The synthesis stage applied the gains determined by the PO detectors, and 

resynchronized each of the band to account for the individual bands’ group delay.  The 

bands were then scaled and summed together to produce the final, noise-reduced output. 
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in filters with lower center frequencies having narrower bandwidths than filters with 

higher center frequencies.  The analysis filters had a bandwidth of one ERB, but were 

spaced such that adjacent filters were ½ ERB apart.  The auditory filters of a listener are 

at least one ERB wide; by using an analysis filterbank that can change the SNR within a 

given ERB, it is possible to achieve an improvement in the instantaneous SNR of the 

listener’s auditory filters by manipulating the gains of the two analysis filters that cover 

each auditory filter. 

     The output of the kth filter of the analysis filterbank can be expressed as: 
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where hAk(t) is the impulse response of the kth, 4th-order gammatone filter with a center 

frequency fk and bandwidth of Bk and u(t) is the unit step function. 

     The single-ERB bandwidths of the gammatone filters were chosen because they more 

closely resemble the human auditory system.  As stated above, by spacing these filters at  

½ ERB intervals, it was possible to improve the SNR within the listener’s single-ERB 

wide auditory filter.  The ½-ERB spacing also allowed for efficient use of a smaller 

number of filters than would the use of equal-bandwidth filters.  This smaller number of 

filters resulted in faster processing times, and was more feasible for the long-term goal of 

the use of the PONR algorithm in a digital hearing aid. 

 



 

  

72 

4.2.1.2 General PO Detector 

     The presence or absence of speech components in each of the frequency bands was 

determined by a PO detector for that frequency band.  An individual PO detector is 

shown in Fig. 4-2.   The PO detectors used were based on the same principles of the PO 

detectors of Chapter 1, but were implemented in slightly different way.  The PO detector 

of Fig. 4-2 achieved its phase-opponency through the use of an allpass filter (Deshmukh, 

personal communication) that was applied to the output of a single gammatone filter.   

The allpass filter for the kth band was a second order filter of the form: 
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The allpass filter, as its name implies, has unity gain across frequency; it is the phase 

response of the filter that changes with frequency.   The phase response of the allpass 

filter is shown in Fig. 4-3.   The phase goes from 0 to -360°, with the slope of the 

transition controlled by the location of its pole (pk);  moving the pole closer to the unit 

circle (ie, changing Rk) results in a steep phase transition.  The angle of the pole 

determines the approximate location of the -180° point of the phase transition; by placing 

the pole at the appropriate angle, the -180° point can be made to match with the center 

frequency of the single gammatone filter, which had a bandwidth equal to 3 times the 

ERB of its center frequency (chosen based on optimizations detailed in the results 

section).  Thus the resulting output of the allpass filter will be 180° out-of-phase with its 

input in the vicinity of the pole.   
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Figure 4-2 Flow Diagram of a Phase-Opponent (PO) Detector 

The phase-opponent detector was based on the phase-opponent model of Carney et al. 

(2001).  It consisted of a 4th-order gammatone filter with a center frequency matched 

to the frequency band it was associated with, with a bandwidth equal to three times the 

ERB at the center frequency.   The output of the gammatone filter was subject to an 

allpass filter that provided the 180° phase-shift needed to produce phase-opponency.  

The output of the gammatone and allpass filters was then multiplied and subject to a 

signum function.  The signum function removed any magnitude information present in 

the signals, resulting in the reliance on only temporal information.   The output of the 

signum function was smoothed using a moving average filter, and then compared to a 

threshold to determine if a speech component was present.  The output of the 

thresholder was then convolved with a rectangular pulse hext(t), to prolong the high 

gain state that detection resulted in for 10 ms afterwards 
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Figure 4-3 Transfer Function of a PO-Detector Allpass Filter 

The magnitude and phase responses for the allpass filter of the PO detector tuned to 1 

kHz are shown for the four conditions used in the experiment.   While the magnitude 

was flat, the phase response of the filter varied with frequency, going from 0 to 360°.   

The phase response of the filter was 180° at 1 kHz, providing the phase-opponency 

necessary for detection.   As the magnitude of the allpass filter’s pole was changed, the 

slope of the phase transition changed; as the pole was moved closer to the unit circle, 

the transition became steeper.  The four slopes shown are: 180, 150, 120 and 90°/ERB. 
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    Multiplying the output of the 4th-order gammatone filter with the allpass filter output 

resulted in the same phase-opponency as the PO detector of Chapter 1 that used two 

separate gammatone filters to accomplish the phase difference.  The advantage of using 

the allpass filter was that it allowed for a more direct control of a key parameter, the 

phase-difference between the inputs to the multiplier, independent of the detectors’ 

bandwidth (which was controlled by the single gammatone filter). 

     With the two-filter PO detector of Chapter 1, this phase-difference could not be 

changed independently of the detector’s overall bandwidth.   This was because the phase-

difference was achieved by the relative spacing and bandwidth of the two gammatone 

filters.  To achieve a phase-difference over a narrower frequency range, the two 

gammatone filters had to be spaced closer together, with narrow bandwidths.  In this 

case, the detector had a narrower bandwidth, as the two filters were narrow.  With the 

allpass filter, to achieve a phase-difference over a narrower frequency range, only the 

magnitude of the pole was changed, leaving the bandwidth of the single gammatone filter 

unchanged. 

