Too Sick to Send, Too Sick to Stay: Early Resuscitation at the Non-Trauma Center

2021 Health Coalition Emergency Management Seminar Trauma Management for Rural EMS And Community Hospitals

Michael A. Vella MD, MBA

UR

No disclosures or conflicts of interest

MEDICINE of THE BIGHEST ORDER

Overview

Benefit of trauma centers/systems

•Transfer to definitive care

•Managing life threatening injuries prior to transfer •ABCDE

UR

Trauma Centers Save Lives

Trauma Centers Save Lives

A National Evaluation of the Effect of Trauma-Center Care on Mortality Deci Motors, P.D., Ended F. Fars, No., M.H., Oppri J. Johnson, M.D., And Shares, W.D., M.H.,

WUR

The NEW ENGLAND JOURNAL of MEDICINE

Variable	Weighted No. of Patients	Death in Hospital	Death within 30 Days after Injury	Death within 90 Days after Injury	Death within 36 Days after Injury
Overall population	15,009				
Trauma center (%)		7.6	7.6	8.7	10.4
Non-trauma center (%)		9.5	10.0	11.4	13.8
Relative risk (95% CI)		0.80 (0.66-0.98)	0.76 (0.58-1.00)	0.77 (0.60-0.98)	0.75 (0.60-0.95

MEDICINE of THE HIGHEST C

Non-Transfer

•Only 20% of patients underwent transfer •Age > 65 •Severe chest injury •Commercial insurance •Larger bed size University = officiation

- •University affiliation •Non-trauma center (vs. level III)

Adjusted mortality lower

WUR

Factors Associated With Nontransfer in Trauma Meeting American College of Surgeons' Criteria for Transfer at Nontertiary Centers

Garrierg Proc. 4014

ACS Guidelines

•Goal <5% under-triage

•69% under-triage in PA Trauma Centers

<5% = 5X increase in transfers

•Could "save" 99 patients per year

WUR

College of Surgeons a Patients Feesible? Despite Mohan, MD MPH⁷, Mathew R, Rosenger, MD MPH⁷ Cater, MS¹, Denti C, Anges, MD MPH PROP², and Anker R, B The OPENAL Montemp¹ Characteries

Corner Farris, PhD¹, 6 Million MD REPORT

Transfer to Definitive Care

•Direct from scene vs. transfer patients

Transfer Times to Definitive Care Facilities Are Too Long A Consequence of an Investure Traceno System Josef 7 Mersym. M3. Maker Comm. M3. Wain J. May Vol. M3. and Tables G. Digi. 107

 $\mbox{-}\mbox{Transfer patients sicker (higher ISS, lower GCS, lower SBP, higher mortality)$

•162 minutes at referring centers (134 minutes with hypotension)
•GCS 3 = more likely to prompt transfer as opposed to general injury severity

