FSHD Patient Day 2014! What we know, what we think we know, what we left to learn

Jeffrey Statland, MD

Overview

- Clinical Features
- Natural History
- Future Directions

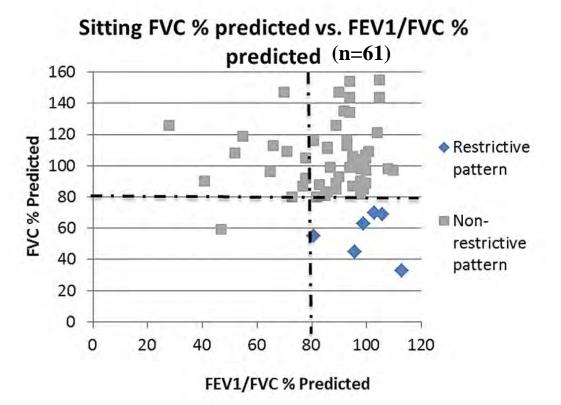
Facioscapulohumeral Muscular Dystrophy (FSHD)

- One of the most common muscular dystrophies
 - Prevalence 1:15,000 to 1:20,000
 - or $\sim 21,000$ in US
- Slowly progressive
- Facio = face, Scapulo = scapular girdle,
 Humeral = upper arms
- Diagnosis is based on characteristic clinical presentation and genetic testing

FSHD: there are 2 types

- Two genetically distinct forms
 - Clinically identical
- Type 1: ~95%
 - Deletion of repeated DNA sequence on chromosome 4 (normal >10 repeats, FSH 1-10 repeats)
 - Autosomal dominant inheritance, but up to 1/3 spontaneous
- Type 2: ~5%
 - No deletion on chromosome 4
 - ~80% associated with mutations in SMCHD1
 - Digenic inheritance

Patterns of Muscle Involvement


- Typically descending pattern
 - First affecting the face, shoulders, and upper arms
 Followed by distal legs (e.g. tibialis anterior), quads
 and hamstrings
 - Hip muscles
- Can have marked axial and abdominal weakness
- Striking side to side asymmetry
- No or minimal contractures
- Often presence of pectus excavatum (hollowed chest)
- Other initial presentations have been described

FSHD: Respiratory Involvement

- Estimates of lung involvement have varied greatly (0-25%)
- Review of Dutch registry of ventilator dependent patients
 - Estimated 1% of Dutch FSHD population requiring mechanical ventilation (researchers took the number of ventilator dependent patients with FSHD, and compared to Dutch FSHD prevalence)

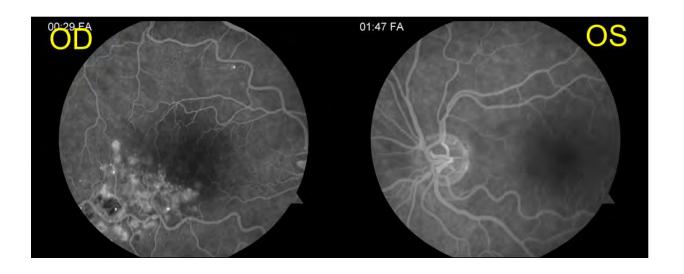
Wohlgemuth M, et al. Neurology. 2004;63(1):176-8

Reduced Lung Capacity in ~10%: Who is at Risk?

 Associated with higher disease severity score and lower extremity/ pelvic girdle involvement

Scully M, et al. Muscle and Nerve (2014) In press.