     The output of the gammatone filterbank and the allpass filter were multiplied together 

and subject to a signum function.   Recall that for a PO detector, when the two inputs to 

the multiplier (the output of the gammatone and allpass filters) are out-of-phase the 

output is negative.   Therefore, it is only how the sign of the multiplier output changes 

with time that is important, and not the magnitude of the multiplier output. The signum 

function, which simply returns the sign of the input, results in only temporal information 

passing through later stages of the detector.  The output of the signum function was then 

subjected to a moving average filter to smooth it.  
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       The relationship between the PO detector’s gammatone filter bandwidth and the 

allpass filter’s phase transition determines the detector’s performance.   The correlator 

output, before the signum function, was derived based on the simple system shown in 

Fig. 4-4A.  The expected value of the output can be expressed as (Van Trees, 1971): 

 where Rx1x2(�) is the cross-correlation function between the gammatone filter and the 

allpass filter. 

    The cross-correlation function between the gammatone filter and allpass filter can be 

further simplified because the PO detector only relies on the zero-lag of the cross-

correlation function, (i.e. tau = 0): 

where h2(�) is the transfer function of the allpass filter  and Rx1(-�) is the autocorrelation 

of the output of the gammatone filter, which can be determined by the following 

equation: 

where Rx is the autocorrelation of the input noise.  The above equations were simulated in 

MATLAB to examine the expected value of the correlator response as a function of both          
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Figure 4-4 Analytical Results for PO Detector’s Correlator 

Shown in the top panel is a simplified version of the PO detector, before the signum 

function.  Using this arrangement, an analytical expression was found for the expected 

output of the correlator, which is shown in (B) for allpass filter slopes from 20-180°/ERB.   

As the gammatone filter was made broader, the frequency regions outside the allpass 

phase transition dominated, leading to a positive expected value.  At narrower bandwidths, 

the allpass filter output dominated, leading to a negative expected output.  Because the 

addition of a narrowband signal resulted in a decrease in correlation, the gammatone filter 

required a sufficiently large bandwidth such that the output without such a narrowband 

signal was positive. 
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allpass filter slope and gammatone filter bandwidth.  The results are shown in Fig. 4-4B, 

where the expected value of the correlator response is plotted as a function of the 

gammatone bandwidth.  When the bandwidth of the filter was large compared to the 

frequency range of the allpass filter, the expected value of the output of the correlator was 

positive; the frequency regions outside of the allpass filter’s phase transitions dominated.   

As the bandwidth was made smaller, the expected value of the output became negative, 

and the allpass filter’s phase transition dominated.  Because the output of the PO detector 

was subject to a signum function, the location of the zero-crossing of the expected value 

was important;  if the bandwidth of the gammatone filter was too small, the output of the 

correlator was always negative.  The presence of a narrowband signal in the phase-

transition of the allpass filter resulted in the output becoming negative;  therefore, the 

bandwidth of the gammatone filter had to be sufficiently large to guarantee that the 

output was generally positive when no signal was present. 

     Taken together, the multiplier, signum function, and moving average filter combined 

to perform a running correlation between the output of the gammatone and allpass filters.  

When a signal was present, the output of the correlation was pulled towards -1.  The 

output of the correlation was compared to a threshold � to determine the presence of a 

speech component in the frequency region covered by the PO detector.    

     Each PO detector controlled the gain of the frequency band to which it was tuned.  

When a signal was present (i.e., the output of the correlator was below the threshold for 

the band), the gain for the band was set to unity for the period of 10 ms.   This extension 

of the gain was done to improve the performance of the detector; the PO detector reliably 
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detected the onsets of speech components, but often failed to detect the middle parts of a 

speech component.  By extending the gain, the detector filled in the missed signal.   

     The gain of the each frequency band was set to 0.2 whenever that band’s PO detector 

determined there were no speech components in the band.  The reduction in gain 

attenuated that frequency band, which was presumed to contain only noise.   The gain 

was not set to zero because this leads to an increase in the amount of “musical” noise 

(Berouti, 1979).  By limiting the amount of attenuation, it has been shown that the 

amount of musical noise can be reduced (Berouti, 1979).  Mathematically, the gain 

(Gk(t))of the kth band was derived based on the correlator output Ck by the following 

equation: 
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     The matrix Gk(t) was referred to as the binary mask, because at each point in time, the 

value can had one of two values: 1.0 or 0.2.   Examples of four such masks are shown in 

Fig. 4-5.  Areas in black represent time-frequency positions that had unity gain, all other 

areas were multiplied by 0.2.  The binary mask was similar to a mask used in 

semiconductor manufacture; multiplication by the binary mask results in the passing of  
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Figure 4-5 Examples of Binary Masks  
A spectrogram of the sentence “A boy fell from the window” is shown in the middle of 

the figure.  Around the spectrogram are the binary masks produced by the PONR 

algorithm for the 4 allpass filter slopes used (180, 150, 120, and 90°/ERB) when long-

term speech spectrum noise was added at a 0 dB SNR.  The detection of the speech 

components can be clearly seen for all four conditions for times around 0.5 s and 1-1.5 

s, where the binary mask closely resembles the spectrogram.  The presence of false 

alarms is illustrated in the time period of 1.75-2.4 s.  As the allpass filter slope was made 

shallower, the detection performance increased, as seen by the larger areas that 

correspond to the spectrogram.  Note the widths of the harmonics, going from only one 

frequency band in the 180°/ERB condition to 2-3 bands in the 120 and 90°/ERB 

condition.   The number and rate of false alarms also increased with allpass filter slope, 

as can be seen in the increasing dense pattern of pixels in the time period after 1.75 s. 
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energy where speech was detected, and attenuating all other regions.  The effect of the 

PONR algorithm is shown in Fig. 4-6. 

4.2.1.2a PO Detectors vs. Frequency 

     The PO detectors were matched to the lower frequency bands of the analysis 

filterbank, with each frequency band having 1 PO detector.  The PO detectors only  

covered those frequency bands below 2.5 kHz (bands 1-40).   The higher frequency bands 

were not subject to detection because above 2.5 kHz, speech components become more 

noise-like in quality.  The PO detectors were unable to detect these components because 

the detectors required that the signal have a more defined temporal structure. 