MEDICINE of THE HIGHEST ORDER

WUR

RTTDC

RTTDC

$ \begin{array}{c} {\rm Referring leoped if D LOS} \\ {\rm (OR), um} \\ (OR), um \\ $	Variable	Pre	Post	P	Kry M, Dennis, MD, Walland A, Valla, WE, WER, Oliver L, Granino, WE, MPR, Mollow D, San Cardinetine S, Wilson, 1005, KN, Nayaor B, Pand, ME, MPR, Tomolo C, Tomoro M, et al. 2010 Computing MICH Media. Annual. J. Comput. Nature 11, 711 (2010).
There such as the mands: 195 (109-201) 122 (10+170) 0.002* There such for mands: 150 (109-200) 145 (110-270) 0.01 197 (10-200) 145 (110-270) 0.02* 0.02* 198 (10-10) 70 (64-31) 0.01* 198 (10-10) 70 (64-31) 0.01* 198 (10-10) 70 (64-31) 0.02* 198 (10-10) 70 (64-31) 0.02* 198 (10-10) 70 (70-31) 0.02* 198 (10-10) 710 (70-10) 0.02* 198 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) 710 (70-10) 0.02* 199 (10-10) <td>Referring hospital ED LOS (IOR) min</td> <td>RTTDC</td> <td>RTTDC</td> <td></td> <td></td>	Referring hospital ED LOS (IOR) min	RTTDC	RTTDC		
153 (169) 2001 M45 (116) 2273 M53 Time to cold for warder RTTDC RTTDC (RQL min 107 (17) 76 (54 313) 60 (1*) 107 (17) 76 (54 313) 60 (1*) 100 (1*) 109 (65 140) 125 (13) - 100) 0.23 Patamafie CT imaging n (1) RTTDC RTTDC 20 Causard Causard Causard 0.10 Ded n (%) RTTDC RTTDC 6.13 (1) (1) 57 (22) 0.13	(121) III	195 (120-251) Control	122 (91-176) Control	0.002*	
Time to all of random RTTEC RTTEC (000) (000), and (000) (0	L	153 (105-205)	184.5 (110-232.5)	0.31	
134 (1-75) % (64-137) 0.01* Game 10.004 0.01* Hommander CT anoging, 8 (4) HTDC HTDC Pointmaffer CT anoging, 8 (4) ATDC HTDC Gamman Gamman Gamman Gamman Gamman 1.08 Data (4) HTDC HTDC 1 (1.4m) 5 (2.25%) 0.32 6.009400 3 (2.25%) 0.32	Time to call for transfer (JQR), min	RTIDC	RTIDC		
Cound		134 (71-176)	76 (54-131)	0.01*	
100 (0:-140) (12:5/03-160) 0.28 Patanafer CF Imaging, 6(*) 37/07 (12:5/03-160) 0.29 Cound Cound 0.00 (12:5/03-160) 0.20 Disk a (%) 21 (12:6%) 3.50 (12:5%) 0.10 Disk a (%) T (14:6%) 5.725% 0.11 Cound Cound Cound 0.00		Control	Control		
Paramsfor (T imaging, it %) RTTEC RTTEC RTTEC Massimum 877054 0.20 24 (47.96) 33 (62.5%) 0.10 Dod, it %) RTTEC RTTEC 11 (46%) 57 (25%) 0.31 6.08%) 7 (125%) 0.32		100 (65-144)	121.5 (73.5-165)	0.28	
56.09%, $33.07.0%$, $0.20Control Control32.07.0%$, $50.02.0%$, $4.0Bill, a (%), B (100.0\%, 100.0\%,$	Pretransfer CT imaging, n (%)	RTTDC	RTIDC		
Count Count 32 (47)/m) 55 (62)/m) 0.10 Died, n (%) RTDC FTDC 1 (169/m) 57 (252/m) 0.13 Countil Countil Countil 6 (899/m) 7 (125/m) 0.52		36 (59%)	33 (47.8%)	0.20	
32 (4738) 55 (625%) 0.10 Diol, n (%) RTDC RTDC 1 (1.64%) 5 (725%) 0.13 Control Control 6 (896%) 7 (125%) 0.52		Control	Control		
Disk n (%) RTDC RTDC 1 (1.64%) \$ 5723%) 0.13 Control Control 6 (639%) 71(2.5%) 0.52		32 (47.8%)	35 (62.5%)	0.10	
1 (1.69%) 5 (7.25%) 0.13 Control Control 6 (8.96%) 7 (12.5%) 0.52	Died, n (%)	RTTDC	RTTDC		
Control 6 (896%) 7 (12.5%) 0.52		1 (1.64%)	5 (7.25%)	0.13	
6 (8,96%) 7 (12,5%) 0.52		Control	Control		
		6 (8.96%)	7 (12.5%)	0.52	
*p < 0.05. RQR, interquartile range.	*p < 0.05. IQR, interquartile range.				

AAST 2015 PLINNE THE

Primary Survey: (C)ABCDE

•Circulation (major external hemorrhage)
•Airway
•Breathing
•Circulation
•Disability
•Exposure

Мартства од тик Итоная

WUR

Airway

•Have plan and at least one back-up plan

•Anticipate cardiovascular collapse

•Ketamine has favorable profile (even with TBI)

MEDICINE of THE HIGHEST ORDER

Breathing

•Non-trauma center placement •Increased malposition

•Increase residual hemothorax/pneumothorax

Increased need for second chest tube

•No difference in mortality

SEDICINE of THE HIGHEST ORDER

WUR

Breathing

Air Transport of Patients with Pneumothorax: Is Tube Thoracostomy Required Before Flight?

•66 patients transported by helicopter with PTX and no tube

•1890 feed, 28 minute transfer time

4 patients "deteriorated"

•All successfully treated with needle decompression

WUR

Circulation: The Hypotensive Patient

Hypotension = bleeding until proven otherwise

Circulation: The Hypotensive Patient

-Where are the 7 places into which a human can exsanguinate? -Thoracic cavity (x 2)

- Abdomen
- Pelvis/retroperitoneum
- •Femur (x 2)
- •Onto the floor (external hemorrhage)

dedicine of the Highest Order

WUR

Circulation: The Hypotensive Patient

- •Other causes of hypotension •Tension pneumothorax
- Cardiac tamponade
- •Neurogenic shock (not spinal shock)

MEDICINE of THE HIGHEST ORDER

Bleeding "Toolkit"

The source center is too lote. Major link source without a pre-hopital sourceput hai increased donth from herear drapic shall.

•Tourniquet = higher SBP and less blood products

Professpital bourningset and in ponetrating extremity town Decrement blood instructures and link complications does a both ND ML large 6 Adva ML Asso May, ML both Instaling text before using the Adva both state from Association and parts between the Advancements.

