

Introduction

- Trauma is the leading cause of death between ages of 1-18 years
- Penetrating injury accounts for 10% -20% of all trauma in pediatric patients
- Firearms account for the majority of penetrating wounds
- Penetrating wounds are more lethal than blunt trauma

Introduction

Mortality is even higher for younger children (compared to adolescents)

Major physiologic consequence of penetrating trauma outside of the brain = Hemorrhage

Gun Shot Wounds

- * Lethality related to:
 - Projectile dispersion
 - Higher kinetic injury
 - Impulse
 - Yaw
 - Deformation
 - Fragmentation
- Shot-gun wounds
 - Multiple pellet incursions
 - Spread out over a large area

Ballistics

Yaw – rotation of the nose of the bullet away from the line of its flight

Ammunition

- Complete cartridges containing the projectile of a firearm aka "the bullet"
- The bullet = actual projectile = primarily lead with a rounded or pointed tip; various sizes and calibers
- Caliber = width of the bullet in proportion of an inch or millimeter
- Range of designs that affect their energy transference:

Pointed tips
Full metal jackets

Round tips
Partial metal jackets

Hollow points
Scored bullets

Bullets

- * Expanding:
 - Designed to maximize tissue damage
- Nonexpanding:
 - Greater penetration
 - Pointed tip
 - Coated with a thin metal covering/jacket of copper
 - Limits lead residue (dangerous mechanical malfunctions)
 - Bullet maintains its shape

Ammunition

- Birdshot
 - Spherical
 - Small, soft lead or similar metal
- Buckshot
 - Spherical
 - Shells contain only a few tightly packed balls larger diameter
 - Lead or steel

Ammunition

Slugs

- Single, large solid projectile
- May or may not have rifling built into the lead gives it a spiral path which increase accuracy
- Low velocity, limited range

Damage Caused by Bullets

- * Lacerate or crush tissue or bone
- Fluid-filled organs (heart, lungs, bowel) can burst by the pressure
- Fragments of bone shards can further cause damage
- Cavitation
 - Temporary
 - Formed by continuous acceleration of the medium (air or tissue)
 - Permanent
 - Caused by the pathway

Zones of Injury of Ballistic Wounding

- Primary wound tract
 - Permanent cavity, dead crushed tissue
- Contusion zone
 - Tissue adjacent to primary wound tract
 - Inflammatory with cellular debris
- Concussion zone
 - Temporary cavity
 - Tissue damage by stretching, shearing and compression
 - Inelastic tissue (bone, brain, liver, spleen) susceptible

Air-Rifle Injuries

- More fatal if:
 - Suicide attempt
 - Close range
 - Projectile entered the cranium through the orbit or cranium
 - 30% mortality

Non-firearm Related Injuries

More difficult to predict which wounds would be fatal

Head

* 3 times more likely to die

* GCS < 8, unilateral dilated pupil, transventricular or bihemispheric trajectories = High mortality!

https://neupsykey.com/management-of-penetrating-brain-injury/

- Most common non-intracranial lethal wound
- Most likely noted in adolescent males
- * Anterior mediastinum penetration: tamponade
- Lung = Pneumothorax
- Hemothorax
- Major vascular structures
- Fatal immediately if object removed by victim or bystander

Penetrating Chest Wound

Tension Pneumothorax

Needle Decompression

- Each hemithorax can hold up to hold of a patient's total blood volume
- Lung tissue is low density and high elasticity
- * Children have:
 - diminished functional residual capacity
 - Higher oxygen consumption
 - Prone to rapid evolution of hypoxia
 - Remain compensated with blood loss up to 40%

Low-velocity GSWs

- Limited minimal chest trauma to the bullet entry and exit sites
- Minimal injuries, lacerations and contusions to the lungs

High-velocity GSWs

- More extensive damage at the exit of the bullet
- Severe tissue damage beyond the initial tract of penetration
- More intense cavitation, laceration and contusion

- Dyspnea
- Anxiety
- Tachycardia
- Pleural pain
- * Asymmetric chest wall expansion
- Decreased breath sounds

Spinal Injuries

- Direct path and concussive effects of the missile contribute to the destruction of both spine and cord
- GSW to spine have potential for instability if missile fractures pedicles and facets as it traverses the spinal canal
- Incomplete injury or partial motor function should remain immobilized – children have the greatest likelihood of regaining ambulatory function

Cotton, 2004

Neck Injuries

- Uncommon in children
- Protected by:
 - spine posteriorly
 - Mandible anteriorly and superiorly
 - Large head
 - Short neck
- * ~ 25 % will require urgent intubation
- Vascular injury is the most common complication

Neck Injuries

- Multiple structures within the neck and cervical spine are at risk
- Identify and manage injuries
- Prevent progression of injuries
- Injuries to blood vessels can be dramatic or subtle
- Cervical injuries and physical findings may not be straight forward

Neck Trauma

https://aneskev.com/neck-trauma/

Neck Trauma

- Rapidly expanding neck hematoma
- Laryngotracheal injury
- Pulsatile bleeding
- ***** Bruit
- Lateralizing neurological signs
- Hoarseness
- Hemoptysis

Rapid First Impression

- * Gather much information by quickly assessing:
 - Position found
 - Obvious injuries
 - Breathing effort
 - Skin color
 - Mental status

Abdominal Injuries

- Distension from hemorrhage or hollow visceral injury free air
- Tenderness secondary to
 - peritoneal irritation blood and/or enteric content
 - Local tissue destruction

Frequency of Intraabdominal Organs Injury

Table 3. Frequency of Intraabdominal Organs Injury

Organ	Frequency (%)
Gastrointestinal tract	70
Stomach	13
Duodenum	4
Jejunum/ileum	24
Colon/rectum	27
Liver	27
Major vessel	19
Kidney	10
Spleen	9
Genitourinary tract	8
Pancreas	6

Cotton, 2012

Extremity Injuries

- Bony defects
- Joint involvement
- Peripheral nerve damage
- Vascular injuries

THANK YOU

References

- Brunner, D, et al Ballistic Injuries in the Emergency Department. Emergency Medicine Practice, Vol 13 No 12 Dec 2011
- Cotton, BA et al. Penetrating Trauma in Children. Seminars in Pediatric Surgery, Vol 13, No 2 (May), 2004: pp 87-97
- Martin RS, Siqueria MG, Santos MT, et al: Prognostic factors and treatment of gunshot wounds to the head. Surg Neurol 60:98-104, 2003