FSHD: Cardiac Involvement


- No association with structural changes
 - No cardiomyopathy
- Cardiac (mainly atrial) arrhythmias ~ 5-10%?
- Typically not symptomatic
 - Most common symptom palpitations
- Severe cardiac conduction deficit or cardiomyopathy = revisit diagnosis

Extramuscular manifestations

- Retinal vascular changes
- Hearing changes

Retinal Disease

- Although retinal vascular changes can be seen in over half of patients (peripheral telangiectasias)
 - Coats disease = Sympomatic retinal vasculopathy
 - quite rare <1% (aneurysmal dilations, exudates, retinal detachment, blindness)

Coats Disease in FSHD

- Idiopathic Coats disease tends to be:
 - Unilateral
 - Mostly male
- In FSHD
 - Often bilateral
 - Mostly women
 - Small residual D4Z4 fragments
 - Typically the more severe infantile onset disease
- Who do we screen?

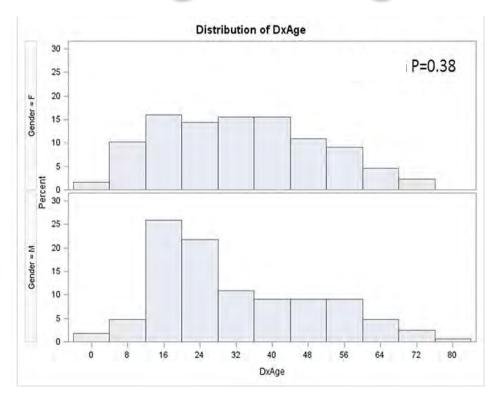
FSHD	Total
Case No.	n=14
Age Coats	10 (1, 15)
FSHD Dx years	12 (5, 18)
D4Z4 Fragment Kb	13 (12, 13)
Gender Female	92.9%
Bilateral	64.3%

Statland JM, et al. Neurology. 2013;80(13):1247-50.

FSHD: Hearing Loss

- Older studies suggested high frequency hearing loss in up to 60% of patients; however more recent studies suggest may not be different than general population
 - Largely asymptomatic
- However symptomatic hearing loss in small proportion of FSHD
 - Typically infantile onset, more severe disease
 - Smallest residual D4Z4 fragments (1-3 repeats)
- May affect language development if not detected early in childhood onset disease

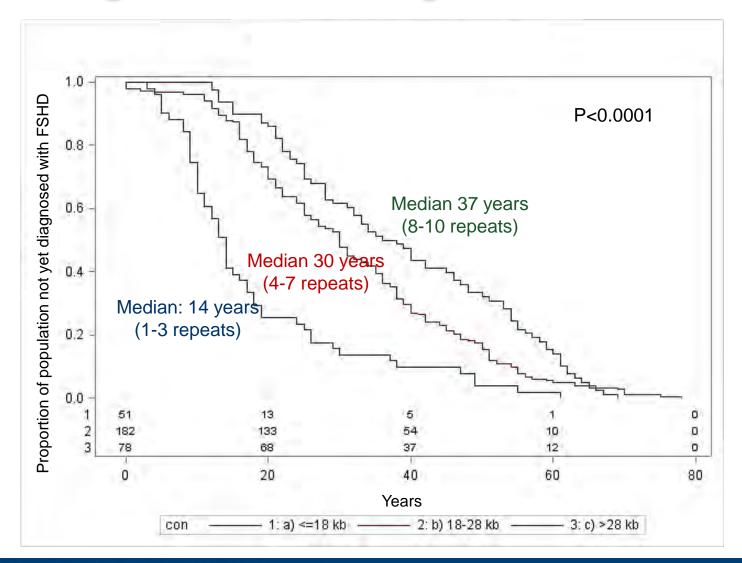
Natural History: Data from a large US Registry of FSHD Patients