•No increase in nerve palsy, infection, amputation, or fasciotomy

•Delay associated with higher morbidity and mortality

MEDICINE of THE HIGHEST ORDER

REBOA

Circulation: Loss of Pulses

 Penetrating thoracic trauma < 15 minutes from arrival, "witnessed" blunt trauma
Emergency department thoracotomy

•"Unwitnessed" blunt trauma, penetrating trauma > 15 minutes, no surgical capabilities •Airway, access, bilateral chest tubes, blood, cardiac US, CPR (ACLS) •AABBCC

WUR

Evolution of Fluid Resuscitation

•Whole blood

•Individual components (around Vietnam)

Massive crystalloid resuscitation (1990s)

•1:1:1 resuscitation

•Whole blood

WUR

Prospective cohort study

•Adults surviving > 30 minutes who received blood

•Increased plasma:PRBC and platelet:PRBC = better 6 hour mortality

•<1:2 were 3-4x more likely to die (early) compared with 1:1 or higher</p>

PROPPR

•RCT of patients predicted to require MTP

•1:1:1 vs 1:1:2 (plasma/platelets/PRBC)

•Decreased death by exsanguination at 24 hours in 1:1:1

•No difference in overall survival

IIGINE of THE HIGHEST ORDER

PAMPer Trial

•RCT of thawed plasma vs. standard resuscitation

WUR

•23% vs 33% 30 day mortality

•42/40 minute median prehospital transport times

MEDICIN

WUR

Plasma-first resoscitation to treat harmonhagic shock during energency ground transportation in an urban area: a randomised trial

•Hemorrhagic shock patients randomized to plasma vs. crystalloid

•19/16 minute median transport times

•Not associated with survival benefit

MEDICINE of THE HIGHEST ORDI

PAMPer Analysis

•Hypotensive injured patients

Prehospital Blood Product and Crystalloid Resuscitation in the Severally Injurical Platient A Secondary Analysis of the Proceediat With Medical Research Result & General Mark Yanak Leven 2014 Mark 44 Research 2014 Result & General Mark Yanak Leven 2014 Research 2014 Result & General Mark Yanak Leven 2014 Research 2014 Rese

Whole Blood

•Cold-stored (1-6 degrees Celcius)

•Low titer (<1:200)

•Type O

•21-35 day shelf life

Rabbar E, at al. Shock, 2015;04(5); Yaser MH, et al. J Troums Acute Care Surg. 2018;04(6); Castion BA, et al. Are Surg. 2013;258(4);Condron M, et al. Trensfusion, 2019;59; Mundock AD, et al. Sho 2014;01[upplement 1]; Nederpelt CJ, et al. J Am Coll Surg. 2020;210; Sperry II, et al. N Eng/J Med, 2018;779; Holcomb IB, et al. JAMA, 2015;213(5); Holcomb IB, et al. JAMA, 2015;213(5); Holcomb IB, et al. JAMA Surg. 2017;248(2)

WUR

Whole Blood vs. Components

	Whole Blood	Components
Volume (ml)	570	675
Hematocrit (%)	38-50	29
Platelet Count	150,000-400,000	88,000
Factor Activity (%)	100	65
Fibrinogen (mg)	1000	750
Leeper CM, et al. JAMA Surg, 2020		
MEDIC	WU F	

Potential Benefits

	Improved logistics	Less citrate
	Faster resolution of shock/coagulopathy	Improve platelet function
	Decreased overall transfusion requirements	Decreased donor exposure
	Decreased infection	
Yazer M	H, et al. J Troumz-Acute Care Surg, 2018;84(6); Murdock AD, et al. Shock, 2014;41(supplement 1); Leepe	CM, et al. JAMA Surg, 2020

WUR

MEDICINE of THE HIGHEST ORDER

Previous MTP

MTP with Whole Blood

TXA

 Batta ditamanis (c) or durit, mode scholer ment, and like transform in transportent with participation researching (2004 to a resolution), plastice-correlated to a •RCT patients with/at risk of bleeding within 8 hours of injury

•Primary outcome = death within 4 weeks

•10,000 patients in each group

•14.5% vs 16% mortality

WUR

A1384

TXA

-Patients with SBP \leq 90; or HR \geq 110 within two hours of injury -Primary outcome = 30 day mortality

•8.1% vs 9.9%

-Mortality lower when SBP <70 and in those administered within 1 hour of injury

•No increase in vaso-occlusive events

MEDICINE of THE HIGHE

WUR

TXA

1 Proc of Hapital Namesons, Active Photoson International Space (Accesses of Academic Workson was Theorem (Space Space

-Patients \geq 15 years old with GCS \leq 12 and SBP \geq 90 within two hours of injury