     The gammatone filter of the PO detector had a center frequency equal to that of its 

associated frequency band.   The bandwidth of the PO detector’s gammatone filter was 

equal to three times the ERB of its center frequency.   This bandwidth was very wide 

compared to that of the analysis filter for that band; this wide bandwidth was necessary 

for the proper functioning of the detector, as mentioned above.  

     The absolute slope of the allpass filter was changed as a function of frequency, to 

account for the non-uniform bandwidths of the analysis filterbank.  However, the slopes 

were equal when expressed in terms of degrees/ERB.  Four slopes were used in the 

processing:  180, 150, 120 and 90 °/ERB.   The allpass filter always had its -180° point 

matched to the center frequency of the band.   

     The duration of the smoothing filter was also changed as a function of frequency, with 

the duration set to the maximum of either one period of the center frequency or 3 ms.    

     The threshold for the presence of a speech component within individual PO detector’s 

frequency band was kept constant across PO detectors; the threshold (�) was set at -0.55.   
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Figure 4-6 Application of the PONR Algorithm 

The top panel is a spectrogram for “the boy fell from the window” at a SNR of 0 

dB.  The bottom panel is a spectrogram of the output from the PONR algorithm 

with an allpass slope of 180°/ERB.  While the noise was attenuated, the speech 

was as well. 
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This threshold was chosen based on optimizations of the overall system, as explained in 

the results section. 

4.2.1.3 Synthesis Stage 

     To resynthesize the signal, the gains were applied to the individual frequency bands 

and the bands combined.   To apply the gains, the outputs of the analysis filterbank were 

synchronized with the gain profile for each band by delaying the output of each analysis 

filter.  This delay of the analysis filters was necessary because of the delay introduced by 

the PO detector.  Because the bandwidth of the PO detector varied with frequency, the 

delay introduced by the PO detector also varied with frequency.  The delay for the kth 

band was computed based on the group delay of the PO detector’s gammatone filter, 

which was approximated by the equation: 
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where Bk is the bandwidth of the kth PO detector’s gammatone filter bandwidth.  The four 

is from the order of the gammatone filter, and the approximation of �  from the 

gammatones bandwidth from Patterson (1987) 

     After delaying the analysis filterbank outputs, the outputs were multiplied by the gains 

determined by the PO detectors.  The masked waveforms were then further delayed and 

scaled, such that the impulse responses of the analysis filterbanks’ filters aligned with a 

delay equal to the largest group delay of the PO detector plus 4 ms.   The 4 ms is 

necessary to account for the delays introduced by the analysis filterbank;  4 ms was 

chosen based on the results of Hohmann (2002) who demonstrated that this delay was 
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sufficient for quality reconstruction. The waveforms were also scaled to achieve a near 

uniform gain across frequency when the bands were summed (Hohmann, 2002).  The 

final output, given the gain from the kth PO detector (Gk(t)) and the output of the kth 

analysis filter (Ak(t)), was: 
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with the values of Sk and dAk, the band scaling and delay factors respectively, derived 

from Hohmann (2002).  The first summation was over the lower-frequencies (<2.5kHz) 

and the second summation resulted in the addition of the original higher frequency 

components with no change, other than a delay to resynchronize them with the lower 

frequency bands.    

4.2.2 Stimuli 

     The stimuli consisted of the 250 sentences and associated noises of the Hearing-in-

Noise-Test (HINT) (Nilsson et al., 1994).  The sentences and noises were combined at 

SNRs ranging from -10 dB to 10 dB, and passed through the PONR algorithm, with 

allpass filter slopes of 180, 150, 120 and 90°/ERB.  The sentences were also passed 

through the analysis and synthesis stages without the application of the binary mask; this 

was the control condition, in which the only processing that affected the speech was that 

introduced by the analysis and synthesis stages. 
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4.2.3 Listeners 

     Both normal-hearing listeners and listeners with hearing loss were used.  Normal-

hearing listeners consisted of 5 subjects, 1 male and 4 female, aged 20 to 27 (mean: 22.8). 

All normal-hearing listeners had thresholds less than 15 dB HL for frequencies between 

250 and 8000 Hz. 

     Audiograms for listeners with hearing loss are shown in Fig. 4-7.  A total of 5 listeners 

with hearing loss were used, 2 males and 3 females aged 68 to 78 (mean 71.5).  Subjects 

were all classified as having mild-to-moderate sensorineural hearing losses.  All subjects 

with hearing-loss had bilateral, symmetrical (less than 10 dB difference) losses, and were 

experienced hearing-aid wearers.  Listeners with hearing loss performed all listening 

unaided, with no spectral shaping applied to the stimuli.  All subjects were paid for their 

participation, and all experiments were approved by the Syracuse University Institutional 

Review Board. 

4.2.4 Experimental Procedure 

     Listeners were seated in a double-walled sound-attenuating booth (Acoustic Systems).  

Preprocessed stimuli were presented through a TDT System II 16-bit D/A system and 

digital attenuator (TDT PA4), and amplified by a Crown D-75A power amplifier.   