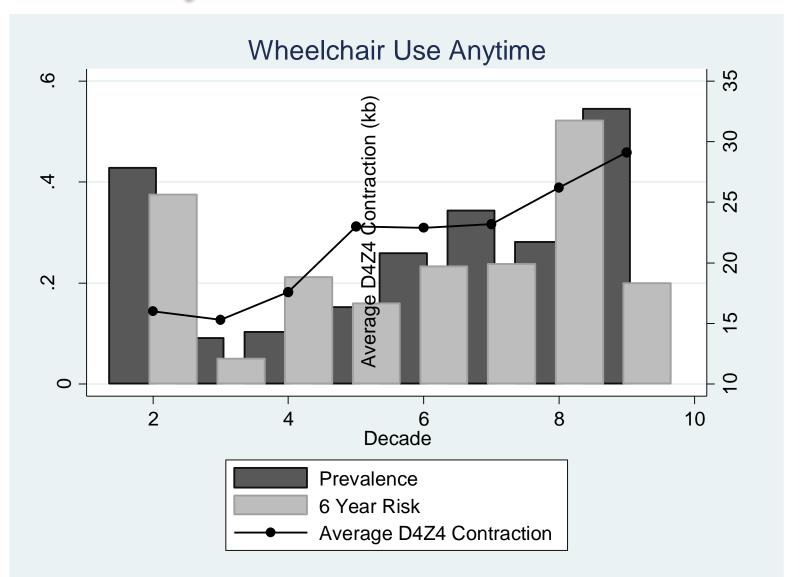

US Registry of FSHD Patients and Family Members

- Limited data about progression of functional impairment in FSHD
- 313 genetically confirmed and clinically affected FSHD1 participants
 - An average of 6 years of follow up
- Mean age 51.5 years, range 9-91 years
- Roughly equal number men and women
- Geographically distributed across the US
- Mostly well educated (>60% some college or beyond)

Statland JM, Tawil R. Muscle Nerve. 2013. Epub 2013/07/23

Disease Characteristic	Value
Age initial symptom (SD)	21.1 (15.0)
Age diagnosed (SD)	31.3 (17.3)
D4Z4 contraction (kb)	24.8 (5.7)
Facial weakness (%)	282 (90.1%)
Scapular weakness (%)	303 (96.8%)
Functional Burden	
Dry or irritated eyes (%)	152 (48.6%)
Difficulty whistling or drinking through a straw (%)	188 (60.1%)
Difficulty raising arms above shoulder height (%)	228 (72.8%)
Difficulty getting out of a chair (%)	108 (34.5%)


FSHD: Age at diagnosis


 Men show peak in diagnosis around 20 years of age, women diagnosed on average older

Statland JM, Tawil R. Muscle Nerve. 2013. Epub 2013/07/23

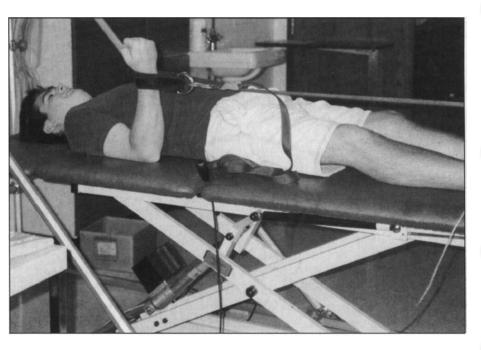

Dx Age: Relationship to contraction

WC Use by Decade and D4Z4 Deletion

Relationship of Age to First WC Use

Linear Relationship to Age for Other Assistive Devices

Age at First Use for Assistive Devices in Years		
Ankle Foot Orthotic (SD) n=91	40.2 (15.2)	
Ankle Knee Orthotic (SD)		
n=48	43.2 (14.6)	
Cane (SD) n=124	49.1 (14.1)	
Walker (SD) n=79	56.8 (15.5)	


Registry Summary

- This risk of using a WC is not distributed evenly across the FSHD population
 - Higher risk in people with small residual fragments
 - And older people
- Risk for other assistive devices related to age
- Unless we can find other markers to determine who is most at risk
 - The ability to use WC use as endpoint in study will be limited due to the long time needed for such studies

Natural History: outcomes

- What have we learned about the Natural History of FSHD as measured by clinical trial outcome measures?
- Natural history study 3 year prospective longitudinal study (1997) n=81