•TXA vs placebo

•No difference in mortality, 6 month outcomes, ICH progression

MED

WUR

TXA Summary

•Reasonable for patients with hemorrhage •Especially if BP <70 and very early from injury

·? Higher initial dose better (?2 grams)

·? Base second dose on TEG results

·Unclear benefit in isolated head injury

EDICINE of THE HIGHEST ORDER

Circulation- Laparotomy

•Patients transferred after laparotomy (2003)

•56 total patients, 14 underwent damage control

•Overall survival 82%

 Transfer for treatment of extra-abdominal injury only significant predictor of survival

MEDICINE of THE HI

WUR

Trauma Lapantemy in a Rural Setting before Transfer to a Regional Center: Doss II Save Lives? Anies & Rudey, W. de Michael & W. W. Save & News

Circulation- Laparotomy

A section particular for appropriate and the p

•Damage control laparotomy at referring facility = 14 % mortality

•Unstable transfer patients = 75% mortality

•Stable transfer patients = 3% mortality

MEDICINE of THE HIGHEST ORD

Gaps in Knowledge

Prehospital respectation in adult patients following injury: A Western Trauma Association critical decisions algorithm auxil: spry NL ME Network Month ML Cost F. Nan, NL, Act, Son NL Peter Social Sec Class XII, Cole Fors XII, Social ACK XI, Social Sciences, Nan Company, NL Angles, ME, Angles, ME, Angles, NL, Angles, ML, Angles,

FABLE 1. Top Identified Knowledge and Research Gaps Related to Prehospital Resuscitation	
ipic or Research Knowledge Gap	Algorithm Section
. Vital sign definition of hemodynamic instability	Α
. Specific crystalloid fluid and target administration method	A
. Cold stored group O whole blood benefits as compared with standard prehospital component resuscitation such as packed red blood cells	в
TBI and hemorrhagic shock combined management.	С
. Prehospital TXA administration and specific injured cohort who benefits	С
Patient cohorts who benefit from prehospital hypotensive or controlled resuscitation	D

MEDICINE of THE HIGHEST ORDER

WUR

Circulation in Summary

•Humans can exsanguinate into 7 places

•1:1:1 and whole blood better than crystalloid

•Crystalloid better than nothing?

•TXA should be considered if concern for major hemorrhage

•Give calcium (2 grams for every 2-4 units PRBC)

•Know the tools you have available

•Know what surgical capabilities you have

TEDICINE of THE HIGHEST ORDER

Disability

•Goal is to prevent secondary injury •SBP >90 mm Hg (ideally >110 mm Hg) •O₂ saturation >90% (ideally 94-98%)

Consider HTS (3%) if lateralizing signs

•DDAVP

•PCC

MEDICINE of THE HIGHEST ORDER

Disability: CT Head?

Head CT before Transfer Does Not Decrease Time to Craministomy for TBI Patients and the second secon

WUR

•Neurosurgery OR immediately after arrival

•86% received HCT prior to transfer

•CT imaging = transfer delay up to 90 minutes

•Did not get to OR faster

MEDICIN

WUR

Association of Subdeviate Implementation of the Periody Traumatic Enain Injury Tratement Guideline with Patient Survival Following Traumatic Brain Injury The Excellence in Prehospital Injury Care (EPIC) Study and Subdeviate Internet Inte

After implementation: Intubation rate decreased BVM use increased Hyperventilation decreased Survival doubled in severe TBI Survival tripled in severe TBJ/intubated Better survival to hospital admission

Disability

	ACS TOIP
	BEST PRACTICES IN
	THE MANAGEMENT
-	OF TRALIMATIC
-	BRAIN INJURY

Table 2. Goals of Treatment

	ICP 20 - 25 mmHg	Serum sodium 135-145
$PaO_2 \ge 100 \text{ mmHg}$	PbtO ₂ ≥ 15 mmHg	$INR \le 1.4$
PaCO ₂ 35-45 mmHg	CPP ≥ 60 mmHg [*]	Platelets \geq 75 x 10 ³ / mm ³
SBP ≥ 100 mmHg	Temperature 36.0-38°C	Hemoglobin ≥ 7 g/dl
PH 7.35-7.45	Glucose 80-180 mg/dL	

Flow, particle pressure on oxygent, reacce, particle and insure or cannot access, particle processing (CP) creating perfusion pressure; (CP) creating perfusion pressure; PhO2: particle perfusion pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international normalized ratio; *depending on status of cerebral autoregulation pressure; (NR: international pressure; PhO2: pressure; *depending on status of cerebral autoregulation pressure; *depending on status of cerebral pressure; *depending on status of cerebral autoregulation pressure; *depending on pressure; *depending on status of cerebral press

MEDICINE of THE HIGHEST ORDER

WUR

Exposure

•Ensure adequate exposure

Prevent hypothermia

•Ensure safe transport

MEDICINE of THE HIGHEST ORDER