# Increased internal noise in autism spectrum disorder and associations with response variability and overall symptom severity

ROCHESTER

## Kimberly B. Schauder<sup>1,3</sup>; Woon Ju Park<sup>2,3</sup>; Duje Tadin<sup>2,3</sup>; Loisa Bennetto<sup>1,2</sup>



<sup>1</sup>University of Rochester Department of Clinical and Social Sciences in Psychology; <sup>2</sup>University of Rochester Department of Brain and Cognitive Sciences; <sup>3</sup>University of Rochester Center for Visual Science

## Introduction

- Emerging theories of autism spectrum disorder (ASD) suggest underlying impairments of higher internal noise<sup>1</sup>, which limit perceptual performance
- Our recent finding showed increased internal additive noise in ASD measured in the context of visual orientation processing<sup>2</sup>
- This elevation in signal-independent, internal additive noise may in part reflect the amount of baseline noise in the system
- Motion prediction requires estimating future object position based on experienced sensory information and is complicated by various internal noise (e.g., sensory estimates, prediction demands)
- Elevated internal noise can be reflected as higher variability in prediction responses

### **Study Objectives:**

- Does internal additive noise as measured in the visual orientation domain generalize to other domains, such as motion?
- 2. Is internal additive noise related to global symptoms of ASD?

### Methods

## Participants:

|                   | Autism Spectrum Disorder (ASD; n=20) |      |        | Typically Developing (TD; n=18) |      |        |
|-------------------|--------------------------------------|------|--------|---------------------------------|------|--------|
|                   | Mean                                 | SD   | Range  | Mean                            | SD   | Range  |
| Age               | 13.3                                 | 2.0  | 10-16  | 13.8                            | 2.2  | 9-17   |
| IQ                | 109.5                                | 14.2 | 84-133 | 114.9                           | 14.6 | 92-148 |
| ADOS<br>Severity* | 6.6                                  | 1.5  | 4-9    | 1.5                             | 0.9  | 1-4    |

\*ADOS Calibrated Severity Score<sup>3</sup> derived from Autism Diagnostic Observation Schedule (ADOS); 1 (least severe) - 10 (most severe)

### Tasks:





- 8 external noise levels, 480 trials total
- Measured contrast threshold (%)
- Fit the Perceptual Template Model (PTM)<sup>4</sup> to estimate level of internal additive noise

"Is the grating tilted left or right from vertical?"

"Press space bar when you think the bird arrives at the white line"



- 400 trials total
  - Across trials, object speed and occluder length varied
  - Object speed: 10-20 degrees/second
  - Occluder length: 0.5-20 degrees
  - Occlusion Time (seconds) = occluder length/object speed
  - Prediction demands during occluded time

## **Analysis & Results**

### Task 1. Internal Additive Noise in a Visual Orientation Task



70% increase in internal additive noise in ASD

· 13% worse external noise filtering in ASD





Greater ASD symptom severity is associated with higher internal additive noise

## Results cont.

No relationship between response variability (R<sup>2</sup>) and internal additive noise (top) or symptom severity (bottom) within ASD group



### Task 2. Motion Prediction

#### Higher Response Variability in ASD



Linear Regression to estimate response variability (R<sup>2</sup>) for each participant's estimated occlusion times as a function of actual occlusion times (n  $\approx$  370 trials per participant)



### Comparison with Trials with No Prediction Demand



Analysis of trials where stimulus was not fully occluded prior to target (visible trials;  $n \approx 30$  per participant)



ASD has higher response variability across both trial types No interaction between group and trial type

### Conclusions

- Individuals with ASD have higher internal additive noise
- Higher internal additive noise is associated with greater ASD symptom severity
- Individuals with ASD have higher response variability under prediction demands, which may be due to more general response variability in motion tasks
- Higher response variability is not related to either internal noise or ASD symptom severity

#### **Future Directions**

- More fully characterize response variability without prediction demands
- Investigate how this measure of internal additive noise relates to other perceptual tasks in ASD

### References

- 1. Dinstein et al. (2012). Unreliable evoked potential in autism. Neuron, 75(6), 981-991 2. Park et al. (2016). Evidence for elevated internal noise in autism spectrum disorder. VSS abstract
- (manuscript in preparation) 3. Gotham et al. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders, *JADD*, 39(5), 693-705
- 4. Lu & Dosher (1998). External noise distinguishes attention mechanisms. Vis Res, 38(9), 1183-1198.

## **Acknowledgements & Contact**

We would like to thank Julia Yurkovic for assistance with data collection, and Oh-Sang Kwon and Ruyuan Zhang for providing the task codes.

This project was supported in part by a University of Rochester Pump Primer II Grant (to LB and DT), R01 DC009439 (to LB), R01 EY019295 (to DT), and Autism Science Foundation Pre-Doctoral Fellowship (to WP). The Center for Integrated Research Computing at University of Rochester provided computing resources.

Contact Info: kimberly.schauder@rochester.edu