Stimuli were presented through a speaker 1 m directly in front of the listener.  The level 

of the stimuli was adjusted for each listener with hearing loss to ensure that the stimuli 

were audible, yet remained comfortable for the listener;  presentation levels varied from 

65 dB (A) to 90 dB (A).  For listeners with normal hearing, a level of 65 dB (A) was 

used.  
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Figure 4-7 Audiograms for Listeners with Hearing Loss 
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4.2.4.1 HINT Procedure 

     The standard HINT procedure (Nilsson et al, 1994) was used to measure the reception 

threshold for speech (RTS), which is the SNR required for 50% intelligibility.  The HINT 

test was begun by presenting a sentence (either processed or the control condition) at a 

SNR of -10 dB.  The listener was asked to repeat the sentence; the SNR was raised in 4-

dB increments until the listener was able to repeat the first sentence of the track with 

100% accuracy.  The next sentence was then played at a SNR 4 dB down from the first 

sentence.  Again, the listener was asked to repeat the sentence; if the listener repeated the 

sentence correctly, the next sentence was played at a lower SNR.  If the response was 

incorrect, the next sentence was played at a higher SNR.  The remaining sentences of the 

20-sentence track were not repeated, with the SNR changing by in steps of 4 dB for the 

first four sentences of the track, and 2 dB steps for the remaining sentences.   The final 

RTS was the average of the SNRs of the last sixteen sentences, as well as the SNR at 

which the 21st sentence would have been presented (Nilsson et al., 1994).   

     RTSs were obtained from all subjects for five conditions:  the control condition that 

had only the analysis/synthesis stages, and PONR with allpass filter slopes of 180, 150, 

120, and 90°/ERB.   For each condition, the RTS was obtained using two 20-sentence 

tracks.  Listeners were given two 20-sentence tracks of unprocessed HINT to familiarize 

them with the task; after this familiarization, the remaining ten tracks were presented in 

random order to each listener. 

 

 



 

  

88 

4.2.4.2 Preference Testing 

      After subjects were finished running all of the HINT sentences, a preference test was 

performed, similar to Hanson (2002).  Subjects were presented with two HINT sentences, 

one of which was unprocessed while the other was processed with one of the PONR 

systems;  the SNR was set at 2 dB above the RTS found using the HINT for the control 

condition (using only the analysis/synthesis stages with no gain changes).  The order in 

which the two sentences were presented was random.  The subject was asked to choose 

which sentence they would prefer to listen to in an everyday situation, and then rate the 

strength of preference in one of three categories:  weak, moderate, or strong (Hanson, 

2002).  Twenty-five presentations were made for each allpass filter slope using a pool of 

the first 25 HINT sentences.   The order in which the comparisons were made was 

randomized for each subject, with the randomization across all of the allpass filter slopes. 

4.3 RESULTS 
4.3.1 PONR Algorithm Performance 
     The parameters of the PONR algorithm were initially based on a visual comparison of 

the detection patterns produced by the detectors to the spectrograms of the clean speech.  

The parameters included the bandwidth of the PO detectors’ gammatone filters, the slope 

of the allpass filter, the threshold (which was kept constant across bands), and the amount 

of time that the output was “extended” after a detection.  Once the parameters were 

initially selected, a more systematic search was performed.   The search involved varying 

all parameters except the allpass filter slope around the initial parameters and obtaining 

the binary mask for that parameter set.   The allpass filter slope was kept constant at 

120°/ERB.  A constant allpass filter slope was used because once the remaining 
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parameters were set, the slope was then varied to change the detection performance of the 

bank of PO detectors, as described below. 

     From the binary mask and the spectrogram of the clean speech, the percentage of 

energy was calculated by summing the energy in the spectrogram for those regions that 

had unity gain in the binary mask across time and frequency and dividing by the total 

energy of the spectrogram.  This percentage of energy detected is analogous to the 

probability of a correct detection, but weights the correct detections by the amount of 

energy contained in the sample correctly identified.  Similarly, the percentage of false 

alarms was determined by summing the number of samples that had unity gain in the 

binary mask, but contained no energy in the spectrogram.   This sum was then divided by 

the total number of samples in the spectrogram that contained no energy.   The difference 

between the percentage of energy detected and the percentage of false alarms was then 

used to determine the parameters used in the PONR algorithm; those parameters leading 

to the largest difference (~50%) were used.  An example spectrogram of the sentence “A 

boy fell from the window” at 0 dB SNR is shown in Fig. 4-6 before (top panel) and after 

processing with PONR (bottom panel). 

     The percentage of energy detected and the percentage of false alarms are illustrated in 

Fig. 4-8 as a function of the allpass filter slope.  Also shown is the difference between the 

two, which shows a peak at around 110°/ERB.  As the filter slope was made steeper 

(towards the right in Fig. 4-8), the percentage of energy decreased as the PO detectors 

become more selective.  Conversely, as the allpass filter slope was made shallower 

(towards the left of Fig. 4-8), the percentage of false alarms increased.  This trend of 

increasing energy detected and false alarms is illustrated in Fig. 4-5; binary masks for the  
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Figure 4-8 Detection Performance of the PONR Algorithm 

The stimuli that was used to determine the detection performance shown was the 

sentence “A boy fell from the window” with long-term speech-spectrum noise added at 

a 0 dB SNR.  The solid line is the percentage of energy detected as a function of the 

allpass filter slope; the dashed line shows the percentage of false alarms, with the 

difference between the two the dotted line.  The difference between the energy detected 

and false-alarm percentage was used to optimize the parameters of the system.  Both the 

amount of energy detected and the percentage of false alarms decreased with increased 

allpass filter slope.  Because the percentage of false alarms decreased faster than the 

energy detected, a peak in the difference was obtained located around 110°/ERB. The 

four allpass filter slopes used during the experiment are shown with the large Xs, and 

represent a range of both percent energy detected and false-alarm rates.   
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four slopes used in the PONR are shown, along with the spectrogram of the speech-in-

quiet.   Examining the steepest slope (180°/ERB), one can see that the components of the 

speech were correctly identified around 0.50s as well as between 1.0-1.5s.  However, 

comparing the binary mask to the spectrogram, the regions where the binary mask 

detected these components was rather selective in frequency, with detection occurring in 

a single frequency band while the spectrogram showed energy across 2-3 frequency 

bands.  The false alarms present in the system can be seen for times greater than 1.75s, 

where there are regions of unity gain, even though no speech energy was present in the 

spectrogram.   As the slope became shallower, the speech component detection became 

broader and better matched the spectrogram, which resulted in an increase in the 

percentage of energy detected.  However, concomitant with this increase was an increase 

in the number of false alarms, seen as the growing density of black regions for times 

greater than 1.75s.   