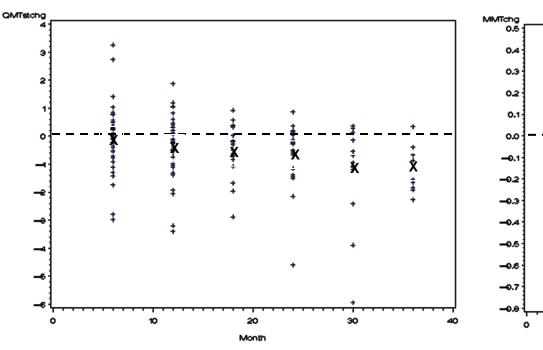
Background: QMT

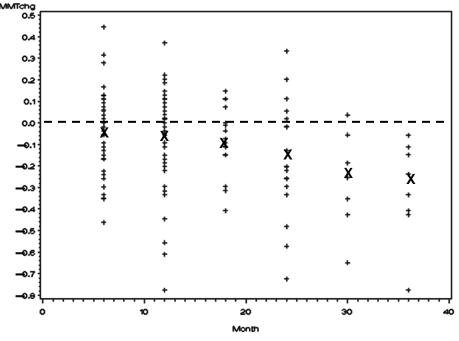
- Technique for testing strength against fixed resistance
- Uses a digital force transducer
- Connected by an inelastic strap to metal frame
- Standardized positions for different muscles

Personius et al. (1994) Phys Ther 74: 253-63

Background: QMT

- Reliable: What you measure one day you measure the next
- Can be standardized to normal expected strength based on gender, height, and age
 - E.g. Create percent predicted of normal
 - Advantages: makes changes in individual muscles comparable
- Standardized scores can be averaged across muscle groups to create combined score to follow progression over time


Background: MMT


MMT Grade	Description
5	Normal strength
5-	Uncertain muscle weakness
4+	Inability to resist against maximal pressure throughout range of motion
4	Ability to resist against moderate pressure throughout range of motion
4-	Ability to resist against minimal pressure throughout range of motion
3+	Ability to move through full range of motion against gravity and to resist against minimal pressure through partial range of motion, then contraction breaks abruptly
3	Ability to move through full range of motion against gravity
3-	Ability to move through greater than one half range of motion against gravity
2+	Ability to move through less than one half range of motion against gravity
2	Ability to move through full range of motion with gravity eliminated
2-	Ability to move in any arc of motion with gravity eliminated
1	A flicker of movement is seen or felt in the muscle
0	No contraction palpable

- Also reliable
- Standardized procedure for positioning
- Uses standard strength scale
 - Range: 0 = no strength; 3=
 strength against gravity but no
 resistance; 5= normal strength
- Scores averaged across muscles to create combined score

Natural History Combined Scores

- Followed subjects at 6 months intervals for 3 years
- Most responsive to disease progression: compared to functional measures, functional grades, and muscle mass

Extension of Natural History

- Extending natural history in 15 subjects
 who subsequently enrolled in albuterol trial
 - Confirmed slow but steady loss of strength over
 2-7 years follow up (~ 2-4% per year)

Statland JM, et al. Neuromuscul Disord. 2013;23(4):306-12.

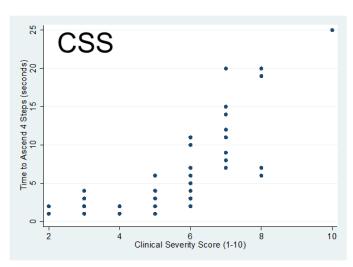
How Many For Clinical Trial?

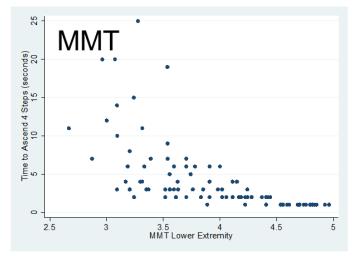
- How many people needed to show a difference in strength depends on how big an effect you think you're going to see with a treatment?
 - For example to show halt of progression would need ~160 people per treatment arm
 - On the other hand for an effect twice as large would only need ~40 per treatment arm

The FSH-DY Group. Neurology. 1997;48(1):38-46.