     The application of each of the four allpass slopes resulted in an improvement of the 

SNR of the output when compared to the input SNR.  The application of the PONR 

resulted in both the reduction of noise, as well as parts of the speech signal.  To get an 

accurate measurement of the output SNR, the effect of the system on both the signal and 

noise must be known.  To calculate the SNR improvement, the method suggested by 

Umapathy and Parsa (2003) was used.  Briefly, the sentence was added to the noise 

(N+S) and run through the PONR algorithm.  The sentence was then subtracted from the 

noise (N-S), and run through the PONR algorithm again.  The two outputs (N+S and N-

S) were then averaged together, which resulted in a cancellation of the signal, leaving 

only the noise that remained after application of the PONR.  Similarly, the two outputs  



 

  

92 

Figure 4-9 SNR Improvement Obtained with the PONR Algorithm 

Plotted is the SNR improvement as a function of the input SNR, with the slope of the 

allpass filters used in the PONR algorithm as a parameter.  The method used (Umapathy 

and Parsa, 2003) doesn’t take into account distortions to the speech.  As the allpass filter 

slope was made shallower, the SNR improvement decreased, as the shallower allpass 

filter resulted in more false alarms (Fig. 4-8). 
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were subtracted, which resulted in the cancellation of the noise, leaving only the 

processed sentence.  The SNR of the output was measured from these two signals.  The 

SNR improvement as a function of the input SNR of the sentence “A boy fell from the 

window” is shown in Fig. 4-9.  At lower SNRs (around 0), all of the PONR systems 

produced 2-3 dB of SNR improvement.  The shallower the slope of the allpass filter, the 

smaller the improvement of the SNR.  This was because the shallower allpass filter 

resulted in more energy detected as well as an increase in false alarms.  The net effect of 

the false-alarms was to reduce the amount of noise attenuated, as the gain during the 

false-alarms was unity. 

4.3.2 HINT Thresholds 

     RTSs for the listeners with hearing loss are shown in Fig. 4-10.  For all subjects, the 

application of the PONR system appeared to provide no improvement from the control 

condition, in which there where no gain changes applied to the stimulus.  With the 

exception of the 180°/ERB condition for S4, none of the subjects’ RTSs for the processed 

conditions were statistically different from the control condition (paired t-test, p < 0.05).  

A slight, but not significant, trend for the HINT scores in the processed condition to 

decrease with shallower allpass slope was evident; this trend was expected, as the 

shallower the allpass phase slope, the greater the percent energy detected and the greater 

the percentage of false alarms (Fig. 4-5).  As percentage of both energy detected and false 

alarms increased, the binary mask became a single gain that covers the entire time and 

frequency axis, essentially resulting in a return to the unprocessed condition.  

     Shown in Fig. 4-11 are the RTSs for the listeners with normal-hearing.  Compared to 

the listeners with hearing loss, the normal-hearing listeners had a better overall RTS.   
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Figure 4-10 Listener with Hearing Loss HINT Thresolds 

Plotted are the listener’s HINT threshold for the control (unprocessed) and 4 

processed conditions (PONR with allpass filter slopes of 180, 150, 120 and 

90°/ERB).  None of the listeners showed an improvement with application of the 

PONR algorithm; all but the 180°/ERB condition of S4 showed no significant 

difference from the control condition (p < 0.05). 
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Figure 4-11 Normal-Hearing Listener HINT Thresholds 

As in Fig. 4-10, the HINT thresholds are shown for the control (unprocessed) and 4 

processed conditions (PONR with allpass filter slopes of 180, 150, 120 and 90°/ERB).  

The general performance of the normal-hearing listeners was better than that of the 

listeners with hearing-loss.  However, none of the listeners showed an improvement in 

RTS with processing; RTSs were not significantly different (p < 0.05) for the 

processed condition than for the control (unprocessed) condition.   
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Similar to the listeners with hearing loss, the normal-hearing listeners showed no 

statistical difference in RTS between any of the processed stimuli and the unprocessed 

stimuli (paired t-test, p < 0.05).  The processed conditions appeared to have a greater 

standard deviation than the unprocessed condition for most of the subjects, but the results 

are based on only 2 HINT tracks (40 sentences). 

4.3.3 Preference Testing 

     Three of the five listeners with hearing loss were available to perform preference 

testing.  All three listeners’ preference scores are shown in Fig. 4-12.  One of the subjects 

preferred the PONR-processed stimuli, while the remaining two subjects preferred the 

unprocessed stimuli.   With two exceptions (S3, 90°/ERB and S5, 120°/ERB), all of the 

listeners’ preferences were statistically different from 0.  While both S4 and S5 showed 

an overall preference for the unprocessed stimuli, they occasionally chose the processed 

stimuli, but always with a weak preference.  All listeners claimed that the overall noise 

was less, but that the speech was less clear.  S4 and S5 both indicated that they chose 

based on the overall clarity of the sentence.   

     The preference scores of four of the normal-hearing subjects (S7-10) are shown in Fig. 