Summary – Measures of Strength

- QMT and MMT are reliable measures of strength
- Both showed significant disease progression at 1 year
 - However the 'clinical importance' of this change is not known
- Variability measurements can be used for power and sample size estimates
 - But ~160 people per group to demonstrate halt of disease progression a large number for rare disease
- The ability to identify specific people or 'muscles at risk' for progression would increase the sensitivity of strength outcomes in future trials

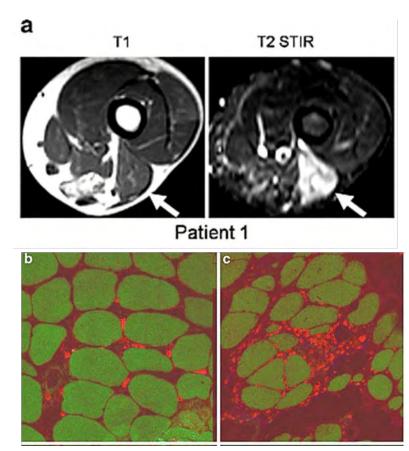

Functional Measures


- Include measures like:
 - Time to ascend 4 stairs
 - walk 30 feet
 - get up from a chair
 - Drink 6 ounces of water
 - Brooks and Vignos functional scales
- Good face validity
 - A change in a functional activity would intuitively seem meaningful

Functional Measures in FSHD

- Reliable
- Typically moderate to strong linear relationship to disease severity or measures of strength
- But do not change over periods of time as long as 3 years

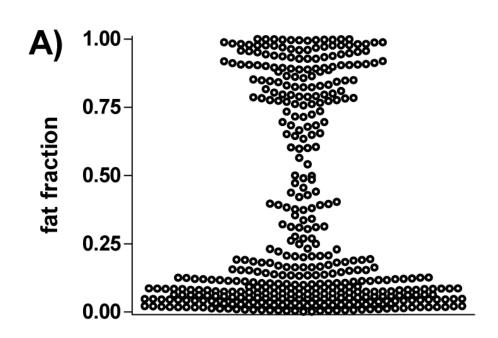
Fime to Ascend 4 Stairs


Future Challenges for the Design of Therapeutic Trials

Challenges: Biomarkers

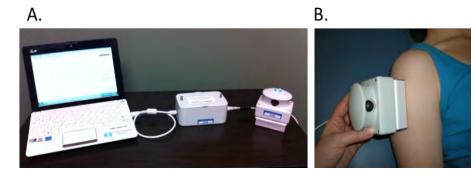
- Biomarkers are things like gene expression, or levels of proteins in your blood which can predict changes in the disease
- Biomarkers are important for proof of concept studies, or as an early signal a drug is working
- DUX4 is hard to measure directly
- Targets of DUX4 may be easier to measure
 - Downstream changes appear to be more persistent
- However more work is needed to determine which biomarkers will work best in FSHD

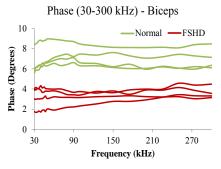
MRI: non-invasive biomarker of disease progression?

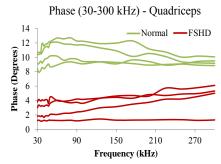

- MRI uses magnetic fields and radio waves to look at muscle
- Changes on MRI might indicate active disease
 - May help target muscles at risk for progression
- Relationship between DUX4 expression and inflammation seen on MRI?

Frisullo, G., et al. (2011) J Clin Immunol 31(2): 155-166. Tasca, G., et al. (2012). PLoS One 7(6): e38779.