4-13.  Three of the listeners showed a clear preference for the unprocessed stimuli, while 

one showed an overall preference for the PONR processed sentences.  All normal-hearing 

listeners’ preference scores were statistically different from 0.  The trend for three of the 

listeners (S7, S8, S9) was for the preference to decrease as the allpass slope was 

decreased.  All listeners indicated that the amount of noise present in the stimulus 

contributed to their preference; the comments regarding the noise were different,  
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Figure 4-12 Preference Scores for Listeners with Hearing Loss 

The preference scores for the listeners are shown for the four allpass filter slopes 

used in the PONR algorithm.  Bars above the axis indicated a preference for the 

unprocessed stimuli, and bars going below the axis indicate a preference for the 

processed stimuli.  Listener S3 preferred the PONR processed stimuli for the three 

steepest slopes, and was undecided for the shallowest (90°/ERB).  Listeners S4 and 

S5 preferred the unprocessed stimuli for all conditions.   S4 showed a trend for a 

decrease in preference with shallower allpass slopes; this trend matches the amount 

of false alarms present. 
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Figure 4-13 Preference Scores for Normal-Hearing Listeners 

Only S9 showed a preference for the PONR processed stimuli, while the remaining 

three normal-hearing listeners showed a preference for the unprocessed stimuli.  All 

preferences were statistically different from 0 (p < 0.05).  Listeners S7-9 showed a 

trend similar to S4, with preference decreasing with shallower allpass filter slopes. 
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however, for individual listeners.  Listeners S7 and S8 indicated that they preferred the 

higher-pitched noise that was present in the unprocessed stimuli over the lower-pitched 

noise that was the result of the false alarms of the PONR system.  All three listeners who 

preferred the unprocessed sentences also stated that they preferred the “clearer” sentence.  

Listener S9 claimed to pick the sentence based on the ease of understanding the sentence 

as well as the quality of noise.   

     All listeners, whether normal-hearing or with hearing loss, showed substantial 

variation in their preferences.  The individual preference scores for S7, a listener with 

normal-hearing, are shown in Fig. 4-14.  The fluctuations observed across sentences may 

lead to further identification of parameters, as the detection patterns of those sentences 

for which PONR processing was preferred can be examined.  The maximum correlation 

between the preference patterns across allpass filter slopes for all subjects was 

approximately 0.5, but were generally much lower.  Examining the correlations of 

patterns across subjects, the maximum correlation was 0.47. 

4.4 DISCUSSION 

     Application of the PONR algorithm resulted in an increase of the SNR of the HINT 

stimuli that were used; this SNR increase, however, did not result in improvement in any 

of the listeners’ RTSs.  While they were not statistically significant changes, most 

listeners’ RTSs slightly increased with the PONR processing.   This lack of improvement 

is similar to almost all NR algorithms that have been developed, or are currently being 

used. 
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Figure 4-14 Preference Pattern for Listener S7 

The preferences for the 25 sentences are shown, with each allpass filter slope having 

one panel, for an individual listener with normal-hearing (S7).  Note that while the 

listener prefered the unprocessed stimuli overall, they did occasionally choose the 

processed stimuli. The substantial variations in the preference pattern, however, were 

not correlated across allpass filter slopes, nor were the patterns correlated across 

listeners (not shown). 
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      The lack of improvement for PONR is not completely unexpected, given the results 

of Chapter 2.  The parameters used in the current implementation of the PONR algorithm 

result in approximately 80% of the speech energy being detected by the PO detectors 

(Fig. 4-8).  The results of Chapter 2 suggest that 90-95% of the energy must be detected 

to show an improvement in RTS; to achieve this high level of detection using the current 

system, the allpass slope could be adjusted, but this would result in a large percentage of 

false alarms (~70%, Fig. 4-8).  Examining the binary mask with the allpass filter phase 

slope adjusted to achieve these values (95% energy detected, ~70% false alarms) reveals 

that the PONR algorithm essentially attenuates the frequency bands between 1.4 kHz and 

2.5 kHz;  these parameters were not used because the algorithm is no longer acting 

dynamically, but is instead acting as a static filter. 

 As it is based on a physiological model of detection, it was believed that the PONR 

system might be able to perform at a lower level than the 95% needed in Chapter 2.  If 

the PONR system was able to detect the energy in a manner similar to humans, the lesser 

amount of energy detected might produce an improvement in RTS, as it would detect the 

features that a human would presumably be detecting and using.  The lack of 

improvement in RTS suggests that this was not the case, suggesting that the PO detectors 

might be performing a different detection task than are the human listeners.   

     However, the use of a physiologically based detector also poses additional risks in a 

NR algorithm.  If the NR algorithm was using the same detector as the listener, any 

noises that produced a false alarm in the NR algorithm would also result in the listener 

having a false alarm.  The net result would be that the NR algorithm would reduce the 
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noise, but the noise remaining might be the noise that is the most effective masker of the 

physiological system! 

    As with most methods of NR that are similar to spectral subtraction, the PONR system 

produced residual noise that has a “musical” quality that was the result of the false alarms 

in the PO detectors.  These false alarms are potentially a more effective masker of the 

listener, for the reason explained above.  Examining the RTSs of the subjects, however, 

shows that the RTSs remain unchanged across allpass filter slopes, and each of the four 

conditions had a different amount of false alarms.  If the false alarms were a better 

masker, the RTSs should be the worse for the condition with the most false alarms (the 

shallowest allpass slope), which was not the case.  Unfortunately, the amount of energy 

detected changed with allpass filter slope in the opposite manner as the false alarms, 

confounding the issue.  Future studies should be performed in which the amount of 

energy is held constant and the false alarms changed to further examine the net effect of 

the false alarms. 

     To achieve an improvement in RTS, the PONR algorithm must be adjusted.  The 

simplest way to do this is to adjust the parameters of the system.  The parameters in the 

current version were optimized based on the difference between energy detected and false 

alarm rate; a better optimization strategy could be developed that took into consideration 

other factors such as the overall detection pattern or the continuity of formant tracking.    