Non-invasive Biomarkers: MRI

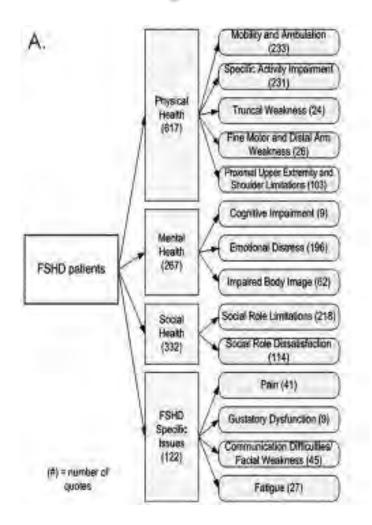

- Alternatively can also use MRI to measure muscle mass and fat content in muscle
- As muscles become weaker the fat content goes up
- Changes in fat content might identify muscles at risk for progression




Janssen, B. H., et al. (2014). PLoS One 9(1): e85416.

Other Non-Invasive Biomarkers

- Electrical impedance myography found to be a useful biomarker in motor neuron disease
 - Impedance is resistance to current flow
 - Largely determined by muscle structure



Current Studies

- Prospective 12 month longitudinal study
- To test: reliability, relationship to other measures of FSHD, and changes over time:
 - Disease specific health inventory
 - Disease specific functional rating scale
 - Electrical Impedance Myography

FSHD Health Inventory

- Developed by Chad Heatwole, MD
 - using FDA Guidance
- Patient interviews (1375 quotes) used to identify relevant symptoms
- National cross-sectional study of 328 FSHD patients
 - Rank importance of different symptoms identified in interviews
- Final questionnaire 116 questions in 14 subdomains

Johnson, N. E., et al. Muscle Nerve 46(6): 951-953.

FSHD-Functional Outcome

- Evaluator administered functional tasks
- Chosen to represent areas of body affected by FSHD
- Combined to create a 72 point scale for use in clinical trials
- Preliminary data:
 - Reliable
 - Associations with other measures of disease (strength, clinical severity scores)

Leg Function	Sit to stand without hands
	6 Minute Walk Test
	Self-selected gait speed
	Go' 30 feet
	Timed ascend/descend stairs
Arm Function	Shoulder abduction
	Shoulder forward flexion
	Elbow flexion
	Time to don/doff coat
Trunk Function	Time to pick penny up from floor
	Sit up with feet held
	Timed supine to sit
Hand Function	Grip dynamometry (M/F)
Balance/Mobility	Timed Up and Go

Clinical Trials: Opportunities

- FSHD is one of the most common muscular dystrophies
 - Patient recruitment should not be an issue
- Established outcome measures and natural history using these outcome measures
- Current efforts to build networks of FSHD clinical trial sites
 - Standardizing protocols for biomarkers, imaging, strength and functional measures, and quality of life measures
 - If studies will be done at different sites at least they will be done the same way

Summary

- Recent advances have elucidated a unified genetic model for FSHD1 and 2
- Identifies potential disease-directed therapeutic targets
- The slow disease progression and individual to individual variability present challenges when developing outcomes for future trials
 - Identifying markers of disease activity to help stratify people will be key
- International cooperation and standardization of procedures will be necessary for comparing interventions across studies

Thanks: everyone who came today

- Organizations
 - Experimental Therapeutics Program
 - MDA Clinical Research Training Program
 - FSH Society
 - Registry of FSH Patients and Family Members
- URMC
 - Rabi Tawil, MD mentor
 - Robert Griggs, MD mentor
 - Chad Heatwole, MD collaborator
 - Kate Eichinger PT
 - Shree Pandya PT

- Colleen Donlin-Smith coordinator
- Bharati Shah Lab
- Don Henderson Lab
- KUMC
 - Richard Barohn, MD mentor
- LUMC the Netherlands
 - Silvere van der Maarel collaborator
- Fred Hutchinson Cancer Center
 - Seattle
 - Stephen Tapscott collaborator