     One of the biggest improvements might be the method of producing a 180° phase shift 

between the inputs to the PO detector’s correlator.  While the allpass filter provided this 

shift, it was only for a specific frequency; the remaining frequencies within that band had 

slightly different phase shifts, depending on the slope of the allpass filter.  The variation 
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in phase-difference with frequency led to a degradation of detection performance near the 

edges of the detector’s frequency range.  As speech is a dynamic signal, it is possible that 

the movement of formants could shift the formants to these regions of degraded 

performance.  For detection to improve, the system would need a method of producing a 

constant 180° shift over only the frequency region in which the detector is tuned. 

    Additionally, further complexity can be added to the system.  In the current system, 

each of the frequency bands’ PO detector acted in isolation, basing its decision on what 

was occurring in that band only.  A potential improvement of the system could be seen if 

the PO detectors were allowed to share information with one another; post-processing 

involving the outputs of multiple detectors could be utilized to decrease the number of 

false alarms that were present, while still allowing the speech to be detected.  Such post-

processing would have to take into account the complex patterns of speech, and examine 

the detection patterns of all of the PO detectors to see if they match the patterns of 

speech.  By using post-processing, it might be possible to adjust the parameters of the 

PONR algorithm to allow for better detection of the speech energy (e.g., reducing the 

allpass slope) without resulting in more false alarms. 

     Unlike the NR systems used today, most of the listeners did not prefer the PONR 

processes stimuli over the unprocessed stimuli.  While the listeners described the 

processed stimuli as having less noise, the main complaint was that the processing 

resulted in speech with reduced clarity.  This reduction in clarity could potentially be 

improved through the detection of more of the speech energy, through the methods 

described above.  In addition, it is possible that the use of 2 filters per ERB may have 

contributed to the decline in speech quality; using 1 filter per ERB may improve the 



 

  

104 

speech quality.  The PONR system attempted to detect the narrowband components of 

speech, generally the formants.  By reducing the gains in channels between formants, the 

noise was attenuated; however, the harmonic structure of the speech was also disrupted, 

as harmonics between formants were also attenuated.   It has been previously shown that 

when speech is modeled by sine waves, the resulting stimuli are often perceived as being 

of lesser quality than natural speech (McAulay and Quatieri, 1986; Kates, 1994). 

     In addition, the main goal of the PONR algorithm was the improvement of the 

listeners’ RTSs.   To this end, most of the optimizations done to the system were done to 

improve the percentage of energy detected versus the false alarm rate; it is probable that 

this optimization resulted in parameters that resulted in some of listeners’ preference for 

the unprocessed stimuli.   Many of the parameters can be changed to accommodate the 

“ease-of-listening” or overall preference of the listener.   These would include making the 

system less aggressive in the removal of noise, perhaps by using one filter per ERB, 

slowing the gain changes, or attenuating the noise less. 

Overall, the PONR algorithm failed to improve the performance of the listeners, both 

in RTS or in preference.   However, application of the algorithm did not degrade the 

listeners’ performances.  The results suggest that with further optimization of the PO 

detectors, it may be possible to improve the performance.  Care must be taken to ensure 

that these optimizations do not result in a decreased preference, as was shown here for a 

majority of the listeners.  
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Chapter 5 
 
 

Summary and Discussion 

 

 There exists a large amount of information in the literature about the auditory system, 

and how it detects various stimuli, both psychophysically and physiologically.  However, 

a large gap exists between many of the attempts to solve the problems of listeners with 

hearing loss and this body of literature.   Most of the attempts at solving the speech-in-

noise problem have been based on various digital signal-processing methods that do not 

take into account detailed information gathered about the auditory system.   This 

dissertation attempted to use some of that information, in the form of the PO model, to 

achieve an improvement in the performance of listeners with hearing loss.  While the 

overall performance of the PONR algorithm was disappointing, the information that was 

obtained from analyzing the system leads to some interesting questions. 

5.1 Physiologically Based Detectors 

 The PO detectors derived in Chapter 2 possessed many interesting qualities.   The 

detectors performed within a few dB of the optimal detector for a tone in white noise, yet 

were able to exceed the performance of many classical detectors when the noise 

amplitude was unknown or the noise was amplitude-modulated.    The PO detector was 

unaffected by unknown noise amplitude, or amplitude modulation.  In situations where 
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these conditions may occur, the PO detector is ideally suited.  The use of the PO detector 

is limited, however, to those signals that have a defined temporal structure. 

 The more general result of the PO detector is that the development of detectors based 

on physiological detection mechanisms can result in detectors that are extremely good at 

performing detection, generally near optimal conditions.  Most sensory systems have 

been shaped by evolutionary forces to be near-optimal; signal processing 

implementations of these systems benefit from these optimizations, while at the same 

time can overcome some of the limitations of the biological system.   

However, the PO detector was unable to detect the required amount of speech energy 

(90-95%) needed to show improvement.   This demonstrates just how difficult the 

problem of speech detection in noise is; it is likely that additional intelligence is needed 

in the system that can take advantage of the overall patterns of detection from a large 

number of simpler detectors of speech characteristics 

5.2 Limits of Time-Frequency Gain Manipulation 

 The results of Chapter 3 indicated that the common thinking of many in the hearing-

aid community is wrong; a single-microphone NR algorithm can potentially increase the 

intelligibility of a listener with hearing loss.  Unfortunately, the detection performance 

needed to achieve these gains was higher than expected.  This was probably because the 

overall energy detected was not a good parameter for quantification of the detection 

performance.  Many psychophysical studies have shown that energy is not a reliable cue 

for many tasks (Kidd et al., 1989; Richards 1992, 2002); it is unlikely that the overall 

energy is the optimal cue for detection of speech in noise.  
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 Time-frequency gain manipulation resulted in improvements in listeners’ RTSs even 

when the frequency resolution was decreased to 1 filter/ERB.   This suggests that the 

need to increase the frequency resolution of hearing-aids might not exist for the purposes 

of improving intelligibility.   Because of the already limited frequency-resolution of the 

listener with hearing-loss, it is likely that improvements in almost any metric would not 

improve with increasing frequency resolution.   

Smearing the temporal information, however, had a large effect on the RTSs of the 

listeners.  The results suggest that any system that attempts to improve intelligibility 

through the use of time-frequency gain manipulation must be able to detect and change 

the gains of individual frequency bands quickly.   This suggests that many of the current 

NR algorithms in use in hearing-aids today will never show an improvement in 

intelligibility (regardless of optimizations), as they are all slow acting. 

 The next step in the process is to further examine the effects of degrading the ideal 

binary mask.  By systematically degrading the ideal binary mask in both time and 

frequency, the perceptual weighting of the various features of speech can be calculated.  

This weighting has been done in a crude form with current indexes such as the 

articulation index (AI) (French and Steinberg, 1947; ANSI, 1969; Pavlovic, 1988; 

Mueller and Killion, 1990) or speech intelligibility index (SII) (ANSI, 1997).   These 

current indexes attempt to weight the contributions of individual frequency bands to the 

overall understanding of speech.  To fully understand how a listener uses the acoustical 

features of speech, these types of analysis must be extended into the time-domain.  The 

use of the ideal binary mask allows a simple, yet powerful method for doing this.  
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 Several methods of determining speech intelligibility based on neural models 

exist, such as the neural articulation index (NAI) (Bondy et al., 2004) or the spectro-

temporal modulation index (STMI) (Elhilali, 2004).  Both of these indexes use a neural 

model to determine the intelligibility of speech, similar to the AI or SII, but have been 

shown to be more robust to various forms of distortion that have an effect on listeners, 

but not on AI or SII.  Evaluating the effects of the binary mask on these indexes may help 

to separate the effects of the PONR algorithm in terms of benefits from removing the 

noise and the costs of degrading the incoming speech signal. 

 All of the experiments performed in Chapter 2 were done unaided, without any 

spectral shaping to account for individual listeners’ audiograms.  This lack of 

amplification may have led to the result that application of the ideal binary mask to the 

higher frequency regions did not improve performance for listeners with hearing loss’ 

RTSs.  Repeating the experiments using spectral shaping to account for the listener’s 

hearing loss may result in further improvements in RTS for the high frequencies. 

5.3 Phase-Opponent Noise-Reduction 

 Simply put, the PONR algorithm developed in this dissertation failed to show an 

improvement when applied to the noisy speech stimuli.  This result is consistent with 

previous work, as well as with Chapter 3.   The PO detectors used in the PONR algorithm 

were unable to detect the 90-95% of the speech energy that Chapter 3 suggested was 

necessary for improvement in HINT scores.  However, it is possible that the results from 

the PONR algorithm are the result of the large number of false-alarms that the PO 

detectors produce.  Further optimizations of the PO detectors may reduce this number, 
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which may lead to an improvement in performance.   The current PO detectors used in 

the PONR algorithm had many of their parameters, such as the threshold and bandwidth 

(ie, 3 times the ERB), fixed with center frequency.  Allowing these parameters to change 

with frequency may improve performance. 

 In addition, the analysis filterbank and PO detectors were fixed.  Allowing the 

filterbank to dynamically change and reposition to more closely align with the incoming 

speech’s narrowband components may also improve performance.  The PO detectors 

used were also operating in isolation;  allowing the detectors to share their outputs, and 

using additional information about the patterns of speech might improve the detection 

performance of the overall system. 

 All of the processing that was performed for Chapters 2 and 3 was done off-line;  the 

sentences were processed and stored on a CD for testing.  The development of a real-time 

system that could perform these types of processing would be beneficial, as it would 

allow the parameters to be varied as the experiments are occurring.  With the current 

experiments, the processing could take as many as two to three days to create a new set of 

stimuli with different parameters. 

 The PONR algorithm made use of the PO detector, a physiological model of the 

detection of tones-in-noise.  It is possible, and highly likely, that the human auditory 

system uses a separate mechanism for the understanding of speech than it does for the 

detection of tones, which are an unnatural stimuli that are static and well-defined.   The 

ability of human listeners to understand speech, even when the noise is a competing 

speaker, also suggests that the PO detector may not be the best detector; the PO detector’s 

performance would be severely degraded under such conditions, as the temporally 
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defined structure of the competing speech would result in a response from the PO 

detectors. 

The use of a better physiological detector of speech would probably aid in the 

development of a NR algorithm that could show improvements in speech intelligibility.  

The question then becomes, what models of speech detection currently exist?  

Unfortunately, no physiological models do.  To that effect, there are still relatively few 

studies at the level of the auditory nerve that examine the information carried by the AN 

to higher centers for speech in noise (Delgutte, 1980; Voigt et al., 1982; Sachs et al, 

1983; Delgutte and Kiang, 1983; Shamma, 1985; Geisler and Gamble, 1989; Silkes and 

Geisler, 1991; Geisler and Silkes, 1991).  Those that do exist generally find no 

discernable method of how the speech is encoded at the lower SNRs that are perceptually 

achieved by human listeners.   Further studies must be performed, in the hope that this 

information could lead to better models. 

Current neural models have begun to be used for hearing-aid design.  Sachs et al 

(2002) and Bondy et al. (2004) have demonstrated algorithms that attempt to restore the 

normal neural representation in models of the impaired auditory system.   Dong et al. 

(2004) have demonstrated a speech enhancement algorithm based on speech segregation 

derived from psychophysical and physiological models of the auditory system.  These 

studies have shown promising results, but the proposed algorithms haven’t been fully 

tested on listeners with hearing loss.  The improvement of neural models, both for the 

normal as well as the impaired auditory system, could result in improved algorithms that 

follow the trend of restoring normal neural representations. 
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